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Abstract. The selection of gene subsets that retain high predictive 
accuracy for certain cell-type classification, poses a central problem in 
microarray data anal} îs. The appHcation and combination of various 
computational intelligence methods holds a great promise for automated 
feature selection and classification. In this paper, we present a new ap­
proach based on evolutionary algorithms that addresses the problem of 
very high dknensionahty of the data, by automatically selecting subsets 
of the most informative genes. The evolutionary algorithm is driven 
by a neural network classifier. Extensive experiments indicate that the 
proposed approach is both effective and reliable. 

1 Introduction 

In modem clinical practice, the correct and accurate treatment of patients heav­
ily depends on diagnose that incorporate complex clinical and histopathologi-
cal data. In some cases this task is difficult or even impossible due to the large 
amount of data and the limited time and/or resources. Tb this end, fully au­
tomated techniques that can assist in the correct diagnoses are of great value. 
Moreover, as the number of microarray experiments increases constantly, these 
techniquas are becoming more and more a part of personalized healthcare. Thus, 
robust computational methods to support this expansion are needed. 

To understand a biological processes that a living ceU midergoes, one has to 
measure the gene expression levels in diflFerent developmental phases, different 
body tissues, and different clinical conditions. Although this kind of information 
can aid in the characterization of gene function, the determination of experi­
mental treatment effects, and the understanding of other molecular biological 
processes [4], it also presents new challenges for reî archers. Compared to the 
traditional approach to genomic research, which has been to examine and col­
lect data for a single gene locally, DNA microarray technologies have rendered 
possible the simultan^us monitoring of the expr^sion pattern of thousands of 
genes. Unfortunately, the original gene expression data are contaminated with 
noise, missing valu^ and systematic variations due to the experimental proce­
dure. Several methodologies can be employed to alleviate these problems, such 
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as Singular Value Decomposition based methods, weight^ fe-nearest neighbors, 
row averages, replication of the experiments to model the noise, and/or normal­
ization, which is the process of identifying and removing systematic sources of 
variation. 

Discovering the patterns hidden in the gene esqpression mdcroarray data 
and subsequently using them to clasdfy the various conditions is a tremen­
dous opportunity and a challenge for functional genomics and prot̂ >mics [4], A 
promising approach to address this task is to utilize computational intelligence 
techniques, such as Evolutionary Algorithms (EAs) and Feedforward Neural 
Networks (FNNs). 

EAs refer to stochastic optimization algorithms which employ computational 
models of evolutionary processes. They share the common conceptual base of 
simulating the evolution of the individuals that form the population using a 
predeJBbaed set of operators. Commonly two types of operators are used: selec­
tion and search operators. The most widely used search operators are mutation 
and recombination. The selection operator mainly depends on the perceived 
measure of fitness of each individual and promotes natiural selection in the 
form of the survival of the fittest. The recombination and the mutation op­
erators stochastically perturb the individuals providing efficient exploration of 
the search space. This perturbation is primarily controlled by the user defined 
recombination and mutation rates. Although simplistic from a biologist's view­
point, these algorithms are sufficiently complex to yield robust and powerful 
search mechanisms, and have shown their strength in solving hard real world 
optimization problems. 

FNNs are parallel computational models comprised of densely iutercon-
nected, simple, adaptive processing units, characterized by an inherent propen­
sity for storing experiential knowledge and renderiD^ it available for use. FNNs 
have been successfully appUed in nmnerous application areas. To train an FNN, 
supervised training is probably the most frequently emplqyed technique. The 
training process is an incremental adaptation of connection weights that prop­
agate information between neutrons. Unfortunately, employing FNNs (or any 
other classifier) directly to classify the samples is almost infeasible due to the 
curse of dimensionality (limited number of sample coupled with very high fear 
ture dimensionality). One solution is to preproc^s the expr^sion matrix using 
a dimension reduction technique [6, 14]. 

