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Abstract. Natural gas constitutes one of the most actively traded en-
ergy commodity with a significant impact on many financial activities
of the world. The accurate natural gas price prediction and the direc-
tion of price changes are considered essential since these forecasts are
utilized in energy sustainability planning, commodity trading and deci-
sion making, covering both the supply and demand side of natural gas
market. In this research, a new deep learning prediction model is pro-
posed for short-term forecasting natural gas price and movement. The
proposed forecasting model exploits the ability of convolutional layers
for providing a deep insight in natural gas data and the efficiency of
LSTM layers for learning short-term and long-term dependencies. Ad-
ditionally, a significant advantage of the proposed model is its abilities
to predict the price of natural gas on the following day (regression) and
also to predict if the price on the next day will increase, decrease or stay
stable (classification) with respect to today’s price. The conducted se-
ries of experiments demonstrated that the proposed model considerably
outperforms state-of-the-art deep learning and machine learning models.

Keywords: Deep learning· convolutional layers· LSTM· natural gas pre-
diction· time series.

1 Introduction

Crude oil and natural gas play strategic roles in socio-economic development
around the world and global demand for energy is continuously rising because
developed countries consume large amounts of energy, while demand in devel-
oping countries is increasing. They constitute the major energy sources for the
global economy and price forecasting is significant for a variety of reasons in-
cluding energy investment, policy decisions, portfolio diversification and hedging
capabilities. Benchmarks for the crude oil include the Brent crude oil from four
different fields in the North Sea, the Forties Blend, the Oseberg and Ekofisk, the
Western Texas Intermediate extracted from U.S. wells and sent via pipeline to
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Oklahoma and the Dubai/Oman which consists a “basket” product from Mid-
dle East. Natural gas benchmark prices are the U.S. Henry hub natural gas,
the Russian natural gas border price in Germany and the Indonesian Liquefied
natural gas price in Japan.

Governments tighten up environmental regulations, seeking alternative en-
ergy sources to meet energy demand via reduction of the dependency on oil, with
natural gas representing an economically viable alternative solution. While the
three natural gas benchmarks exhibited a co-movement, there was a deviation
(decoupling effect) of the U.S. natural gas [3, 9, 11], hereinafter referred as nat-
ural gas, after the Global Financial Crisis. The rapidly increasing demand for
energy by emerging markets, along with the production decrease by the Orga-
nization of Petroleum Exporting Countries (OPEC) in Middle East, resulted in
high oil and natural gas prices for three years. In U.S., the hydraulic fracturing
(fracking) technique used to recover gas and oil from shale rocks reduced the
overall production costs and therefore the natural gas price. This was reinforced
by the locality of the market since unlike oil, natural gas is difficult to transport
without a pipeline, unless it is liquefied which is costly. As a result, the prediction
of natural gas price can potentially assist governments and financial investors
for making their investment policies, gain significant profits and decrease their
risks. Nevertheless, the accurate natural gas forecasting is generally considered,
due to its chaotic nature, a complex and significantly challenging task.

During the last decade, significant deep learning techniques have been suc-
cessfully applied in a variety of time-series forecasting problems [8, 13, 17]. These
advanced techniques are probably the appropriate methods to extract knowledge
from the noisy and chaotic nature of time-series data. Convolutional Neural Net-
works (CNNs) and LSTM networks constitute the most popular and widely uti-
lized deep learning techniques. CNNs are based on convolutional layers which
extract more valuable features by filtering out the noise of the input data while
LSTM models are based on LSTM layers which capture sequence pattern infor-
mation due to their distinct architecture. Nevertheless, classical CNNs are well
suited to deal with spatial autocorrelation data, they are not usually adapted to
correctly identify complex and temporal dependencies [1] while LSTM networks
although they are dedicated to cope with temporal correlations, they manage
only the features in the training set. Thus, a time-series prediction model which
adopts the benefits of both techniques may significantly improve the forecasting
performance.

