
Numer Algor
https://doi.org/10.1007/s11075-018-0479-1

ORIGINAL PAPER

A descent hybrid conjugate gradient method based
on the memoryless BFGS update

Ioannis E. Livieris1 ·Vassilis Tampakas1 ·
Panagiotis Pintelas2

Received: 7 March 2017 / Accepted: 16 January 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this work, we present a new hybrid conjugate gradient method based on
the approach of the convex hybridization of the conjugate gradient update parame-
ters of DY and HS+, adapting a quasi-Newton philosophy. The computation of the
hybrization parameter is obtained by minimizing the distance between the hybrid
conjugate gradient direction and the self-scaling memoryless BFGS direction. Fur-
thermore, a significant property of our proposed method is that it ensures sufficient
descent independent of the accuracy of the line search. The global convergence of
the proposed method is established provided that the line search satisfies the Wolfe
conditions. Our numerical experiments on a set of unconstrained optimization test
problems from the CUTEr collection indicate that our proposed method is preferable
and in general superior to classic conjugate gradient methods in terms of efficiency
and robustness.

Keywords Unconstrained optimization · Conjugate gradient method · Frobenious
norm · Self-scaled memoryless BFGS · Global convergence

� Ioannis E. Livieris
livieris@teiwest.gr

1 Department of Computer Engineering & Informatics, Technological Educational Institute
of Western Greece, GR 263-34, Patras, Greece

2 Department of Mathematics, University of Patras, GR 265-00, Patras, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-018-0479-1&domain=pdf
mailto:livieris@teiwest.gr

Numer Algor

1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f (x), (1.1)

where f : R
n → R is a continuously differentiable function and its gradient is

denoted by g(x) = ∇f (x). Conjugate gradient methods is probably the most popu-
lar class of unconstrained optimization algorithms for engineers and mathematicians
due to various applications in the industry and engineering fields [8, 21, 36, 38, 51,
56, 59]. This class of methods is characterized by their low memory requirements,
simple computations, and strong global convergence properties. In general, a nonlin-
ear conjugate gradient method generates a sequence of points {xk}, starting from an
initial point x0 ∈ R

n, using the recurrence

xk+1 = xk + αkdk, k = 0, 1, . . . (1.2)

where xk is the k-th approximation to the solution of (1.1), αk > 0 is the stepsize
obtained by a line search, and dk is the search direction which is defined by

dk+1 = −gk+1 + βkdk, d0 = −g0, (1.3)

where gk = g(xk). Conjugate gradient methods differ in their way of defining
the update parameter βk , since different choices of βk give rise to distinct conju-
gate gradient methods with quite different computational efficiency and convergence
properties. Hager and Zhang [31] presented an excellent survey in which they
divided the essential CG methods in two main categories. The first category includes
the Fletcher-Reeves (FR) method [28], the Dai-Yuan (DY) method [23], and the
conjugate descent (CD) method [27] with the following update parameters:

βFRk = ‖gk+1‖2
‖gk‖2 , βDYk = ‖gk+1‖2

dT
k yk

, βCDk = −‖gk+1‖2
dT
k gk

,

which all share the common numerator ‖gk+1‖2 in βk . The second category includes
the Polak-Ribière (PR) method [52], the Hestenes-Stiefel (HS) method [32], and the
Liu and Storey (LS) method [37] which all have the same numerator gT

k+1yk in βk .
The update parameters of these methods are respectively specified as follows:

βPRk = gT
k+1yk

‖gk‖2 , βHSk = gT
k+1yk

dT
k yk

, βLSk = −gT
k+1yk

dT
k gk

.

The conjugate gradient methods in the first category possess strong global con-
vergence properties [1, 24, 45] while the methods in the second category lack
convergence in certain circumstances and as a result, they can cycle infinitely without
presenting any substantial progress [55]. However, the methods in the first category
usually exhibit poor computational performance due to the jamming phenomenon
[54], i.e., the algorithms can take many short steps without making significant
progress to the solution. In contrast, the methods in the second category possess
an automatic approximate restart procedure which avoids jamming from occurring;

Numer Algor

hence, their numerical performance is often superior to the performance of the
methods with ‖gk+1‖2 in the numerator of βk .

In the literature, much effort has been devoted to develop new conjugate gradient
methods which possess strong convergence properties and are also computationally
superior to classical methods by hybridizing the above two approaches. The main
idea behind the hybridization approach is to exploit the convergence properties of a
conjugate gradient method from the first category and switch to a conjugate gradient
from the second category when the iterations jam. Along this line, sample works
include the hybridizations of FR and PR methods [16, 29, 33, 58], the hybridizations
of HS and DY methods [25, 60], and the hybridization of LS and CD methods [58].
Notice that, in these methods, the update parameter is calculated based on discrete
combinations of update parameters of the two categories.

Recently, Andrei [8–10] proposed a new class of hybrid conjugate gradient algo-
rithms which is based on the concept of convex combination of classical conjugate
gradient algorithms. Generally, the performance of the hybrid variants based on
the concept of convex combination is better than that of the constituents. In recent
efforts following Andrei’s approach, Babaie-Kafaki et al. [12, 13, 15, 19] proposed
some globally convergent conjugate gradient methods (HCG+) in which the update
parameter βk is determined as the convex combination of βDYk and βHS+k , namely

βHCG+k = λkβ
DY
k + (1 − λk)β

HS+
k , (1.4)

with βHS+k = max{βHSk , 0} and the scalar λk ∈ [0, 1] is the hybridization parameter.

