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Beyond the pole-barn paradox: How the pole is caught
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Hundred years after Einstein formulated the special theory of relativity [1], we review one of its famous
paradoxes: the length contraction paradox, about a farmer who wants to catch a pole in a short barn. The
original paradox describes the situation in which the velocity of the pole with respect to the barn is constant,
but we go beyond that and focus upon the actual catch in which the pole is brought to a standstill. This
natural follow-up question, rarely addressed in textbooks, turns out to have a very surprising outcome.
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1 Introduction

One of the most popular paradoxes of Special Rela-
tivity, appearing in almost every course on the sub-
ject, is the pole-barn paradox [2, 3, 4, 5, 6, 7. It can
be stated as follows: A farmer, who owns a barn 4 m
long (¢p) and a ladder of length 5 m (Lg), would like
to fit the ladder inside the barn. To accomplish this,
he plans to use the Lorentz contraction, i.e., the
relativistic effect that objects ’shrink’ when moving
with constant velocity with respect to an observer.
The farmer tells his son to take the ladder and run
into the barn with speed v, as in Fig. 1, since then
the pole’s length will be reduced (in the rest frame
of the barn) to:

Ll = Loy/1— 32, with g=2. 1
0 0 ﬂ7W1 ﬂ c ()

The square root term is the famous Lorentz contrac-
tion factor and ¢ = 3- 108 m/s denotes the speed of
light. In order to make the pole fit in the barn, the
farmer requires Lj, < {y, or equivalently:

g2 1 (B @)

FIG. 1. The pole-barn paradox in the farmer’s frame
of reference (top), and in the son’s frame of reference
(bottom).
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For the given values of ¢y and Lg this means that
the son should run with speed g > 0.6.

Now, the first basic principle of special relativ-
ity is that the laws of physics are the same for two
observers who move with a constant velocity with
respect to one another [1]. Thus in the son’s frame
of reference it is the barn that is shortened (Fig. 1
bottom) and the pole does not fit. That is the para-
dox, and we briefly review its resolution in Section
2, which holds as long as the speed of the pole with
respect to the barn (v) remains constant.

The actual catching of the pole, in which it is
brought to rest, is discussed much more rarely [4,
5, 6]. Yet it is a natural follow-up question to the
paradox and it illustrates the fact that the outcome
of an experiment must be the same for all observers,
even if the views on how this outcome is reached
may (and will) differ from one inertial frame to the
other. In Section 3 we therefore address the problem
of bringing the ladder to a standstill. Intriguingly,
it turns out that the speed required for a successful
catch is much smaller than the one suggested by
Eq. (2). Finally, in Section 4 we summarize our
results and put the catch into its proper physical
context.

2 Resolution of the paradox

The paradox disappears as soon as one analyzes
the situation in the relativistically correct way,
recognizing that it is not only a question of length
(space) but also of time. That is, we have to work
in space-time and we have to consider ”events”, an
event being anything that happens at a given point
in space-time. In the present case there are two
relevant events:

(A) the front of the ladder hits the back wall,
and
(B) the rear end of the ladder enters the door.

According to the farmer event B comes first (so
there is an instant when the ladder is completely

according
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FIG. 2. The situation at ¢ = ¢’ = 0, in the reference
frames of the farmer (top) and the son (bottom). The
back door at the right-hand side has been included to
allow the pole to pass through the barn uninterruptedly
with constant velocity.

inside the barn and can be caught) but according
to the son event A comes first. This is confirmed
by a straightforward inspection of Fig. 2, where the
views of the farmer and the son are put side by
side. The clocks have been set such that t =t = 0
when the front of the ladder enters the barn (”event
zero”). We have also introduced a back door at the
right-hand side of the barn, so the pole can pass
through the barn uninterruptedly with constant ve-
locity, which is necessary for the present analysis.

Event A: In the farmer’s frame of reference, the
front of the ladder goes through the back door at
time

ta v’ (3)

while according to the son this happens at [8]

to/1 — 32

- (4)

ty =

Event B: According to the farmer, the back end of
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the ladder passes through the front door at

Loy/1— 32

tp=——— 5
B S (5)
and according to the son at
Ly
t, =~ . 6
= (6)

It is easily shown from Egs. (3)-(6) that at suf-
ficiently large velocities (v > 0.6¢ for ¢o/Lo = 4/5)
the order of A and B is not the same for the farmer
and the son; e.g., v = 0.7c gives t4 = 5.71/c,
tp = 5.10/c, t'y = 4.08/¢c, and t’y = 7.14/c. So ac-
cording to the farmer event B comes first (t4 > tp),
while for his son event A comes first (/4 < tz).

This resolves the paradox: There is no contradic-
tion at all, only a different perspective in space-time
for the farmer and his son. The fact that an event
does not occur simultaneously for observers moving
with respect to one another is a common feature of
special relativity, and if two events are not causally
connected (as is the case for A and B, their sepa-
ration in space-time being such that |Az| > c|At|)
even the order in which they occur may be reversed.
This makes it possible that in the son’s frame of
reference (with the shortened barn and the normal-
sized ladder) the ladder will always stick out from
one side or the other, while in the farmer’s frame
(normal-sized barn, shortened ladder) the ladder is
completely inside the barn between tp and t 4.