In this work, we propose a new prediction model for short-term forecasting
natural gas price which is based on the idea of exploiting the advantages of deep
learning techniques. The proposed forecasting model exploits the capability of
convolutional layers for learning the internal representation of the natural gas
data and extracting useful patterns as well as the efficiency of LSTM layers for
identifying short and long term dependencies. Additionally, the proposed pre-
diction model has also ability of predicting the natural gas movement direction
(increase, decrease or stay stable) of the next day with respect to today’s price.
Our conducted numerical experiments illustrate that the proposed model consid-
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erably outperforms state-of-the-art deep learning and machine learning models
for the prediction of the natural gas daily price and movement.

The remainder of this paper is organized as follows: Section 2 presents a sur-
vey of recent studies, regarding the application of machine learning techniques
in natural gas forecasting. Section 3 presents a detailed description of the pro-
posed advanced deep learning model. Section 4 presents the data collection and
Section 5 presentes a series of numerical experiments. Section 6 discusses the
findings of this research and presents our conclusions.

2 Natural gas forecasting: State of the art

The recent developments of data mining and deep learning drew the attention of
scientific community, attempting to gain significant insights on forecasting prin-
cipal resources prices such as natural gas. During the last years, the problem of
predicting the next day’s price of natural gas arises frequently, due to its signif-
icance as a profitable commodity. This led to the requirement and developemnt
of new innovative forecasting models. In the sequel, we report the findings and
outcomes from some rewarding studies regarding forecasting methodologies for
natural gas price and movement.

Yu and Xu [16] proposed an improved back-propagation neural network
model based on a combinational approach for short-term gas load forecasting.
The proposed model was optimized by the real-coded genetic algorithm. They
performed several modifications including an improved momentum factor and
a self-adaptive learning rate as well as the determination of the initial weights
and thresholds of the network by the genetic algorithm to avoid being trapped
in local minimum. Such improvements exerted maximum performance of the
neural network by accelerating the convergence speed and facilitating the fore-
casting efficiency. The data used in their research were recorded from Nov-2005
to Oct-2008 regarding natural gas load for Shanghai. Based on their preliminary
numerical experiments, the authors stated that the proposed model was ideal
for natural gas short-term load forecasting, presenting satisfactory prediction
accuracy with a relatively small computation time.

Čeperić et al. [5] conducted a performance evaluation of traditional time-
series models: Naive, AR and ARIMA as well as of the machine learning mod-
els: neural networks and strategic seasonality-adjusted support vector regression
machines for short-term forecasting of Henry Hub spot natural gas prices. Addi-
tionally, they investigated the benefits of utilizing a feature selection technique
as a pre-processing step. To evaluate the successfulness of the compated models
in the short term forecasting of natural gas prices, they conducted a variety of
numerical experiments ranging of different input variables and transformations,
combinations of periods and window lengths. Their detailed experiemental anal-
ysis illustrated the forecasting efficiency of machine learning models as well as
the usefulness of feature selection techniques.

Merkel et al. [14] applied deep neural network methodologies for predict-
ing natural gas short-term load. The authors utilized historical data from 62
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operating areas from U.S. local distribution companies, covering a wide area
of different geographical regions hence, represent a variety of climates. Their
proposed model was evaluated against the traditional models: linear regression
and artificial neural network. Their numerical experiments presented that the
proposed deep learning model exhibited better short-term load forecasts on av-
erage. Moreover, they stated that even the much simpler linear regression model
outperformed the proposed model, in some test cases. Finally, they concluded
that although the deep learning techniques are a dominant option which usu-
ally outperforms simpler forecasting methods, it may not constitute the proper
methodology for every operating area.

Nevertheless, none of the mentioned studies considered the adoption and
combination of advanced deep learning techniques for natural gas price predic-
tion and movement. Our contribution aims on imposing convolutional layers for
learning the internal representation of the natural gas data and LSTM layers for
efficiently identifying short-term and long-term dependencies. Moreover, in con-
trast to previous research studies, we provide performance evaluation of various
deep learning and machine learning models for both regression and classification
problems.

3 CNN-LSTM model for short-term forecasting natural
gas

The main contribution of this research is the development of a forecasting model,
named CNN-LSTM, utilizing advanced deep learning techniques for the short-
term prediction of natural gas price and movement. The proposed model is based
on of two main components.