Notice that if λk = 0, then βHCG+k = βHS+k and if λk = 1, then βHCG+k = βDYk .
Based on their numerical experiments, the authors concluded that the computa-
tional performance of the HCG+ method is heavily dependent on the choice of the
hybridization parameter λk [13]. Moreover, in order to enhance the performance of
their proposed method, the hybridization parameter is adaptively calculated by

λk = −2
‖yk‖2
sT
k yk

sT
k gk+1

gT
k gk+1

, (1.5)

based on the study of a modified secant equation.
In this work, we present a new hybrid conjugate gradient method based on the

approach of the convex hybridization of the conjugate gradient update parameters of
DY and HS+, adapting a quasi-Newton philosophy. More specifically, the value of
the hybrization parameter is obtained by minimizing the distance between the hybrid
conjugate gradient direction and the self-scaling memoryless BFGS direction. Addi-
tionally, an attractive property of our proposed method is that it ensures sufficient
descent independent of the accuracy of the line search. The global convergence of
our proposed method is established, under the Wolfe lines search conditions.

The remainder of this paper is organized as follows. In Section 2, we present
a brief discussion on the self-scaling memoryless BFGS method and in Section 3,
we introduce our new hybrid conjugate gradient method. In Section 4, we present
the global convergence analysis. Section 5 reports our numerical experiments on a

Numer Algor

set of unconstrained optimization test problems from the CUTEr collection [20] uti-
lizing the performance profiles of Dolan and Morè. Finally, Section 6 presents our
concluding remarks.

2 Self-scaling memoryless BFGS

The self-scaling memoryless BFGS method is generally considered as one of the
most efficient method for solving large-scale optimization problems [11, 34, 45,
62] due to its strong theoretical properties and favorable computational performance.
Moreover, it provides a good understanding about the relationship between nonlinear
conjugate gradient methods and quasi-Newton methods [7, 50, 57].

Generally, the self-scaled memoryless BFGS matrices are computed based on the
L-BFGS philosophy [35, 43] using information from the most recent iteration. Given
an initial matrix B0 = θ0I with θ0 ∈ R

∗, and the BFGS formula

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ yky
T
k

sT
k yk

,

the resulting scaled memoryless BFGS update scheme takes the form

Bk+1 = θkI − θk

sks
T
k

sT
k sk

+ yky
T
k

sT
k yk

.

where θk ∈ R is the scaling parameter. Additionally, the search direction in this
method is generated by

dk+1 = −B−1
k+1gk+1,

where B−1
k+1 is the inverse of Hessian approximation which can be easily calculated

by the following expression [43]:

B−1
k+1 = 1

θk

I − 1

θk

sky
T
k + yks

T
k

sT
k yk

+
(
1 + 1

θk

‖yk‖2
sT
k yk

)
sks

T
k

sT
k yk

, (2.1)

It is pointed out by many researchers that efficiency of the self-scaled memoryless
BFGS is heavily depended of the selection of the scaling parameter θk . The idea
behind scaling is to achieve an ideal distribution of the eigenvalues of update formu-
lae (2.1), improving its condition number and consequently increasing the numerical
stability of the method [45]. Based on the analysis of quadratic objective functions,
there have been proposed two very popular and effective adaptive formulas for the
computation of θk . The first one have been proposed by Oren and Luenberger [48]

θOLk = sT
k yk

‖sk‖2 , (2.2)

while the second one by Oren and Spedicato [49]

θOSk = ‖yk‖2
sT
k yk

. (2.3)

Numer Algor

However, Nocedal and Yuan [46] reported some very disappointing numerical exper-
iments in which the best self-scaling BFGS algorithm of Oren and Luenberger [48]
performs badly compared to the classical BFGS algorithm when applied with inexact
line search to a simple quadratic function of two variables. To address this problem,
Al-Baali [2] proposed the condition

θk ≤ 1 (2.4)

and presented a globally and superlinearly convergent BFGS method with inexact
line search. The motivation behind condition (2.4) is based on the fact that the eigen-
values of Hessian approximation Bk+1 can be reduced if θk < 1, and hence, smaller
eigenvalues are introduced in Bk+1 if the eigenvalues of Bk are large. Moreover,
the BFGS update formula has the significant property of self-correcting the small
eigenvalues [4, 44, 45, 53]. Thus, condition (2.4) ensures keeping the eigenvalues
of the Hessian approximation matrix within a suitable range, and as a result, if Bk

incorrectly approximates the curvature of the objective function and this estimate
slows down the iteration, then the next Hessian approximation will tend to correct
itself in the next few steps. Numerical evidences [2, 3] show that the performance of
the self-scaling BFGS was improved substantially and concluded that the proposed
scaled method was computationally superior to the original one. For more choices
and information on scalar θk , we refer to [2, 3, 5, 46–49] and the references therein.

Independently, another interesting approach was proposed by Zou et al. [62] for
studying the computational performance of several limited-memory quasi-Newton
and truncated Newton methods. In particular, they performed comparative tests on
several synthetic function problems allowing control of the clustering of eigenvalues
in the Hessian spectrum. In this way, they examined each method’s sensitivity to
various degrees of ill conditioning and evaluated its computational performance as
the condition number increases.

3 An adaptive descent hybrid conjugate gradient method

Motivated by the computational efficiency of the self-scaling memoryless BFGS, we
propose an adaptive choice for parameter λk in (1.4), following a similar method-
ology of that in [18, 22]. More specifically, we define parameter λk in such a way
to reduce the distance between the search direction matrix of the HCG+ and the
self-scaled memoryless BFGS update.

