
Trajectory Methods for Neural Network Training
Y. G. Petalas

�����
, D. K. Tasoulis

����� ���
, M. N. Vrahatis

���	� ������
�
Department of Mathematics, University of Patras, GR–26110 Patras, Greece,�����

University of Patras Artificial Intelligence Research Center (UPAIRC),
University of Patras, GR–26110 Patras, Greece

Email: petalas, dtas, vrahatis � @math.upatras.gr

ABSTRACT
A new class of methods for training multilayer feedfor-
ward neural networks is proposed. The proposed class of
methods draws from methods for solving initial value prob-
lems of ordinary differential equations, and belong to the
subclass of trajectory methods. The training of a multi-
layer feedforward neural network is equivalent to the mini-
mization of the network’s error function with respect to the
weights of the network. To address this problem we solve
the differential equation ���������������� , where � is the vec-
tor of network weights and ��� is the gradient of the error
function of the network. The solution of the above system
of ordinary differential equations corresponds to the solu-
tion of the aforementioned minimization problem.

KEY WORDS
Neural Networks, Training Algorithms, Ordinary Differen-
tial Equations, Trajectory Methods

1 Introduction

Artificial Feedforward Neural Networks (FNNs) are paral-
lel computational models comprised of densely intercon-
nected, simple, adaptive processing units, characterized by
an inherent propensity for storing experiential knowledge
and rendering it available for use. FNNs resemble the hu-
man brain in two fundamental respects; firstly, knowledge
is acquired by the network from its environment through
a learning process, and secondly, inter-neuron connection
strengths, known as synaptic weights are employed to store
the acquired knowledge [3].

Two critical parameters for the successful application
of FNNs are the appropriate selection of network architec-
ture and training algorithm. The problem of identifying the
optimal network architecture for a specific task remains up
to date an open and challenging problem.

The efficient supervised training of FNNs is the sub-
ject of considerable ongoing research and numerous algo-
rithms have been proposed to this end. Supervised training
amounts to the global minimization of the network error
function � . The rapid computation of a set of weights that
minimizes this error is a rather difficult task since, in gen-
eral, the number of network weights is large and the re-
sulting error function generates a complex surface in the
weight space, characterized by multiple local minima and

broad flat regions adjoined to narrow steep ones.
Considerable effort has been spent in developing local

minimization methods. Thus, modifying these methods for
the case of global minimization is important. One way to
accomplish this task is to modify the differential equation
that describes the local descent trajectory. The methods
based on this modification constitute the subclass of tra-
jectory methods [13]. A crucial property of the equations
under consideration is that the trajectory passes through the
neighborhood of the majority of stationary points of the ob-
jective function.

The trajectory that emerges by the solution of the sys-
tem of differential equations:� �� � �!���"�#���$�&% (1)

corresponds to the solution of the unconstrained minimiza-
tion of the objective function ������� with respect to � , where�('*),+ . The above equation represents a set of first order
differential equations that has to be solved in order to detect
the minima of the function ���-�$� .

Besides the above system of first order differential
equations, a modification of Eq. (1) can also be interpreted,
through a mechanical analogy, as an assignment of mass to
a point moving in a field of forces [4, 5, 15]. Mathemat-
ically this modification means introducing a second order
term into the equation of motion. Let the mass of the par-
ticle be . � � � . The particle is moving in a field of forces
defined by the potential � subject to the dissipative force�0/1� � � ��2�

� � . The trajectory may then be described by a sys-
tem of differential equations:

. � � �43�5� � �,�*/1� � � ��,�
� �6�!���������5� � �
�7%

where . � � �98�: and /1� � �<;�: . Under a set of conditions
the trajectory converges to a local minimum of the objective
function � . It is obvious that the efficiency of the algorithm
heavily depends on the parameters . � � � and /1� � � .

A similar idea has been suggested in [10], where the
motion of a point with unit mass is described in a field with
potential � without friction. The system of equations of
the motion of the particle is then a special case of the above
equation.

