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Abstract. Since the presentation of the backpropagation algorithm, several adaptive learning algorithms
for training a multilayer perceptron (MLP) have been proposed. In a recent article, we have introduced
an efficient training algorithm based on a nonmonotone spectral conjugate gradient. In particular, a
scaled version of the conjugate gradient method suggested by Perry, which employ the spectral steplength
of Barzilai and Borwein, was presented. The learning rate was automatically adapted at each epoch
according to Shanno’s technique which exploits the information of conjugate directions as well as the
previous learning rate. In addition, a new acceptability criterion for the learning rate was utilized based
on nonmonotone Wolfe conditions. A crucial issue of these training algorithms is the learning rate
adaptation. Various variable learning rate adaptations have been introduced in the literature to improve
the convergence speed and avoid convergence to local minima. In this contribution, we incorporate in
the previous training algorithm a new effective variable learning rate adaptation, which increases its
efficiency. Experimental results in a set of standard benchmarks of MLP networks show that the proposed
training algorithm improves the convergence speed and success percentage over a set of well known training
algorithms.

1 INTRODUCTION

The batch training of the MLP can be formulated as a nonlinear unconstrained minimization problem.
Namely,

min
w∈Rn

E(w) (1)

where E is the batch error measure defined as the Sum of Squared differences Error function (SSE) over
the entire training set, defined by

E =
1
2

P∑
p=1

NM∑

j=1

(
oM

j,p − tj,p
)2

(2)

where
(
oM

j,p − tj,p
)2 is the squared difference between the actual output value at the j-th output layer

neuron for pattern p and the target output value. The scalar p is an index over input-output pairs. The
general purpose of the training is to search an optimal set of connection weights in the manner that the
errors of the network output can be minimized.

The most popular training algorithm is the batch Backpropagation (BP) introduced by Rumelhart,
Hinton and Williams [12]. Although the BP algorithm is a simple learning algorithm for training MLPs,
unfortunately it is not based on a sound theoretical basis and is very inefficient and unreliable.

In order to overcome the drawbacks of the BP algorithm, many gradient based training algorithms
have been proposed in the literature. An alternative to the gradient based training algorithms are the well
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known nonlinear conjugate gradient algorithms. Conjugate gradient methods produce generally faster
convergence than the gradient based algorithms.

In a recent article [14], we have introduced an efficient training algorithm based on the technique
of nonmonotone spectral conjugate gradient, and we have achieved to improve the convergence rate and
the convergence characteristics over well known training algorithms. In particular, a scaled version of
the conjugate gradient method, suggested by Perry [2], [9], which employ the spectral steplength of
Barzilai and Borwein [1], [10], was presented. The learning rate was automatically adapted at each epoch
according to Shanno’s technique which exploits the information of conjugate directions as well as the
previous learning rate [13]. In addition, a new acceptability criterion for the learning rate was utilized
based on nonmonotone Wolfe conditions [4]. In this contribution, we incorporate a new effective variable
learning rate adaptation, instead of the previous one introduced by Shanno. The proposed algorithm is
improved over the previous one in terms of both convergence rate and convergence characteristics, such
as stable learning and robustness to oscillations.

The paper is organized as follows. In the next section, the new training algorithm for MLPs is pre-
sented and analyzed. Experimental results are reported in Section 3 in order to evaluate the performance
of the new training algorithm and compare it with other well known training algorithms. In Section 4
some remarks and conclusions are presented.

2 THE NEW TRAINING ALGORITHM

In this section, the new training algorithm is introduced and analyzed. The problem we have to deal
with is the minimization of the Error function (2). Let the family of the nonlinear conjugate gradient
training algorithms having the following iterative form

wk+1 = wk + αkdk (3)

where wk is the current point, dk is the conjugate gradient search direction and αk is the adaptive learning
rate determined by some one dimensional search rules along dk.

The conjugate gradient search directions in our method are generated by the following formula

dk+1 = −ηkgk+1 + βksk, k ≥ 0 (4)

where gk = ∇E(wk), sk = wk+1 − wk, ηk is a positive multiplier, and d0 = −g0.
Conjugate gradient methods differ in their choice for the multiplier βk used to construct the search

direction. In this method, as the previous one introduced in [2] and [14], the multiplier βk is given by
the following formula

βk =
(ηkyk − sk)T gk+1

sT
k yk

(5)

where yk = gk+1− gk. For ηk = 1 the above formula is reduced to the formula introduced by Perry in [9].
In our method, as in the previous one [14], we decided to substitute the classical choice ηk = 1 with

the spectral gradient choice introduced by Barzilai and Borwein in [1]. More specifically ηk is given by
the formula

ηk =
sT

k sk

sT
k yk

(6)