For this purpose, following Perry’s point of view, it is notable that from (1.3) and
(1.4), the search direction of the HCG+ method can be written as

dk+1 = −Qk+1gk+1, (3.1)

where

Qk+1 = I − λk

dkg
T
k+1

dT
k yk

− (1 − λk)
dky

T
k

dT
k yk

.

Therefore, the HCG+ method can be considered as a quasi-Newton method [24, 45]
in which the inverse Hessian is approximated by the nonsymmetric matrix Qk+1.

Numer Algor

Subsequently, based on the above discussion, we compute parameter λk as the
solution of the following minimization problem

min
λk>0

‖Dk+1‖F (3.2)

where Dk+1 = QT
k+1 − B−1

k+1 and ‖ · ‖F is the Frobenius matrix norm. Since
‖Dk+1‖2F = tr(DT

k+1Dk+1) and after some algebra, we obtain

‖Dk+1‖2F = λ2k
‖sk‖2‖gk‖2

(sT
k yk)2

− 2λk

[
sT
k gk

sT
k yk

+
(
1

θk

− 1

) ‖sk‖2(yT
k gk)

(sT
k yk)2

−
(
1 + 1

θk

‖yk‖2
sT
k yk

)
‖sk‖2(sT

k gk)

(sT
k yk)2

]
+ ξ,

where ξ is a real constant, independent of λk . Clearly, the computation of ‖Dk+1‖2F
can be considered as a second-degree polynomial of variable λk where the coefficient
of λ2k is always positive. Therefore, the unique solution of the minimization problem
(3.2) is given by

λ∗
k = sT

k gk

‖gk‖2
[

sT
k yk

‖sk‖2 − 1

θk

‖yk‖2
sT
k yk

− 1

]
+

(
1

θk

− 1

)
yT
k gk

‖gk‖2 (3.3)

Clearly, an important property of the value of λ∗
k is that matrix Qk+1 is as close as

possible to the self-scaling memoryless BFGS matrix. Moreover, in order to have a
convex combination in (1.4), we restrict the values of λk in the interval [0, 1], namely
if λ∗

k < 0 then we set λ∗
k = 0 and also, if λ∗

k > 1, then we set λ∗
k = 1.

In order to guarantee that our proposed method generates descent directions and
increase further its computational efficiency and robustness, we exploit the idea of
the modified FR method [61]. More specifically, let the search direction be defined
by

dk+1 = −
(
1 + βHCG+k

gT
k+1dk

‖gk+1‖

)
gk+1 + βHCG+k dk. (3.4)

It is easy to see that the condition holds, using any line search

dT
k+1gk+1 ≤ −‖gk+1‖2. (3.5)

At this point, we present our adaptive descent hybrid conjugate gradient algorithm
(ADHCG).

4 Convergence analysis

In this section, we present the global convergence analysis of algorithm ADHCG,
under the following assumptions on the objective function f .

Assumption 1 The level set L = {x ∈ R
n | f (x) ≤ f (x0)} is bounded; namely,

there exists a positive constant B, such that

‖x‖ ≤ B, ∀x ∈ L . (4.1)

Numer Algor

Algorithm 1 (ADHCG)

Step 1: Initiate x0 ∈ R
n and 0 < σ1 < σ2 < 1; Set k = 0.

Step 2: If ‖gk‖ = 0, then terminate; Otherwise go to the next step.
Step 3: Compute the descent direction dk by (1.4), (3.3) and (3.4).
Step 4: Determine a stepsize αk using the Wolfe line search:

f (xk + αkdk) − f (xk) ≤ σ1αkg
T
k dk, (3.6)

g(xk + αkdk)
T dk ≥ σ2g

T
k dk. (3.7)

Step 5: Let xk+1 = xk + αkdk .
Step 6: Set k = k + 1 and go to Step 2.

Assumption 2 In some neighborhood N of L , f is differentiable and its gradient
g is Lipschitz continuous, i.e., there exists a positive constant L, such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (4.2)

Since {fk} is a decreasing sequence, it is clear that the sequence {xk} generated by
Algorithm ADHCG is contained in L and there exists a constant f ∗, such that

lim
k→∞ f (xk) = f ∗.

Furthermore, it follows directly from Assumptions 1 and 2 that there exists a positive
constant M > 0 such that

‖g(x)‖ ≤ M, ∀x ∈ L . (4.3)

In order to present the convergence analysis, the following lemma is needed which
constitutes a general result of conjugate gradient methods implemented with a line
search that satisfies the Wolfe line search conditions (3.6) and (3.7).

Lemma 4.1 Suppose that Assumptions 1 and 2 hold. Consider any method of the
form (1.2) where dk is a descent direction, i.e., dT

k gk < 0 and αk satisfies the Wolfe
conditions (3.6) and (3.7), then

∑
k≥0

(gT
k dk)

2

‖dk‖2 < +∞.