In this paper, we follow a difierent approach. EAs and FNNs are employed 
to discover sublets of informative genes that accurately characterize all the sam­
ples. Generally, the aim is to reduce the initial gene pool from several thousand 
genes (5,000-10,000 or more) to 50-100. Several gene sel^;tion methods based 
on statistical analysis have been developed to select these predictive genes and 
perform dimension r^uction. Those methods include t-statistics, ioformation 
gain theory, and principal component analysis (PCA) [5]. It is evident that the 
choice of feature selection is difficult and bears a significant effect on the overall 
classification accuracy. Typically, accuracy on the training data can be quite 
high, but not replicated on the tasting data. 
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The rest of the paper is organized as follows. In Section 2 the proposed 
approach is presented. In Section 3 is devoted to the pr^entation and the 
discussion of the experimental results. The paper ends with concluding remarks 
and some issues for future work. 

2 Algorithms and Methodology 

To classify samples using microarray data, it is necessary to decide which genes, 
from the ones assayed, should be included in the classifier. Including too few 
genes and the test data will be incorrectly classified. On the other hand, having 
too many genes is not desirable either, as many of the genes will be irrelevant, 
mostly adding noise. This is particularly severe with a noii^ data set and few 
subjects, as is the case with microarray data. 

In the literature, both supervised and unsupervised classifiers have been 
used to build classification models from microarray data. This study addresses 
the supervised classification task where data samples belong to a known class. 
EAs are applied to microarray classification to determine the optimal, or near 
optimal, subset of predictive gen^ on complex and large spaces of possible gene 
sets. Although a vast number of gene subsets are evaluated by the EA, selecting 
the most informative genes is a non trivial task. Common problems include the 
existence of: a) relevant genes that are not included in the final subset, because 
of the insufficient exploration of the gene pool, b) significantly different subsets 
of genes being the most informative as the evolution progresses, and c) many 
subsets that perform equally well, as they all predict the test data satisfactorily. 
From a practical point of view, the lack of a imique solution does not seem to 
present a problem. 

The EA approach we propose maintains a population of trial gene subsets; 
impose random changes on the genes that compose those subsets; and incorpo­
rates selection (driven by a neural network classifier) to determine which are the 
most informative onas. Only those gen^ are maintained in successive genera­
tions; the rest are removed from the trial pool. At each iteration, every subset is 
given as input to an FNN classifier and the effectiveness of the FNN determines 
the fitness of the subset of genes. The size of the population and the munber of 
features in each subset are parameters that we explore experimentally. 

2.1 The Differential Evolutionary Algorithm 

Differential Evolution [11] is an optimization method, capable of handling non-
differentiable, nonlinear and multimodal objective functions. To fulfill this re­
quirement, DE has been designed as a stochastic parallel direct search method, 
which utilizes concepts borrowed from the broad class of evolutionary algo­
rithms. The method typically require few, easily chosen, control parameters. 
Experimental results have shown that DE has good convergence properties and 
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outperforms other well known evolutionary algorithms [11], DE has been ap­
plied on numerous optimization tasks. It has successfully solved many artificial 
benchmark problems, as weU as, hard real-world problems. In [3] DB has been 
appMed to train neural networks and in [7, 8] we have proposed a method to 
efficiently train neural networks having arbitrary, as well as, constrained in­
teger weights. The DE algorithm has also been implemented on parallel and 
distributed computers [12, 9]. 

DE is a population-based stochastic algorithm that exploits a population 
of potential solutions, individuals^ to effectively probe the search space. The 
population of the individuals is randomly initialized in the optimization domain 
with NP, n-dimensional vectors, following a uniform probability distribution 
and is evolved over time to explore the search space. iVP is fixed throughout the 
training proc^®. At each iteration, called generation^ new vectors are generated 
by the combination of randomly chosen vectors from the current population. 
This operation in our context is referred to as mutation. The outcoming vectors 
are then mixed with another predetermined vector - the target vector - and 
this operation is called recombination. This operation yields the so-called trial 
vector. The trial vector is accepts for the next generation depending on the 
value of the fitness function. Otherwise, the target vector is retained in the next 
generation. This last operator is referred to as selection, 