Furthermore, since the system is autonomous, a theo-
rem due to Poincare states that the trajectory passes through
the neighborhood of all the stationary points of � . The

application of this theorem to the case of neural network
training will be very interesting since all the minima of the
function � can be detected. We intend to pursue this line
of research in a future correspondence.

Some other methods that constitute a special case of
the introduced second order differential equation are:

= The method by Griewank [2],

. � � �6���-���-�2� � ���1�?>&��@BAC%
and /1� � �6�D�������-�2� � ��� ��2�

� �
where > is the target level that has to be set somewhat
higher than the global minimum of the the objective
function. If a point �FE is found such that ���-�FEG�IH> then the global search defined by the second order
differential equation is terminated and a local descent
is started from the point �FE . In [2] the choice of the
parameter values for A and > is discussed and examples
of successful minimization are provided.

= The method by Snyman and Fatti [12] where . � � �0�J
and /1� � �1�K: i.e. the trajectory is determined by

3�5� � �L� ���"�#���2� � �
�7%
�2�M: �L� �ONC%
��5�M: �P� :RQ

This gives the following energy conservation relation-
ship: JSUT ��5�

� � T �WV �#���2� � �
�6�K���-� N ��Q
This allows the particle to continue past a local mini-
mum (the minimum is recorded) and surmount a ridge
of height less than ���-�FNB� , continuing further along a
path that may lead to an even lower value of � . Us-
ing many starting points the probability that the global
minimum will be found increases. It is worth noting,
that for the method to be efficient the trajectory is ter-
minated before it retraces, or approximately retraces,
itself in an indefinite motion.

In the next Section a more detailed description of the
proposed method is provided, while Section 3 presents ex-
perimental results. The paper ends with concluding re-
marks and ideas for future research.

2 The proposed class of methods

There is a variety of efficient and effective methods for the
numerical solution of ordinary differential equations of the
form XZY �\[,���2% X � , with initial value X N � X ��� N � [1, 9].
Through our approach each one of these methods corre-
sponds to a Neural Network training algorithm. In this pa-
per we focus on the application of Runge–Kutta methods.

In particular we will consider here the second order Runge–
Kutta methods. It is evident that for the differential Eq. (1)
these methods assume the form:

� +G] � � � + V_^ �a`b� Vc^ �d`4� %
`b� � e$������� + ��%
` � � e$������� + V(f � ` � �a%

where e!gh: determines the stepsize. If the coefficients^ � % ^ � % f � satisfy a specific system of algebraic equations
then the corresponding method constitutes a second order
Runge–Kutta method [1]. It is well–known that there is an
infinite number of solution sets [1].

We have tried some well–known combinations of the
values

^ � % ^ � % f � and produced the following three Runge
Kutta methods which we have used in the test problems
considered:

= RK1:
^ � �K:R% ^ � � J % f � � �� ,

= RK2:
^ � � �� % ^ � � �� % f � � J

,

= RK3:
^ � � �i % ^ � � �j % f � � � j

.

The above sets of parameters correspond to well–
known and widely used methods, and in particular the third
one (RK3) is considered optimal since it obtains the small-
est possible local truncation error among all the second or-
der Runge–Kutta methods.

3 Experimental Results

Primarily, we briefly present the test problems considered.
For these problems we have applied and compared some
well known and widely used variations of the Backpropa-
gation (BP) method; namely:

= Backpropagation with Momentum (MBP) [6, 7],

= Second Order Momentum (SMBP), and

= Adaptive Backpropagation (ABP) using the adaptive
scheme suggested by Vogl [6, 14].

Furthermore, we also applied the Parallel Tangents method
(PARTAN) [11].