Obviously, it immediate follows from Lemma 4.1 and (3.5), that

∑
k≥0

‖gk‖4
‖dk‖2 < +∞, (4.4)

which is very useful for the global convergence analysis.
Subsequently, we show that the Algorithm ADHCG is globally convergent for

general nonlinear functions. For this purpose, we present some properties for the
search direction dk , formula βHCG+k , and step sk . In the rest of this section, we

Numer Algor

assume that the sequence {θk} is uniformly bounded; namely, there exist positive
constants θmin and θmax such that

θmin ≤ θk ≤ θmax (4.5)

Lemma 4.2 Suppose that Assumptions 1 and 2 hold. Let {xk} and {dk} be generated
by Algorithm ADHCG, if there exists a constant μ > 0 such that

‖gk‖ ≥ μ, ∀k ≥ 0, (4.6)

and then there exist positive constants C1 and C2 such that for all k ≥ 1

|βHCG+
k | ≤ C1‖sk‖ (4.7)

and

|βHCG+
k | |g

T
k+1dk|

‖gk+1‖2 ≤ C2‖sk‖. (4.8)

Proof Firstly, we show that there exists a constant η > 0 such that

λk ≤ η‖sk‖. (4.9)

From (3.5) and (3.7), we have

dT
k yk ≥ (σ2 − 1)gT

k dk = (1 − σ2)‖gk‖2. (4.10)

Combining this with Assumptions 1 and 2 and relations (3.3), (3.5), (4.3), (4.5), and
(4.6), we obtain

|λk| ≤ |sT
k gk|

‖gk‖2
[

|sT
k yk|

‖sk‖2 + 1

|θk|
‖yk‖2
|sT

k yk|
+ 1

]
+

(
1

|θk| + 1

) |yT
k gk|

‖gk‖2

≤ ‖yk‖
‖gk‖ + ‖yk‖2

|θk|(1 − σ2)‖gk‖2 + ‖sk‖
‖gk‖ +

(
1

|θk| + 1

) ‖yk‖
‖gk‖

≤
[

L2B

θmin(1 − σ2)μ2
+ 1

μ

(
1

θmin
+ L + 2

)]
‖sk‖ (4.11)

Letting η = L2B

θmin(1−σ2)μ
2 + 1

μ

(
1

θmin
+ L + 2

)
then (4.9) is satisfied. Moreover,

utilizing (1.4), (4.3), (4.6), (4.9), and (4.10), we get

|βHCG+
k | ≤ |gT

k+1yk|
dT
k yk

+ |λk| ‖gk+1‖2
dT
k yk

= ML + ηM2

(1 − σ2)μ2
‖sk‖.

Therefore, if we let C1 = ML+ηM2

(1−σ2)μ
2 , then (4.7) holds. Furthermore, by the Wolfe

condition (3.7), we have

gT
k+1dk ≥ σ2g

T
k dk ≥ −σ2y

T
k dk + σ2g

T
k+1dk. (4.12)

Also, observe that
gT

k+1dk = yT
k dk + gT

k dk ≤ dT
k yk. (4.13)

Numer Algor

By rearranging the inequality (4.12), we obtain gT
k+1dk ≥ −(σ2/1− σ2)d

T
k yk , which

together with (4.13), we get∣∣∣∣∣g
T
k+1dk

dT
k yk

∣∣∣∣∣ ≤ max

{
σ2

(1 − σ2)
, 1

}
. (4.14)

It immediate follows from Assumption 2 and relations (4.6), (4.9), and (4.14)

|βHCG+k | |g
T
k+1dk|

‖gk+1‖2 ≤
(‖yk‖

‖gk+1‖ +|λk|
) ∣∣∣∣∣g

T
k+1dk

dT
k yk

∣∣∣∣∣≤
(

L

μ
+ η

)
max

{
σ2

(1−σ2)
, 1

}
‖sk‖

Letting C2 =
(

L
μ

+ η
)
max

{
σ2

(1−σ2)
, 1

}
, we obtain (4.8) which completes the proof.

Subsequently, we present a lemma which shows that, asymptotically, the search
directions change slowly.

Lemma 4.3 Suppose that Assumptions 1 and 2 hold. Let {xk} and {dk} be generated
by Algorithm ADHCG, if there exists a constant μ > 0, such that (4.6) holds; then
dk �= 0 and ∑

k≥0

‖wk+1 − wk‖2 < ∞, (4.15)

where wk = dk/‖dk‖.

Proof Firstly, note that dk �= 0, for otherwise (3.5) would imply gk = 0. Therefore,
wk is well defined. Let us define

rk+1 := υk+1

‖dk+1‖ and δk+1 := βHCG+k

‖dk‖
‖dk+1‖ , (4.16)

where

υk+1 = −
(
1 + βHCG+k

gT
k+1dk

‖gk+1‖2
)

gk+1.

Then, by (3.4), we have
wk+1 = rk+1 + δk+1wk. (4.17)

Using this relation with the identity ‖wk+1‖ = ‖wk‖ = 1 yields

‖rk+1‖ = ‖wk+1 − δk+1wk‖ = ‖wk − δk+1wk+1‖.
Moreover, using this with the fact that δk+1 ≥ 0, we obtain

‖wk+1 − wk‖ ≤ ‖wk+1 − δk+1wk‖ + ‖wk − δk+1wk+1‖ = 2‖rk+1‖.
Subsequently, we estimate an upper bound for ‖υk+1‖. It immediate follows from
the definition of υk+1 in (4.17) and relations (4.1), (4.3), and (4.10) that there exists
a constant D > 0 such that

‖υk+1‖ ≤
∥∥∥∥∥
(
1 + |βHCG+k | |g

T
k+1dk|

‖gk+1‖2
)

gk+1

∥∥∥∥∥ ≤ (1 + C2B)M � D.

Numer Algor

Thus, we have established an upper bound for ‖υk+1‖. Therefore, utilizing the
previous relation with (4.4), (4.6), and (4.16), we obtain

∑
k≥0

‖wk+1 − wk‖2 = 4
∑
k≥0

‖rk+1‖2 ≤ 4
∑
k≥0

‖υk+1‖2
‖dk+1‖2 = 4

D2

μ4

∑
k≥0

‖gk+1‖4
‖dk+1‖2 < +∞,

which completes the proof.