2.2 Search Operators 

The search operators efficiently shuffle information among the individuals, en­
abling the search for an optimum to focus on the most promising regions of the 
solution space. The first operator considered is mutation. For each individual 
a;*, i = 1,... jNP, where g denotes the current generation, a new individual 
f̂f+i (mutant -^ctor) is generated according to one of the following equations: 

4+i = '^r+M^S'-0. 
«J+i = < + M < - 0 , 
vUi=4+M(:«'r - 4)+MK' - <). 
4+1=^5"*+M« - O + / ^ « - <) . 
4+1 = tcji + f,{xf - xf) + M(XS* - xjS), 

le best member of the previous generation: 

(1) 

(2) 

(3) 

(4) 

(5) 

/i > 0 is a real 
parameter, called mutation constant^ which controls the amplification of the 
difference between two individuals so as to avoid the stagnation of the search 
process; and ri, r2,ra,r4, rs € {1,2, . . . , i — 1,i + 1 , . . . , NP}^ are random inte­
gers mutually different. Trying to rationalize the above equations, we observe 
that Equation (2) is similar to the crossover operator used by some Genetic 
Algorithms and Equation (1) derives from it, when the b^t member of the 
previous generation is employed. Equations (3), (4) and (5) are modifications 
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obtamed by the combination of Equations (1) and (2). It is clear that more 
such relations can be generated using the above ones as building blocks. 

The recombination operator is subsequently applied to further increase the 
diversity of the mutant individuals. To this end, the resulting individuals are 
combined with other predetermined individuals, called the target individuals. 
Specifically, for each component I {I = 1,2,..., n) of the mutant individual 
ĝ+i> we choose randomly a real number r in the interval [0,1], We then com­

pare this number with the recombination constant, p. If r < p, we select, as the 
~̂th component of the trial individual u^g+i, the l-th component of the mutant 

individual v^+i. Otherwise, the l-th component of the target vector x^^i be­
come the l-th component of the trial vector. This operation yields the trial 
individual. Finally, the trial individual is accepted for the next generation only 
if it reduces the value of the objective function. 

One problem when applying EAs, in general, is to find a set of control pa­
rameters which optimally balances the exploration and exploitation capabiUties 
of the algorithm. There is always a trade off between the efficient exploration 
of the search space and its effective exploitation. In [13] a detailed study and 
experimental results on exploration vs. exploitation issues are presented. In this 
paper we employed the Equation (1) as a search operator. 

2.3 Fitness Fimction 

For the proposal system, each population member repr^ents a subset of genes, 
so a special representation must be designed. When seeking subsets containing 
n genes, each individual consists of n integers. The first integer is the index 
of the first gene to be included in the subset, the second integer denotes the 
number of genes to skip until the second gene to be included is reached, the 
third integer component denote the number of genes to skip imtil the third 
included gene, and so on. This representation was necessary in order to avoid 
multiple inclusion of the same gene. Moreover, a version of DE that uses integer 
vectors has been proposed and thorou^y studied in previous studies [7, 8, 9], 

FNNs were used as a classifier to evaluate the fitness of each gene subset. 
One third of the data set is used as a training set for the FNN and one third is 
used to measure the classification accuracy of the FNN classifier. The remaining 
patterns of the data set are kept to estimate the classification capability of the 
final gene subset. All the FNNs were trained using the well known and widely 
used ResiUent backpropagation (Rprop) [10] training algorithm. Rprop is a fast 
local adaptive learning scheme, performing supervised training. To update each 
weight of the FNN, Rprop exploits information concerning the sign of the partial 
derivative of the error function. 

In our experiments, the five parameters of the Rprop method were initialized 
using values commonly employed in the Uterature. In particular, the increase 
factor was set to T?"*" = 1.2; the deorease factor was set to r}~ = 0.5; the initial 
update value is set to AQ = 0.1; the maximum step, which prevents the weights 
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from becoming too laxge, was A^iax = 50; and the TniniTniim step, which is used 
to avoid too small weight updates, was constantly fixed to ^min = 10~^ [10]. 