3.1 Description of the Problems

The problems used were the classical XOR, the Coder-
Decoder, and Cancer1 a classification problem from the
proben1 [8] dataset. In more detail:

= XOR: This is a classical test problem which is char-
acterized by a multitude of local minima. The perfor-
mance of training algorithms on this problem is very
sensitive on the initial weights. The network topol-
ogy used was the traditional one, namely, 2-2-1. The

stopping error criterion for training was an error goal
of :OQ :4k within 2000 function evaluations (including
gradient evaluations). The parameter values used by
the Backpropagation family methods were: stepsize
equal to :RQmlGn and the momentum term was set to :RQ o .
For Vogl’s method the error ratio factor was

J Q :4k , the
stepsize increment factor was equal to

J Q : n while the
stepsize decrease factor was :OQpl . For the Runge Kutta
methods a stepsize equal to k : was selected. The final
choice of the parameters was done after experimenta-
tion.= Coder-Decoder: This is a problem which has one hid-
den layer that includes a number of neurons equal to
the logarithm of the input units. The desired output of
the network is identical to the input. The architecture
used was a k –

S
– k feedforward neural network. Four

training input patterns are presented to the network.
Each pattern has four bits. Three of them are zero and
the remaining one has the value of one. The stopping
error criterion for training was :RQ J within q :4: function
evaluations (including gradient evaluations). The val-
ues for the parameters for the Backpropagation family
methods and the Runge-Kutta methods were set to the
values used in XOR.= Cancer1: This is a classification problem taken from
the proben1 [8] dataset. The architecture used was ao – k –

S
–
S

feedforward neural network (best architec-
ture for cancer1 in proben1). The stopping error cri-
terion for training was an error goal of :RQ : n within
2000 function evaluations (as before, including gradi-
ent evaluations). The parameter configuration for the
previous two problems was also applied in this case.

3.2 Presentation of the Results

We performed 100 simulations for each problem. For the
first two problems, XOR and Coder-Decoder, we measured
the number of successes, the mean number of function eval-
uations (gradient evaluations were also included), the min-
imum (min) and the maximum (max) number of function
evaluations, and the standard deviation. For problem Can-
cer1, in addition to the above measures we computed the
aforementioned statistics for misclassification.

As it is exhibited in Table 1 Backpropagation never
converged within less than 894 Function Evaluations. The
proposed RK1 exhibits the smallest mean value. MBP and
ABP had a performance similar to RK1, but RK1 exhib-
ited smaller deviation. Finally, MBP achieved a 95% con-
vergence percent. The smallest deviation was attained by
RK3.

On the other hand, as it is exhibited in Table 2 in the
Coder-Decoder problem RK1, RK2 and RK3 performed
the minimum function evaluations and only ABP exhibited
a similar performance.

Regarding the Cancer1 problem as it is shown in Ta-
bles 3 and 4 the overall less computationally demanding

Table 1. XOR problem

Algorithm Mean Stdev Max Min Suc
BP

J nGr q Q :4s S o4sOQ n4o4r J o oGk r oGk 36
PARTAN k k J Q o S o S Q kbl 591 25 100

MBP
J k rOQ n J o4:RQ SZJ 356 28 95

SMBP kZlB:OQ n S J s J Q n4o 598 118 100
ABP

J q J Q :4r q S Qpn S 510 89 100
RK1

J k sRQ k n4sRQ q J 294 64 100
RK2

S k oRQ o J kCnRQ q r 902 70 100
RK3 163 kCrRQ r4o 388 70 100

Table 2. Coder-Decoder problem

Algorithm Mean Stdev Max Min Suc
BP n S S Q :4o q :OQ sCn 595 400 100

PARTAN s q q Q :4s J : J Q S s n lGo SRJ l 100
MBP s nGkOQ : J J n4oRQ J k 564 84 100

SMBP k : oRQ rGk r S Q q l 581 221 100
ABP lBrOQ kZl JdS Q sbl 134 65 100
RK1 q lZQ s4k s S Q r s 163 30 100
RK2 l J Q n q s4oOQpl l 214 26 100
RK3 lBrOQ k S k rOQ n4s 296 28 100

method is RK2. On the other hand, the best classification
error (CE) is obtained by RK3. Again, ABP had the most
comparable results with the proposed methods. In conclu-
sion in all the test cases we examined the proposed methods
outperformed the backpropagation family methods.