Next, utilizing Lemmas 4.2 and 4.3, we establish the global convergence theo-
rem for Algorithm ADHCG whose proof is similar to that of Theorem 3.2 in [30];
however, we present it here for completeness.

Theorem 4.1 Suppose that Assumptions 1 and 2 hold. If {xk} is obtained by
Algorithm ADCGH+, then we have

lim
k→∞ inf ‖gk‖ = 0. (4.18)

Proof We proceed by contraction, we suppose that the conclusion (4.18) is not true.
That is, there exists a constant μ > 0 such that for all k, ‖gk‖ ≥ μ. The proof is
divided in the following steps:

Step I. A bound on the step sk . Observe that for any l ≥ k, we have

xl − xk =
l−1∑
j=k

(xj+1 − xj) =
l−1∑
j=k

‖sj‖wj =
l−1∑
j=k

‖sj‖wk +
l−1∑
j=k

‖sj‖(wj − wk).

Utilizing Assumption 1 with the triangle inequality, we obtain

l−1∑
j=k

‖sj‖ ≤ ‖xl − xk‖ +
l−1∑
j=k

‖sj‖ ‖wj − wk‖ ≤ B +
l−1∑
j=k

‖sj‖ ‖wj − wk‖. (4.19)

Let � be a positive integer, chosen large enough that

� ≥ 4BC1, (4.20)

where B and C are defined in (4.1) and (4.7), respectively. By Lemma 4.3, we can
choose k0 large enough such that∑

i≥k0

‖wi+1 − wi‖2 ≤ 1

4�
. (4.21)

For any j > k ≥ k0 with j − k ≤ �, using (4.21) with the Cauchy-Schwartz
inequality, we obtain

‖wj − wk‖ ≤
j−1∑
i=k

‖wi+1 − wi‖ ≤ √
j − k

⎛
⎝j−1∑

i=k

‖wi+1 − wi‖
⎞
⎠

1/2

≤ √
�

(
1

4�

)1/2

= 1

2
.

Numer Algor

Using this with (4.19), yields

l−1∑
j=k

‖sj‖ < 2B, (4.22)

where l > k > k0 and l − k ≥ �.
Step II. A bound on the search directions dl . We rewrite (3.4) as follows:

dl = −gl + βMP+
k

(
I − glg

T
l

‖gl‖2
)

dl−1. (4.23)

Since gl is orthogonal to

(
I − glg

T
l

‖gl‖2
)

dl−1 and I − glg
T
l

‖gl‖2 is a project matrix, we have

from (4.3), (4.7), and (4.23) that

‖dl‖2 ≤ (‖gl‖+|βHCG+k | ‖dl−1‖)2 ≤ 2‖gl‖2+2|βHCG+k |2‖dl−1‖2 ≤ 2M2+2C2
1‖sl−1‖2‖dl−1‖2.

Defining Si = 2C2
1‖si‖2, we have that for l > k0,

‖dl‖2 ≤ 2M2

⎛
⎝ l∑

i=k0+1

l−1∏
j=i

Sj

⎞
⎠ + ‖dk0‖2

l−1∏
j=k0

Sj . (4.24)

Above, the product is defined to be 1 whenever the index range is vacuous. Next, let
us consider as follows a product of � consecutive Sj , where k ≥ k0. Utilizing (4.20)
and (4.22) together with the Cauchy-Schwartz inequality, we have

k+�−1∏
j=k

Sj =
k+�−1∏

j=k

2C2
1‖sj‖2≤

(∑k+�−1
j=k

√
2C1‖sj‖

�

)2�

≤
(
2
√
2BC1

�

)2�

≤ 1

2�
.

Since the product of � consecutive Sj is bounded by 1/2�, it immediate follows
from (4.24) that ‖dl‖2 ≤ c1l + c2 for a certain constant c1 > 0 independent of l.
Therefore, we have ∑

k≥0

‖gk‖4
‖dk‖2 ≥

∑
k≥0

μ2

c1k + c2
= +∞,

which contradicts with (4.4). This completes the proof.

5 Experimental results

In this section, we report some numerical results in order to evaluate the performance
of our proposed conjugate gradient method ADHCG with that of the CG-DESCENT
method [30], hybrid-enriched method [40], and the HCG+ method [13].

We selected 134 problems from the CUTEr [20] library which have been also
tested in [13, 30, 39]. The implementation code was written in C and compiled with
gcc (with compiler settings -03 -lm -c) on a PC (2.66-GHz Quad-Core pro-
cessor, 4 Gbyte RAM) running Linux operating system. The CG-DESCENT code

Numer Algor

is coauthored by Hager and Zhang obtained from Hager’s web page1. The hybrid-
enriched method consists of interlacing in a dynamical way the L-BFGS method [35]
with the TN method [41, 42] in order to explore the advantages of both of them.
More specifically, in this method, l steps of the L-BFGS method are alternated with
t steps of the T-N method. In our experiments, we set l = 5 and t = 20 as in [6].
The detailed numerical results can be found in http://www.math.upatras.gr/∼livieris/
Results/ADHCG.zip. In our experiments, we use the condition ‖gk‖∞ ≤ 10−6 as
stopping criterion and all algorithms were implemented with the same line search
presented in [30].

All algorithms were evaluated using the performance profiles proposed by Dolan
and Morè [26] relative to function evaluations, gradient evaluations, number of itera-
tions, and CPU time (in seconds). The use of profiles provide a wealth of information
such as solver efficiency, robustness, and probability of success in compact form and
eliminate the influence of a small number of problems on the benchmarking process
and the sensitivity of results associated with the ranking of solvers [26]. The perfor-
mance profile plots the fraction P of problems for which any given method is within
a factor τ of the best solver. The horizontal axis of the figure gives the percentage
of the test problems for which a method is the fastest (efficiency), while the vertical
axis gives the percentage of the test problems that were successfully solved by each
method (robustness). The curves in the following figures have the following meaning:

• “ADHCG1” stands for Algorithm ADHCG in which the scaling parameter is

defined by θk = min
{
θOLk , 1

}
.