The step size ηk given by (6) is the inverse of the Rayleigh quotient

sT
k [

∫ 1

0

∇2E(wk + tsk)dt]sk/sT
k sk (7)

which, of course, lies between the largest and the smallest eigenvalue of the Hessian average
∫ 1

0

∇2E(wk + tsk)dt (8)

This implies that the step size contains second order information without estimating the Hessian matrix.
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As it was mentioned before, conjugate gradient algorithms, in order to be globally convergent, the
learning rate parameter must be determined by some one dimensional line search along the conjugate
direction dk. In our method, the learning rate, achieved by the line search technique, must satisfy the
nonmonotone Wolfe conditions given by

E(wk + αkdk)− max
0≤j≤M

E(wk−j) ≤ c1αk∇E(wk)T dk (9)

∇E(wk + αkdk)T dk ≥ c2∇E(wk)T dk (10)

where 0 < c1 ≤ c2 < 1 and M is a non-negative integer, named nonmonotone learning horizon. The first
condition (9) allows any point to be accepted if it improves sufficiently the function value compared with
the largest of the M +1 (or k if k ≤ M) most recent function values. The integer M controls the amount
of monotonicity that is allowed. The second condition (10) ensures that the denominator of spectral
gradient choice (6) is well defined and always positive, since it implies that sT

k yk > 0. Both conditions
allow an increase in the error function values without affecting the global convergence properties as have
been proved in [4].

A simple line search technique that we used for tuning the learning rate parameter αk is the reduction
of the learning rate by a factor 1/q where q = 2, in order to satisfy the conditions (9) and (10). This
backtracking strategy ensures that the learning rate is decreased, so that (9) is satisfied. In particular,
the reduction of the learning rate is given by the formula

α̃k =
1
2r

αk (11)

where α̃k is the learning rate after r subdivisions needed, so that condition (9) is satisfied. Moreover, in
order to avoid unnecessary reduction of the learning rate parameter, we enforce that the learning rate
satisfies condition (10).

In our previous work [14], we utilized Shanno’s choice for the learning rate adaption given by the
formula

αk =

{
1

‖g0‖2 , if k = 0;
αk−1‖dk−1‖2

‖dk‖2 , otherwise.
(12)

where dk is the conjugate gradient direction, dk−1 is the previous one, and αk−1 is the previous learning
rate. The initial learning rate α0 is 1/‖g0‖2 where g0 is the initial steepest descent direction.

In this contribution, we introduce a new more efficient learning rate adaption scheme given by the
formula

αk =

{
1

||g0||2 , if k = 0;
1

2r+1
‖dk−1‖2

‖dk−dk−1‖2 , otherwise.
(13)

where r is the number of subdivisions needed for the previous learning rate in order to be accepted by
the nonmonotone Wolfe conditions (9) and (10).

The conjugate gradient search direction dk+1 given by the formula (4) sometimes fails to be a descent
direction. In order to avoid this pathological situation we restart the algorithm. Many restart strategies
have been proposed in the literature. In our algorithm, we restart the algorithm with the spectral gradient
direction given by the formula

dk+1 = −ηkgk+1 (14)

The criterion we use to decide if the direction dk+1 is descent, is given by the following formula

dT
k+1gk+1 ≤ −10−3‖dk+1‖2‖gk+1‖2 (15)

Specifically, if (15) holds, we accept as the search direction the one given by the formula (4), otherwise,
the angle between dk+1 and gk+1 is not acute enough, so we restart the algorithm with formula (14).

Nonmonotone Wolfe conditions (9) and (10) in addition with the restart condition (15) are sufficient
to prove global convergence of the algorithm under reasonable assumptions. If the gradient of the Error
function E, gk, is Lipschitz continuous and E is bounded bellow it can be proved that

lim
k←+∞

‖gk‖2 = 0 (16)
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This implies that every limit point of a sequence generated by the algorithm is stationary. More details
can be found in [3], [8].

At this point we will summarize the new training algorithm.

Algorithm 2.1

1. Initialization:

1.1 Number of epochs k = 0.

1.2 Error goal:= eg.

1.3 Parameters M ≥ 1 and 0 < c1 ≤ c2 < 1.

1.4 Weight vector:=w0.

2. Calculate the gradient g0 = ∇E(w0). Calculate the learning rate α0 using the
relation (13). Set r = 0.

3. Update the weight vector wk+1 according to relation (3). Calculate the gradient
gk+1 = ∇E(wk+1) and set dk+1 = −gk+1.

3.1 If the learning rate acceptability condition (nonmonotone
line search) (9) and (10) is fullfilled goto Step 4.

3.2 Set αk = αk/2, r = r + 1 and goto Step 3.

4. Check if E(wk+1) ≤ eg, get the final weight vector w∗ and the corresponding
value of E. Otherwise set k = k + 1 and goto to Step 5.