3 Beyond the paradox:
The pole is brought to rest

3.1 In the reference frame of the son

Now we come to the actual catching of the ladder.
Let us assume that the farmer closes the barn at
some moment between tp and t4, when the ladder
(in his reference frame) is inside the barn [9]. Bring-
ing the ladder to a standstill requires a tremendous
deceleration, inducing considerable internal stresses
in the ladder [2], starting when its front end hits
the wall and comes to an abrupt stop [10] (Fig. 3):
A shock wave carries the information of this colli-
sion through the successive parts of the ladder, ag-
itating them violently; the part to the left of the

-P,Vl-p'-

FIG. 3. The catch in the son’s frame of reference: a race
between shock wave and barn door towards the son. The
situation is sketched at ¢ = t/4, when the ladder first hits
the back wall.

shock remains at constant velocity until the shock
wave passes. Assuming that the ladder survives the
shock, at the end of the deceleration process (when
the entire ladder has come to rest with respect to
the barn), it attains its rest length Ly again. The
ladder will of course not fit nicely: it will bend, or
break, or poke through the door. But the fact is
that it is caught.

How can this result be explained from the point
of view of the son? The crucial point to note here
is that the seeming difficulty (i.e., that according
to the son the ladder is never completely inside the
barn) only holds as long as the relative speed be-
tween ladder and barn is constant. And this is not
the case anymore. Indeed, during the deceleration
process even the different parts of the ladder itself
are in motion with respect to each other, so the
ladder temporarily does not represent one single in-
ertial frame, but a range of (accelerated) frames.
The length of the ladder during its deceleration is
therefore no longer defined by the Lorentz contrac-
tion Eq. (1). There is no such thing as a rigid body
in special relativity when speed changes.

Let us take up the series of events for the son at
"y [Eq. (4)] when the front of the ladder hits the
back wall, as sketched in Fig. 3. At this instant
the son at the rear end of the ladder has no way
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of knowing yet that the front has already hit the
wall. A shock wave is just starting to come towards
him, at a speed w, which cannot exceed ¢ (infor-
mation cannot travel faster than the speed of light)
and typically will be much smaller. The part of the
ladder that has already been affected by the shock
wave will be in turmoil, but for the son - until the
wave reaches him - the situation is unchanged, with
the door of the barn coming towards him at speed
v. If v is large enough, the door reaches him be-
fore the shock wave does so, and the catch will be
successful.
The door reaches him at

L Lo — lo\/1— 2

[

t =1ty
and the shock wave at
Lo
=t +—=—. 8
At w (8)

So we require, for the catch to succeed,

Lo—6hV1=F _ Lo
; <0

w

(9)

This can also be written as 1 — fy/1— 32 < v/w
(with f = £y/Lo the barn-to-pole ratio), or equiv-
alently 1 — 3/(w/e) < fy/1— (2. Squaring both
sides this gives a quadratic inequality for 3:
1 2| 2 20 2

oA L R el ML
Taking the equality sign, this is an ordinary
quadratic equation, whose two solutions define the
bounds of the interval of F-values for which Eq. (10)
holds. For our problem (which is to find the mini-
mally required value of 3) we are interested in the
lower bound of the interval, i.e.,

1=V = {1+ (w/eo)’ P} w
- {14 (w/c)*f?} c

This is the condition for a successful catch, written
in dimensionless form.

Figure 4 shows the required velocity of the pole as
a function of the shock speed w/c for two different
values of f. For small w/c the required velocity

p (11)

lc"- required for catch

T«

9 —> W/ 1

FIG. 4. The velocity of the pole (v/c) required for a
successful catch, as a function of the shock speed w/c,
for two representative values of the barn-to-pole ratio
f =4o/Lgy [Eq. (11)]. The required velocity gently curves
upwards from the dashed line v/c = (1 — f)w/c and
ends [at w/c = 1] at the value v/c = (1 — f2)/(1 + f?),
cf. Eq. (12). Realistic shock speeds of several km/s lie
towards the extreme left of the diagram.

is seen to follow a straight line (dashed in Fig. 4)
from which it curves upward for growing w/c. This
is confirmed by expansion of Eq. (11): g > (1 —
Pw/e) + L1 = f2)(w/e)* + O(w/e)’ .

The condition (11) is considerably less demand-
ing than that of Eq. (2), 8 > /1— f2?, which
was based upon the erroneous notion that the pole
should fit into the barn while moving at uniform
speed v. Even in the worst-case scenario w = c,
which makes the catch as hard as possible, the new
condition requires a velocity that is not nearly as
large [Eq. (11) with w/c = 1]:

1— 2
B = T2 (12)
For f = ¢y/Ly = 4/5 the uniform-speed reasoning
would have § > 3/5 = 0.60, whereas Eq. (12) shows
that only 5 = 9/41 ~ 0.22 is really needed to ac-
complish the catch.