• “ADHCG2” stands for Algorithm ADHCG in which the scaling parameter is

defined by θk = min
{
θOSk , 1

}
.

• “CG-DESCENT” stands for the CG-DESCENT method (version 5.3) [30].
• “HYBRID” stands for the hybrid-enriched method [40].
• “HCG+” stands for the CG method with the update parameter βHCG+k in which

λk is defined by (1.5) [13].
Figure 1 presents the performance profiles of ADHCG1, ADHCG2, CG-DESCENT,

and HYBRID based on number of function evaluations and number of gradient evalua-
tions. Clearly, our proposed methods outperform the classical methods CG-DESCENT
and HYBRIDwith ADHCG2 presenting slightly better performance, relative to both per-
formance metrics. More analytically, the performance profile for function evaluations
reports that ADHCG1 and ADHCG2 solve about 40.6 and 44.8% of the test problems
with the least number of function evaluations, respectively, while CG-DESCENT and
HYBRID solve about 31.3 and 35% of the test problems, respectively. Moreover,
Fig. 1b illustrates that HYBRID is the most robust method, since it solves 42.4%
of the test problems with the least number of gradient evaluations, while both our
proposed methods solve about 35.1% the test problems. However, ADHCG1 and
ADHCG2 are the most efficient methods, since their curves lie on the top.

1http://clas.ufl.edu/users/hager/papers/Software/

http://www.math.upatras.gr/~livieris/Results/ADHCG.zip
http://www.math.upatras.gr/~livieris/Results/ADHCG.zip
http://clas.ufl.edu/users/hager/papers/Software/

Numer Algor

2 3 4 5 6 7 8 9 10

t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
CG-DESCENT
HYBRID

(a) Performance based on function evaluations

2 3 4 5 6 7 8 9 10

t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
CG-DESCENT
HYBRID

(b) Performance based on gradient evaluations

Fig. 1 Log10 scaled performance profiles for ADHCG1, ADHCG2, CG-DESCENT, and HYBRID based
on number of function evaluations (a) and number of gradient evaluations (b)

Figure 2 presents the performance profiles comparing ADHCG1, ADHCG2,
CG-DESCENT, and HYBRID based on number of iterations and CPU time. As
regards the number of iterations, HYBRID illustrates the highest probability of
being the optimal solver since it corresponds to the top curve, slightly outperform-
ing our proposed methods. The interpretation of Fig. 2b shows that ADHCG1 and
ADHCG2 exhibit the best performance with respect to CPU time since they solve
76 and 80 out of 134 test problems with the least computational time, respectively,
while CG-DESCENT and HYBRID solve only 72 of the test problems. Based on
the above observations, we conclude that both our proposed methods outperform
CG-DESCENT and HYBRID, in terms of efficiency and efficacy, regarding all
performance metrics.

Figures 3 and 4 present the performance profiles of ADHCG1, ADHCG2,
and HCG+, relative to all performance metrics. Obviously, our proposed methods
ADHCG1 and ADHCG2 perform substantially better than the classical conjugate

t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
CG-DESCENT
HYBRID

(a) Performance based on iterations

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
CG-DESCENT
HYBRID

(b) Performance based on CPU time

Fig. 2 Log10 scaled performance profiles for ADHCG1, ADHCG2, CG-DESCENT, and HYBRID based
on number of iterations (a) and CPU time (b)

Numer Algor

2 3 4 5 6 7 8 9 10
t

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
HCG+

(a) Performance based on function evaluations

2 3 4 5 6 7 8 9 10
t

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
HCG+

(b) Performance based on gradient evaluations

Fig. 3 Log10 scaled performance profiles for ADHCG1, ADHCG2, and HCG+ based on number of
function evaluations (a) and number of gradient evaluations (b)

gradient method HCG+. Figure 3 reports that ADHCG1 illustrates the highest prob-
ability of being the most robust solver, followed by ADHCG2, as regards the
computational cost. In particular, ADHCG1 solves about 53 and 56% of the test
problems with the least function evaluations and gradient evaluations. Moreover,
ADHCG2 solves about 52.2% of the test problems while HCG+ solves only 43.2
and 43.2%, in the same situations. Furthermore, the interpretation of Fig. 4a shows
that ADHCG1 exhibits the best performance with respect to the number of iterations
since it corresponds to the top curve. As regards the CPU time, Fig. 4b shows that our
proposed methods exhibit the best performance, significantly outperforming HCG+.
More analytically, ADHCG1 and ADHCG2 solve about 69.4 and 67.9% of the test
problems, respectively with the least CPU time while HCG+ solves about 55.9% of
the test problems. Since all conjugate gradient methods have been implemented with
the same line search, we conclude that our proposed methods generate the best search
directions on average.