5. Compute the Barzilai and Borwein spectral gradient choice ηk using the relation
(6). Check if 1/ηk < e or 1/ηk < 1/e. If the relations hold then accept ηk else
set ηk = 1.

6. Calculate βk by Perry’s formula given by the relation (5). Calculate the new
search direction d according to relation (4). If the condition (15) holds then set
dk+1 = d, otherwise set dk+1 = −ηkgk+1.

7. Calculate the new learning rate αk according to relation (13), set r = 0 and
goto Step 3.

Remark 2.1 Parameter e is the one that Raydan in [11] introduces in order to avoid having the spectral
gradient choice very large or too small.

3 EXPERIMENTAL RESULTS

The proposed training algorithm, as described in the previous section, has been applied to several test
problems in order to be evaluated fairly. The problems have been tested, are the eXclusive OR Prob-
lem, the 3-bit Parity Problem, the Font Learning Problem and the Continuous Function Approximation
problem. On each test problem, five batch training algorithms have been simulated: backpropagation
with constant learning rate (BP) [12]; backpropagation with constant learning rate and constant momen-
tum (BPM) [5]; adaptive backpropagation with adaptive momentum (ABP) [15]; nonmonotone spectral
conjugate gradient (NSCG); modified nonmonotone spectral conjugate gradient (MNSCG). For the sim-
ulations, Matlab version 6.5 has been used. We have utilized Matlab Neural Network Toolbox version
4.0 for the BP, BPM and ABP training algorithms. The NSCG and MNSCG training algorithms have
been implemented in Matlab environment.

The selection of initial weights is very important in feedforward neural network training. Thus, in
order to evaluate the performance of the training algorithms better, the simulations conducted using the
same initial weight vectors that have been chosen by the Nguyen - Widrow method [6]. This technique
of weight initialization results in distributing the initial weights at the hidden layer in such a way that
it is more likely that each input pattern will cause a hidden neuron to learn efficiently, accelerating
convergence and preventing premature saturation.

Concerning the heuristic parameters of the BP, BPM and ABP training algorithms, Neural Network
Toolbox default values have been used, unless stated otherwise. For the NSCG and MNSCG training
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algorithms, the values of the parameters M , c1, c2 and e have been fixed to 10, 10−4, 0.5 and 10−3,
respectively, for all the experiments. Also, we have to mention that for the BP, BPM, ABP training
algorithms one gradient evaluation and one error function evaluation are necessary in each epoch. In
NSCG and MNSCG training algorithms, there are an additional number of gradient and error function
evaluations when the nonmonotone Wolfe conditions are not satisfied (same number of gradient and error
function evaluations required due to the nonmonotone Wolfe conditions). Thus we compare the training
algorithms in terms of both gradient and error function evaluations.

For each training problem, we present a table which summarizes the performance of the algorithms
for simulations that have reached solution. The resulted parameters are: min the minimum number,
max the maximum number, mean the mean value, s.d. the standard deviation of gradient and error
function evaluations and succ. the simulations succeeded out of 1000 simulations. If an algorithm fails
to converge, it is considered that it fails to train the feedforward neural network, but its function and
gradient evaluations are not included in the statistical analysis of the algorithms. This fact clearly favors
BP, BPM and ABP that require too many epochs to complete the task and/or often fail to converge.

3.1 THE EXCLUSIVE - OR PROBLEM

The first problem we have been encountered is the eXclusive - OR (XOR) Boolean function problem, which
is considered as a classical problem for the feedforward neural network training. The XOR function maps
two binary inputs to a single binary output. As it is well known this function is not linearly separable.

Algorithm min max mean s.d. succ.
BP 28 992 94.5329 114.441 74.5%
BPM 23 905 111.821 136.753 76.1%
ABP 18 835 46.5517 73.1005 74.5%
NSCG 28 991 133.136 170.856 87.3%
MNSCG 16 993 115.201 173.146 90.9%

Table 1: Comparative Results for the XOR Problem

The selected architecture of the feedforward neural network is 2-2-1 (six weights and three biases)
with hyperbolic tangent activation functions in the hidden neurons and with a linear output neuron. The
termination condition has been set to 0.01 and the maximum gradient and error function evaluations to
1000. For the BP and BPM algorithms the learning rate is chosen to be 0.1 instead of the default value
0.01 to accelerate their convergence, since they converge slowly with the default value in this problem.
The results of the simulations are presented in Table 1.

It is worth noticing the performance of the MNSCG training algorithm since it exhibits the best
success performance (90.9%) while the gradient and error function evaluations are competitive with the
other training algorithms.