Table 3. Cancer1 problem

Algorithm Mean Stdev Max Min Suc
BP n S lZQ s q J s4sOQ o r 865 330 100

PARTAN
J q kFQ q n4sRQ :4s s S l 89 100

MBP s n S Q o q S nGsOQ o S 955 25 100
SMBP sGkCnRQ : s o4oRQ :4o 548 148 100
ABP lBkOQ S q rOQ rbl 95 63 100
RK1

J J :OQ o q S :4sOQ s q 1182 43 100
RK2 n4:RQ J s rOQ S l 68 36 100
RK3 lG:RQ k q S kOQml q 148 32 100

4 Concluding Remarks

In this paper we propose a class of methods for training
feedforward multilayer neural networks. The proposed
methods are based on methods for solving initial value
problems of ordinary differential equations. We have tested
the proposed approach on some well known test problems
for neural network training and the obtained results are
promising. Here we have focused the trajectory obtained

Table 4. Cancer1 problem CE

Algorithm Mean Stdev Max Min
BP

S Q kbn :RQ rCl q Q s S J Q J k
PARTAN

S Q J q :RQpn J S Q rbl J Q J k
MBP

J lbQ S l J oOQ kC: q S Q q k J Qpl S
SMBP

S Q : q :RQ q s S Q rCl :OQ nCl
ABP

J Q o4s :RQ r4s sOQ k k :OQ nCl
RK1

J QmlBr :RQ r J sOQ k k :OQ nCl
RK2

J Q o4o :RQ q J S Q rbl :OQ nCl
RK3

J Q q k :RQml J sOQ k k :OQ nCl

by ����!�������-�$� .
In a future correspondence we are intend to apply our

approach on second order differential equation, as men-
tioned in Section 1. Besides the second order Runge-Kutta
methods applied in the present paper the performance of
various other methods for the numerical solution of initial
value problems will be investigated.

References

[1] J. Butcher. Numerical Analysis of Ordinary differen-
tial equations. Wiley London, 1987.

[2] A.O. Griewank. Generalized descnet for global opti-
mization. JOTA, 34(3,8):11–39, 1981.

[3] S. Haykin. Neural Networks: A Comprehensive Foun-
dation. New York: Macmillan College Publishing
Company, 1999.

[4] S. Incerti, V. Parisi, and F. Zirilli. A new method
for solving nonlinear simultaneous equations. SIAM
J.Num.Anal, 16(3):779–789, 1979.

[5] S. Inomata and M. Cumada. On the golf method. Bul-
letin of the Electronical Laboratory, 25(3):495–512,
1964.

[6] G.D. Magoulas, M.N. Vrahatis, and G.S. An-
droulakis. Effective backpropagation training with
variable stepsize. Neural Networks, 10(1):69–82,
1997.

[7] G.D. Magoulas, M.N. Vrahatis, and G.S. An-
droulakis. Increasing the convergence rate of the er-
ror backpropagation algorithm by learning rate adap-
tation methods. Neural Computation, 11(7):1769–
1796, 1999.

[8] L. Prechelt. Proben1: A set of neural network bench-
mark problems and benchmarking rules. Technical
Report 21/94, 1994.

[9] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery. Numerical Recipes in C: The Art of Scien-
tific Computing. Cambridge University Press, 1988.

[10] B.N. Pshenichnyi and D.I. Marchenko. On one ap-
proach to the search for the global minimum. Optimal
Decision theory, 2(3):3–12, 1967.

[11] S.S. Rao. Optimization theory and Applications. Wi-
ley Eastern Limited, 1992.

[12] J.A. Snyman and L.P. Fatti. A multi-start global opti-
mization algorithm with dynamic search trajectories.
JOTA, 54(3,8):121–141, 1987.

[13] A. Törn and A. Žilinskas. Global Optimization, Lec-
ture Notes in computer Science, 350, Springer Verlag,
1987.

[14] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, and
D.L. Alkon. Accelerating the convergence of the
back-propagation method. Biol. Cybern., 59:257–
263, 1988.

[15] N. Zhidkov and B. Shchdrin. On the search of min-
imum of a function of several variables. Computing
methods and Programming, 10(3,7):203–210, 1978.