2 3 4 5 6 7 8 9 10

t

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
HCG+

(a) Performance based on iterations

2 3 4 5 6 7 8 9 10

t

0.4

0.5

0.6

0.7

0.8

0.9

P

ADHCG1
ADHCG2
HCG+

(b) Performance based on CPU time

Fig. 4 Log10 scaled performance profiles for ADHCG1, ADHCG2, and HCG+ based on number of
iterations (a) and CPU time (b)

Numer Algor

6 Conclusions

In this work, we presented a new conjugate gradient method incorporating the
approach of the hybridization of the update parameters of DY and HS+ convexly
in which the computation of the hybrization parameter is based on a quasi-Newton
philosophy. More specifically, the value of the parameter is obtained by minimizing
the distance between the hybrid conjugate gradient direction matrix and the self-
scaling memoryless BFGS update. Moreover, an important property of our proposed
method is that it ensures sufficient descent independent of the accuracy of the line
search. Numerical comparisons have been made between our proposed method and
the classical conjugate gradient methods CG-DESCENT [30], hybrid-enriched [40],
and HCG+ [13] on a set of unconstrained optimization problems of the CUTEr col-
lection. The reported numerical results demonstrated the computational efficiency
and robustness of our proposed method.

In our future work, we intend to pursue an approach similar to [14, 17], study-
ing the eigenvalues and the singular values of the update matrix. Since our numerical
experiments are quite encouraging, another interesting aspect for future research is
to perform a similar study as Zou et al. [62] and apply our proposed method on sev-
eral synthetic function problems allowing control of the clustering of eigenvalues
in the Hessian spectrum. Thus, we could examine the method’s sensitivity to var-
ious degrees of ill conditioning and evaluate its computational performance as the
condition number increases.

References

1. Al-Baali, M.: Descent property and global convergence of the Fletcher-Reeves method with inexact
line search. IMA J. Numer. Anal. 5, 121–124 (1985)

2. Al-Baali, M.: Analysis of a family self-scaling quasi-Newton methods. Comput. Optim. Appl. 9, 191–
203 (1998)

3. Al-Baali, M.: Numerical experience with a class of self-scaling quasi-Newton algorithms. J. Optim.
Theory 96, 533–553 (1998)

4. Al-Baali, M.: Extra updates for the BFGS method. Optim. Method Softw. 13, 159–179 (2000)
5. Al-Baali, M., Spedicato, E., Maggioni, F.: Broyden’s quasi-Newton methods for a nonlinear system of

equations and unconstrained optimization: a review and open problems. Optim. Method Softw. 29(5),
937–954 (2014)

6. Alekseev, A.K., Navon, I.M., Steward, J.L.: Comparison of advanced large-scale minimization
algorithms for the solution of inverse ill-posed problems. Optim. Method Softw. 24(1), 63–87 (2009)

7. Andrei, N.: Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained
optimization. Optim. Method Softw. 22, 561–571 (2007)

8. Andrei, N.: Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer.
Algo. 47, 143–156 (2008)

9. Andrei, N.: Hybrid conjugate gradient algorithm for unconstrained optimization. J. Optim. Theory
Appl. 141, 249–264 (2009)

10. Andrei, N.: Accelerated hybrid conjugate gradient algorithm with modified secant condition for
unconstrained optimization. Numer. Algo. 54, 23–46 (2010)

11. Apostolopoulou, M.S., Sotiropoulos, D.G., Livieris, I.E., Pintelas, P.: A Memoryless BFGS neu-
ral network training algorithm. In: 7Th IEEE International Conference on Industrial Informatics
(INDIN’09), pp. 216–221 (2009)

12. Babaie-Kafaki, S., Fatemi, M., Mahdavi-Amiri, N.: Two effective hybrid conjugate gradient algo-
rithms based on modified BFGS updates. Numer. Algo. 58, 315–331 (2011)

Numer Algor

13. Babaie-Kafaki, S., Ghanbari, R.: Two hybrid nonlinear conjugate gradient methods based on a modi-
fied secant equation. Optimization: A journal of mathematical programming and operations research,
1–16 (2012)

14. Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal
parameter choices. Eur. J. Oper. Res. 234(3), 625–630 (2014)

15. Babaie-Kafaki, S., Ghanbari, R.: A hybridization of the Hestenes–Stiefel and Dai–Yuan conjugate
gradient methods based on a least-squares approach. Optim. Method Softw. 30(4), 673–681 (2015)

16. Babaie-Kafaki, S., Ghanbari, R.: A hybridization of the Polak-Ribière-Polyak and Fletcher-Reeves
conjugate gradient methods. Numer. Algo. 68(3), 481–495 (2015)

17. Babaie-Kafaki, S., Ghanbari, R.: Two optimal Dai-Laio conjugate gradient methods. Optimization 64,
2277–2287 (2015)

18. Babaie-Kafaki, S., Ghanbari, R.: A class of adaptive Dai-Laio conjugate gradient methods based on
scaled memoryless BFGS update 4OR, 1–8 (2016)

19. Babaie-Kafaki, S., Mahdavi-Amiri, N.: Two modified hybrid conjugate gradient methods based on a
hybrid secant equation. Math. Model. Anal. 18(1), 32–52 (2013)

20. Bongartz, I., Conn, A., Gould, N., Toint, P.: CUTE: Constrained and unconstrained testing environ-
ments. ACM Trans. Math. Softw. 21(1), 123–160 (1995)

21. Burstedde, C., Kunoth, A.: The conjugate gradient method for linear ill-posed problems with operator
perturbations. Numer. Algo. 48(1), 161–188 (2008)

22. Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an
improved Wolfe line search. SIAM J. Optim. 23, 296–320 (2013)

23. Dai, Y.H., Yuan, Y.X.: A nonlinear conjugate gradient with a strong global convergence properties.
SIAM J. Optim. 10, 177–182 (1999)

24. Dai, Y.H., Yuan, Y.X.: Nonlinear Conjugate Gradient Methods. Shanghai Scientific and Technical
Publishers, Shanghai (2000)