3.2 THE 3-BIT PARITY PROBLEM

In this simulation we have been considered the 3-bit parity problem, which can be considered as a
generalized XOR problem, but it is more difficult. This problem maps three binary inputs to a single
binary output. The target of the output is 1, if the number of 1 bits in the input is odd, and 0 otherwise.
The selected architecture of the feedforward neural network is 3-2-1 (eight weights and three biases) with
hyperbolic tangent activation functions in the hidden neurons and with a linear output neuron. The
termination condition has been set to 0.01 and the maximum gradient and error function evaluations to
1000. For the BP and BPM algorithms the learning rate is chosen to be 0.1 instead of the default value
0.01 to accelerate their convergence, since they converge slowly with the default value in this problem.
The results of the simulations are presented in Table 2.

Despite the selection of the learning rate for the BP training algorithm, it has failed to converge
within the gradient and error function evaluations limit in all the simulations. BPM and ABP performed
better, with BPM having better success performance, gradient and error function evaluations over ABP.
The NSCG and MNSCG training algorithms, as shown in table 2, had the best success performance as
well as the least average gradient and error function evaluations. Also, it is obvious, that the MNSCG
training algorithm is significant better in performance than the NSCG training algorithm.
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Algorithm min max mean s.d. succ.
BP - - - - 0.0%
BPM 185 996 492.716 197.034 53.5%
ABP 431 982 596.344 128.165 47.4%
NSCG 171 986 429.5 175.026 73.8%
MNSCG 112 992 323.792 174.252 79.4%

Table 2: Comparative Results for the 3-bit Parity Problem

3.3 THE ALPHABETIC FONT LEARNING PROBLEM

The third test problem we have been encountered is the alphabetic font learning problem. We present to
the network 26 matrices with the capital letters of the English alphabet. Each letter has been defined in
terms of binary values on a grid of size 5×7. The selected architecture of the feedforward neural network
is 35-30-26 (1830 weights and 56 biases) with logistic activation functions in the hidden layer and with a
linear output neuron.

Algorithm min max mean s.d. succ.
BP 1100 1999 1548.22 197.517 75.6%
BPM 1246 1995 1579.5 175.82 4.8%
ABP 1234 1999 1785.87 156.965 36.1%
NSCG 406 1210 707.732 131.425 100.0%
MNSCG 288 801 486.909 84.5928 100.0%

Table 3: Comparative Results for the Alphabetic Font Learning Problem

In order to improve the performance of the methods with fixed learning rate (i.e. BP and BPM), the
weights have been initialized following the Nguyen - Widrow method, as we have stated in the beginning
of this section, but afterwards the weights and biases of the output layer have been multiplied by 0.01.
The termination criterion has been set to 0.1 and the maximum gradient and error function evaluations
to 2000. The results of the simulations are presented in Table 3.

It is worth noticing the performance of the MNSCG training algorithm since it exhibits the best
success performance (100%) while the mean of gradient and error function evaluations are the lower. Also,
as it is shown by the table 3, the MNSCG training algorithm would have the same success performance
even if we had not increased the gradient and error function evaluations limits from 1000 to 2000 (the
maximum gradient and error function evaluations are 801).

3.4 THE CONTINUOUS FUNCTION APPROXIMATION PROBLEM

The forth test problem we have been considered is the approximation of the continuous trigonometric
function F (x) = sin(x) cos(x). This problem maps one real input to a single real output. The input
values are 20 equally spaced points xi ∈ [0, 2π] and the target values are the mapping of these points
from function F (x). As it is cleared, we have 20 patterns and each pattern is consisted of one input
x ∈ [0, 2π] and one target value F (x).

The selected architecture of the feedforward neural network is 1-10-1 (twenty weights and eleven
biases) with logistic activation functions in the hidden layer and with a linear output neurons. The
termination criterion has been set to 0.1 and the maximum gradient and error function evaluations to
1000. The results of the simulations are presented in Table 4.

Algorithm min max mean s.d. succ.
BP 398 994 767.359 154.092 7.8%
BPM 389 995 760.506 157.334 7.7%
ABP 116 999 610.51 217.033 29.0%
NSCG 112 998 486.212 179.492 70.4%
MNSCG 84 983 343.841 168.9 76.9%

Table 4: Comparative Results for the Continuous Function Approximation Problem

The performance of the BP and BPM training algorithms can be characterized inefficient, as it is
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shown by the table 4. The ABP has performed better, but not sufficient. The NSCG and MNSCG
training algorithms exhibit very good average performance, having the best success rate. Also, the
MNSCG outperforms the NSCG training algorithm in both success rate and gradient and error function
evaluations.

4 CONCLUSIONS

In this paper, a new efficient variable learning rate has been proposed for use in conjunction with Perry’s
nonmonotone spectral conjugate gradient training algorithm. It is shown that the NSCG training method
was considerably improved by using the new learning rate in terms of convergence speed and success
percentage. The gradient and function evaluations are reduced over all the training algorithms that we
used in order to evaluate the new training algorithm.

Further work must be done in order to evaluate the new learning rate, by incorporating it to other
well known conjugate gradient training algorithms.
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