3 Presentation of Experiments 

In this section we report the experimental results. We have t^ted and compared 
the performance of the proposed system on many publicly available microarray 
data sets. Here we report results from the following two data sets: 

- The COLON data set [1] consists of 40 tumor and 22 normal colon tissues. 
For each sample there exist 2000 gene expression level measurements. The 
data set is available at http://microarray.princeton.edu/oncology. 

- The PROSTATE data set [2] contains 52 prostate tumor samples and 50 
nontumor prostate sample. For each sample there exist 6033 gene expres­
sion le\^l measurements. It is available at http://www.broad.mit.edu/cgi-
bin/cancer/datasets.cgi. 

Since the appropriate size of the most predictive gene set is unknown, DE was 
emplqyed for various gene set siz^ ranging from 10 to 100 with a step of 10. 
The FNN used at the fitness function consisted of 2 hidden layers with eight 
and seven neurons, r^pectively. The input layer contained as many neurons 
as the size of the gene set. One output neuron was used at the output layer 
whose value for each sample determined the network classification decision. 
Since both problems had two different classes for the patterns, a value lower 
than 0.5 regarded the pattern to belong to class 1 otherwise regarded it to 
belong to class 2. 

For each different gene set size the data was partitioned randomly into a 
learning ^t consisting of two-thirds of the whole set and a t^t set consisting 
of the remaining one third, as already mentioned. The one third of the training 
set was used by the Rprop fidgorithm to train the FNNs, and the performance 
of the r^p^tive gene set was measured in the other one third. The test set was 
only used to evaluate the classification accuracy that can be obtained using the 
final gene set discovered by the DE algorithm. To reduce the variability, the 
splitting was repeated 10 times and 10 independent runs were performed each 
time, resulting in a total of 100 experiments, for gene ^t size. 

The classification accuracy of the proposed system is illustrated using box-
plots in Figure 1. Each boxplot depicts the obtained values for the classification 
accuracy, in the 100 experiments. The box has lines at the lower quartile, me­
dian, and upper quartile values. The lines extending from each end of the box 
(whiskers) indicate the range covered l>y the remaining data. The outliers, i.e. 
the values that lie beyond the ends of the whiskers, are denoted by crosses. 
Notch^ represent a robust estimate of the uncertainty about the median. 

As demonstrated, using a gene set size of 50-80 for the COLON dataset the 
algorithm managed to achieve the best results; comparable to those obtained 
by other approaches [6, 15]. The same is achieved for the PROSTATE dataset 
for a gene set size ranging from 40 to 60. 
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Fig. 1. Classification accuracy obtained by FNNs trained using the DE selected gene 
set for the COLON (left) and PROSTATE (right) datasets. 

4 Concluding Remarks 

In this article we propose an Evolutionary Algorithm that maantains a popu­
lation of trial gene subsets and evolves them to determine which are the most 
informative ones. At each iteration, every subset is given as input to a Feed­
forward Neural Network and the effectiveness of the Network determines the 
subsets that will be maintain^ in future generations. Experiments on microar-
ray datasets indicate that the proposed approach is effective and reliable. The 
advantages of the proposed approach include its completely automatic oper­
ation. Moreover, the result of the algorithm differs from PCA-like reduction 
technique since it does not transform the input space but rather directly de­
tects informative genes. Additionally, the use of Neural Networks as a classifier 
allows the discovery of non-linear relationships between the input and output. 
On the other hand, the whole procedure is quite time consuming. However, con­
sidering the slow experimental nature of the complete microarray experiments, 
the required time seems neghgible. 

In a future correspondence, we wiU investigate the performance of the pro­
posed approach when different evolutionary algorithms are employed. We also 
intend to incorporate unsupervised clustering algorithms in an attempt to Im­
plement a system capable of clustering the genes and simultaneously finding 
the most informative subsets. 
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