25. Dai, Y.H., Yuan, Y.X.: An efficient hybrid conjugate gradient method for unconstrained optimization.
Ann. Oper. Res. 103, 33–47 (2001)

26. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

27. Fletcher, R. Practical Methods of Optimization, Volume 1: Unconstrained Optimization, 1st edition.
Wiley, New York (1987)

28. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J 7, 149–154
(1964)

29. Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimiza-
tion. SIAM J Optim. 2(1), 21–42 (1992)

30. Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient
line search. SIAM J Optim. 16, 170–192 (2005)

31. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pacific J Optim. 2, 35–
58 (2006)

32. Hestenes, M.R., Stiefel, E.: Methods for conjugate gradients for solving linear systems. J. Res. Natl.
Bur. Stand. 49, 409–436 (1952)

33. Hu, Y.F., Storey, C.: Global convergence result for conjugate gradient methods. J. Optim. Theory
Appl. 71, 399–405 (1991)

34. Kou, C.X., Dai, Y.H.: A modified self-scaling memoryless Broyden–Fletcher–Goldfarb–Shanno
method for unconstrained optimization. Journal of Optimization Theory and Applications (2014)

35. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization methods.
Math. Program. 45, 503–528 (1989)

36. Liu, Q.: Two minimal positive bases based direct search conjugate gradient methods for computation-
ally expensive functions. Numer. Algo. 58(4), 461–474 (2011)

37. Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms, part 1: theory. J. Optim.
Theory Appl. 69, 129–137 (1991)

38. Livieris, I.E., Pintelas, P.: A new conjugate gradient algorithm for training neural networks based on
a modified secant equation. Appl. Math. Comput. 221, 491–502 (2013)

39. Livieris, I.E., Pintelas, P.: A limited memory descent Perry conjugate gradient method. Optim. Lett.
10, 17–25 (2016)

40. Morales, J.L., Nocedal, J.: Enriched methods for large-scale unconstrained optimization. Comput.
Optim. Appl. 21, 143–154 (2002)

Numer Algor

41. Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM J Numer. Anal. 21, 770–788
(1984)

42. Nash, S.G.: Preconditioning of truncated Newton methods. SIAM J Sci. Stat. Comput. 6, 599–616
(1985)

43. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782
(1980)

44. Nocedal, J.: Theory of algorithms for unconstrained optimization. Acta Numerica 1, 199–242 (1992)
45. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
46. Nocedal, J., Yuan, Y.: Analysis of a self-scaling quasi-Newton method. Math. Program. 61, 19–37

(1993)
47. Oren, S.S.: Self-Scaling Variable Metric Algorithms for Unconstrained Minimization. PhD Thesis,

Stanford University, California (1972)
48. Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms, Part I: criteria and

sufficient conditions for scaling a class of algorithms. Manag. Sci. 20, 845–862 (1974)
49. Oren, S.S., Spedicato, E.: Optimal conditioning of self-scaling variable metric algorithms. Math.

Program. 10, 70–90 (1976)
50. Perry, J.M.: A Class of Conjugate Gradient Algorithms with a Two-Step Variable-Metric Memory.

Center for Mathematical Studies in Economies and Management Science. Northwestern University
Press, Evanston Illiois (1977)

51. Plato, R.: The conjugate gradient method for linear ill-posed problems with operator perturbations.
Numer. Algo. 20(1), 1–22 (1999)

52. Polak, E., Ribière, G.: Note sur la convergence de methods de directions conjuguees. Revue Francais
d’Informatique et de Recherche Operationnelle 16, 35–43 (1969)

53. Powell, M.J.D.: Some global convergence properties of a variable metric algorithm for minimization
without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming, SIAM-
AMS Proceedings, vol. IX, pp. 53–72. SIAM Publications (1976)

54. Powell, M.J.D.: Restart procedures for the conjugate gradient method. Math. Program. 12, 241–254
(1977)

55. Powell, M.J.D.: Nonconvex Minimization Calculations and the Conjugate Gradient Method. In:
Numerical Analysis, Volume 1066 of Lecture Notes in Mathematics, pp. 122–141. Springer, Berlin
(1984)

56. Risler, F., Rey, C.: Iterative accelerating algorithms with Krylov subspaces for the solution to large-
scale nonlinear problems. Numerical Algorithms, 23(1) (2000)

57. Shanno, D.F.: On the convergence of a new conjugate gradient algorithm. SIAM J. Numer. Anal.
15(6), 1247–1257 (1978)

58. Touati-Ahmed, D., Storey, C.: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl.
64, 379–397 (1990)

59. Wu, X., Silva, B., Yuan, J.: Conjugate gradient method for rank deficient saddle point problems.
Numer. Algo. 35(2), 139–154 (2004)

60. Zhang, L., Zhou, W.: Two descent hybrid conjugate gradient methods for optimization. J. Comput.
Appl. Math. 216, 251–164 (2008)

61. Zhang, L., Zhou, W., Li, D.: Global convergence of a modified Fletcher-Reeves conjugate gradient
method with Armijo-type line search. Numer. Math. 104, 561–572 (2006)

62. Zou, X., Navon, I.M., Berger, M., Phua, K.H., Schlick, T., Le Dimet, F.X.: Numerical experience with
limited-memory quasi-Newton and truncated Newton methods. SIAM J Optim. 3(3), 582–608 (1993)

	A descent hybrid conjugate gradient method based on the memoryless BFGS update
	Abstract
	Introduction
	Self-scaling memoryless BFGS
	An adaptive descent hybrid conjugate gradient method
	Convergence analysis
	Experimental results
	Conclusions
	References

