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Abstract. A new efficient method is presented for the numerical computation of families
of periodic orbits of systems with three or more degrees of freedom. This method is based
on a well-known procedure using the variational equations as well as on unconstrained op­
timization techniques. This combination accelerates the convergence of previous schemes.
The new composite method has been implemented here on an example of interest to
Celestial Mechanics.

1. Introduction

In the study of dynamical systems the computation of periodic solutions is of great im­
portance. Especially for non-integrable such systems it is impossible to obtain complete
information regarding any orbit unless it is asymptotic, periodic, or almost periodic. Be­
sides, Poincare's conjecture suggests that, since the periodic solutions lie "densely" in the
phase space, they can be used as reference orbits.

In many cases these orbits form families, namely groups of solutions whose coordinates
in phase space vary continuously while their properties change smoothly.

The technique most commonly used for the computation of such families is the con­
struction of a first order predictor-corrector scheme (we name this method LT) based on
the solution of a linear system of equations and involving the variational equations of the
problem. In this paper we propose a modification of this technique based on optimization
(we name this method OT), whose efficiency is demonstrated on a known family of the
photogravitational three-body problem.

2. Description of the problem - The techniques

Let us consider a dynamical system of the form:

x = f(x, i),

where x = (XI,X2,""Xn), f = (ft,h, ... ,fn): IRn+1 --+ IRn and t is the independent
variable. Any solution x of this system is periodic of period T if it satisfies the condition:

X(XQ, t = 0) = x(xQ, i = T),

where XQ is the initial point of the orbit at t = O.
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Suppose that a periodic solution is known and that it belongs to a specified family.
Then, one can compute the whole family calculating successive orbits of it by predicting
an approximation of a nearby periodic solution and then by correcting this prediction.

In the sequel, we shall describe two techniques which can be utilized for this purpose
by demonstrating their use in the computation of an already known family of the pho­
togravitational restricted circular three-body problem. This dynamical system describes
the motion of a small particle under the influence of the gravitation and the radiation
forces due to the light emission from the members of a binary star. A classical approach
for the behaviour of the small body is given by the following equations:

where

.. 2. au
Xl - X2 =-,

aXI
.. 2. au
X2 + Xl = -a'

X2

.. au
X3 = aX3' (2)

(3)

and 1 - 1-£, 1-£ express the masses of the two main bodies and ql, q2 are parameters repre­
senting the relations between the gravitation attraction and the radiation pressure of each
one of them (0 < 1-£ :S 0.5, qi :S 1, i=I,2) [4]. This system, under suitable conditions, has,
among others, two equilibrium points, named L6 and L7 , which lie on the OXlx3-plane
and are symmetrical with respect to the OXlx2-plane. For some combinations of the pa­
rameters of the problem these points are stable and then two families of periodic orbits are
emanating from each one of them, named LA, L~ and Li, L~, respectively [5]. The orbits
of these families are symmetrical with respect to the OXlx3-plane. In this paper we deal
with the family L~.

A first approximation of initial conditions of a small periodic orbit belonging to LA in
the vicinity of L6 can be obtained by the use of first or second order expansions of Eqs (2)
around this point. Then this approximation must be corrected to a desired accuracy to give
the exact periodic solution. After this, other members of the family have to be estimated
and corrected successively.

A. The method LT constructs, for this purpose, a linear predictor-corrector algorithm
based on Taylor expansions around points satisfying the periodicity condition (1) [2, 6].
A suitable algorithm for our example is the following:

a. Find proper modifications oxo = (ox 10,0, Ox30, 0, OX20, 0) and oT of the initial condi­
tions xo = (XIO, X20 = 0, X30, XIO = 0, X20, X30 = 0) and the period T of an already
known orbit by considering a constant deviation d to one of t.he o's and, then, pre­
dicting the others from the solution of the system:

aX2 aX2 aX2. aX2
91 = -aOXIO + -aOX30 + -a·OX20 + -aoT = 0,

xlO X30 x20 t
aXI aXI aXI. aXl,

92 = -aOXIO + -aOX30 + -a·OX20 + -aoT = 0,
xlO x30 X20 t

aX3 aX3 aX3. a:h
93 = a-OxIO + -aOX30 + -a·OX20 + -aoT = 0,

xlO x30 X20 t

so that the orbit with initial point xo + oxo will be approximately periodic of period
T+oT.
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b. If the prediction is not satisfactory then alter the initial conditions and the period
to obtain a better approximation: apply corrections oxo = (OXIQ, 0, OX30, 0, OX20, 0)
considering one of the o's equal to zero and, then, finding the rest of them by solving
the equations:

OX2 OX2 ~ OX2 . OX2
hi = X2 + ,,-OXIO + ,,-OX30 + ~OX20 + <>oT = 0,

uXlO uX30 uX20 ut

oXI oXI OXI oXl
h 2 = Xl + ,,-OXIO + ,,-OX30 + ~OX20 + <>oT = 0, (4)

uX 10 UX30 UX20 ut

. OX3 oX3 OX3. OX3
h3 = 1:3 + -;:;--OXIO + -;:;--0:r30 + ~OX20 + """"?loT = 0,

UX10 UX30 uX20 ut

so that the point Xo + oxo will be a better estimation of a periodic orbit of the family
of period T + oT.

The above mentionerl coordinates of the orbits and the partial derivatives are evaluated
at t = T.

B. We now give the method OT. Let us assume that the family is described by a
function of the initial conditions and the period of its orbits, !(xg, T) = O. This means
that all these orbits are zeros of !.

a. Suppose that one of these heros, xg, is known. Then a new orbit can be predicted by
minimizing the function:

2 2 2 2 ( 2 2 2)2¢ = 91 + 92 + 93 + 94 + (OxlO) + (OX30) + (OX20) - 8 ,

where gl, 92, g3 are the functions appearing in Eqs (3), e denotes a proper small
deviation along the family and

OX3 . ( OX3 ). OX3 .. o:r3 .
94 = ~01:1O + ~ - 1 OX30 + ~OX20 + <>oT.

U:I.l0 U.T.lU UX20 ut

The purpose of this construction of </) is: 1) to ensure that 91 = g2 = 93 = g'l = 0 are
fulfilled and 2) to force the estimation of the new orbit to be at a distance e from the
known one.

b. If the approximation is not "good enough" it can be corrected by minimizing the
function:

1j; = hi + h~ + h§,

where the functions hi, h2 , h3 are those appearing in System (4). This is, obviously,
equivalent to the solution of this system.

The optimization can be made by anyone of the usual methods (see, for example, the
BFGS routine in [3] or the method of [7] which can be applied to problems with imprecise
function values).

3. Numerical Applications and Conduding Remarks

The above mentioned family has been computed using both of the methods LT and OT.
In Figure 1 we give the characteristic curve (XIQ, X30) of the family. Since the most time
consuming part of the calculations is the integration of the equations of motion and the
variations, we have estimated the power of each method according to the number of times
this integration was required.
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Figure 1. The characteristic curve (x 10, X30) of the
family L~.

Figure 2. The behaviour of LT and OT in Box A
of Figure 1. The symbols 0 and + denote the pre­
dictions and corrections of LT and OT respectively.

In Figure 2 we see a representation of the behaviour of the methods in a part of the
family (part A of the characteristic curve given in Figure 1). The steps of the predictions
of each method were increased to the maximum values so that the convergence of the
correction iterations is preserved.

The total number of integrations performed in LT was 38 while that of OT was 24. We
can see in Figure 2 that the advantage of the new method is that the rate of prediction
steps is larger than this of LT.

Instead of using the LT or OT techniques for the correction step one may use also
a method based on the notion of a "characteristic polyhedron" [1]. This method has
the advantage that it does not depend on the variational equations whose integration
sometimes inherents large errors, especially in the case of long period orbits or orbits
which come close to singularities.
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