For realistic shock wave speeds (w < ¢) the re-
quired velocity will be much smaller. Shock waves
through a solid typically have speeds in the order
of several km per second [11]: Taking w = 10 km/s
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(ie., w/c = 3.33 - 1079), the required velocity ac-
cording to Eq. (11) is only 8 > 6.67-1076, or v > 2
km/s. So not only is the catch successful according
to the son, but the required speed is much less than
foreseen by the farmer based on Eq. (2). This of
course means that the analysis in the frame of ref-
erence of the farmer can be sharpened. That is the
topic of the next subsection.

3.2 In the reference frame of the farmer

In order to make the farmer’s criterion agree with
that of the son, we take up the series of events at
ta [Eq. (3)] when the ladder hits the wall (just as
in the previous subsection, but now from the point
of view of the farmer). At t4 the shock wave starts
to travel towards the rear end of the ladder, but
this end (unaware of the oncoming shock) is still
travelling at speed v to the right and keeps doing so
until it meets the shock wave, see Fig. 5. Thus, the
ladder keeps shrinking until at the meeting point,
and that is the moment the farmer should close the
door. Obviously, the ladder does not yet have to
fit inside the barn in the constant-velocity situation
(as the farmer had argued initially) and that is why
in Fig. 5 we have sketched a pole that is much less
contracted than in Figs. 1(top) and 2(top).

The shock wave travels at a speed w in the son’s
frame of reference. Its speed in the farmer’s frame
of reference is, by the well-known velocity addition
rule [12, 13]:

w—v

C Ayl (13)
The ladder will be entirely in the barn after
Loy1—p2—14¢
t=ty+ — vﬂ 0 (14)

and the shock wave arrives at the ladder’s rear end
at

14 lo(1 — 2
t:tA+—0:tA+w. (15)
w w—v
This now yields the following condition:
\/1—52 Zg (1 —vw/c?) (16)
o w—v

which, after some rewriting, proves to be exactly
the same as the son’s criterion Eq. (11). [14]

= Lo "“3‘

&N
Wi

ﬂ
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FIG. 5. The catch in the farmer’s frame of reference:
a race between shock wave and son towards the door
of the barn. Analogously as in Fig. 3, the situation is
sketched at ¢t = t4, when the ladder just hits the back
wall. Note that the son might be inside or outside the
barn, depending on the value of 5 (= v/c); here we have
chosen to depict the situation for a relatively small value
of B, in agreement with the catch condition Eq. (11).

4 Conclusion

In conclusion, the ladder is caught if v is sufficiently
large to "outrun” the shockwave: The required ve-
locity, Eq. (11), is much less than one would expect
by naively requiring that the pole should fit into the
barn while moving at uniform speed [i.e., Eq. (2)].
In fact, the catch is completely beyond the paradox
and is accomplished not thanks to the Lorentz con-
traction, but thanks to the fact that shock waves
have a finite speed of propagation. There is hardly
anything relativistic about this: The situation may
be compared to a squash ball that is flattened dur-
ing its impact with a wall. At the right moment, it
can be caught in a box that is much shorter than
the rest diameter of the ball.

As mentioned in Section 3.1, the typical speed of
shock waves through a solid is in the order of 10 km
per second, i.e., w < ¢. Accordingly, the required
velocity of the pole is well approximated by the first
term in the expansion of Eq. (11):

v (11— fHlw. (17)
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For pole-to barn ratios close to 1 this is well within
experimental reach: If f = 0.995 the required ve-
locity v will be just about 50 m/s. One might
for instance shoot a 100-cm blunt arrow (with a
characteristic speed of 70 m/s) into a 99.5-cm box
equipped with a trap door. By closing the door at
the proper moment, specified in the first paragraph
of Section 3.2, the catch should be fairly easy to
accomplish.

As a final remark, it may be noted that an
instantaneous transmission of the shock (wy — o00)
would bring us back to the original uniform-speed
condition Eq. (2). An infinite shock wave velocity
in the frame of the farmer would correspond to a
finite (but superluminal) shock wave velocity in
the son’s frame: From the velocity addition rule,
Eq. (13), one finds w = ¢/v. Inserted in the catch
criterion (9) this superluminal shock speed yields
ly/Lo > /1 — (32, i.e., precisely the original, much
too severe condition (2) formulated by the farmer.
This underlines once again the central point of the
paper: The catch condition is determined solely
by the speed of the shock wave that carries the
information of the oncoming standstill from one
end of the pole to the other.
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of the pole) also in the farmer’s frame of reference.
Stated differently, the required velocity v of the
pole never exceeds the shock wave speed w, in
full agreement with the catch criterion [Eq. (11)]
as can be seen clearly in Fig. 4.

It may be checked that the worst-case criterion
Eq. (12) of the son is found if one takes w = ¢. In
this case also the farmer observes the same shock
speed wy = ¢ (cf. footnote [12]), so the right hand
side in Eq. (16) becomes {y/c, reproducing the
son’s worst-case criterion Eq. (12).
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