The first component consists 2 convolutional layers of 32 and 64 filters of size
(2, ), using same padding. Convolutional layers are specially designed data pre-
processing layers which filter the input data for learning their internal represen-
tation. More specifically, the convolution kernel, called filter, can be considered
as a tiny window which “slides” through each input instance and applies complex
mathematical operations (convolutions) on each sub-region which this specified
window “meets”. The application of several convolution kernels on the input
data, results in the development of new convolved features which are usually
more useful than the original ones.

The second component consists of a LSTM layer of 70 units and a dense
layer of 16 neurons. LSTM layers process the generated features in order to
identify short-term and long-term dependencies in the times series and provide an
accurate prediction. Memory blocks and adaptive gate units constitute the major
novelty of a LSTM layer. The former contain memory cells with self-connections
for memorizing the temporal state while the latter control the information flow
in the memory block. With the treatment of the hidden layer as a memory unit,
LSTM can cope the correlation within time-series in both short and long term.

An overview of the proposed CNN-LSTM forecasting model architecture is
depicted in Figure 1.
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Fig. 1. CNN-LSTM forecasting model architecture

4 Data

The data utilized in this research concern the daily natural gas prices in USD
from Jan-2015 to Dec-2019 which were obtained from U.S. Energy Information
Administration (www.eia.gov). Table 1 summarizes the descriptive statistics in-
cluding the measures: Minimum, Mean, Maximum, Median, Standard Deviation
(Std. Dev.), Skewness and Kurtosis.

Minimum Mean Maximum Median Std. Dev. Skewness Kurtosis

1.49 2.75 6.24 2.78 0.37 0.98 5.25

Table 1. Descriptive statistics for natual gas daily prices

The data were divided into training set and testing set. The training set
consists of natural gas daily prices from 01-Jan-2015 to 31-Dec-2018 (1129 days)
which ensures an adequate range of long and short-term trends. The testing
set consists of daily prices from 01-Jan-2018 to 31-Dec-2019 (146 days) which
ensures a substantial amount of unseen “out-of-sample” data for evaluating the
compared forecasting models.

At this point, it is worth mentioning that in any attempt to increase the
training dataset utilizing prices from past years, lead to the reduction of the
performance of all evaluated forecasting models.

5 Experimental methodology

In this section, we evaluate the performance of the proposed forecasting model
against LSTM forecasting models and the state-of-the-art machine learning mod-
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Fig. 2. Daily natural gas prices trend from January 2015 to December 2019

els: Support Vector Regression (SVR) [7], Artificial Neural Network (ANN) [6]
and Decision Tree Regression (DTR) [2]. For fairness and for performing an
objective comparison, the hyper-parameters of all algorithms were selected in
order to maximize their experimental performance. A brief description of the
specification of each prediction model and its hyper-parameters is presented in
Table 2.

The implementation code was written in Python 3.4 on a PC (Intel(R)
Core(TM) i7-6700HQ CPU 2.6GHz, 16 Gbyte RAM) while the deep learning
and machine learning models were implemented using Keras library [10] and
Scikit-learn library [15], respectively. Notice that all LSTM models, the ANN as
well as the proposed CNN-LSTM model were trained utilizing Adaptive Moment
Estimation (ADAM) algorithm for 100 epochs with a batch size equal to 128 and
a mean-squared loss function which reported the best overall results.

The regression performance of all forecasting models was measured using the
performance metrics: Root Mean Square Error (RMSE) metric and the Mean
Absolute Error (MAE). Furthermore, regarding the classification problem of
predicting whether the natural gas price on the next day would increase (Up),
decrease (Down) or stay stable (−) with respect to today’s price, the performance
of each model was evaluated using the performance metrics: Accuracy (Acc),
Area Under Curve (AUC) and F1-score (F1). In this research, we utilized three
different prices for the forecasting horizon, namely 4, 6 and 12. The forecasting
horizon F stands for the number of natural gas daily prices which are taken into
consideration by each model for predicting the daily price on the following day.
Its price is critical for the efficiency of an intelligent forecasting model [12].

Tables 3, 4 and 5 present the performance of the proposed CNN-LSTM fore-
casting model against the state-of-the-art prediction models, relative to fore-
casting horizon 4, 6 and 12, respectively. It is worth mentioning that for each
performance metric the best performance was highlighted in bold. Regarding
the natural gas price prediction problem, CNN-LSTM and SVR highlighted the
lowest RMSE and MAE score, followed by ANN and LSTM models which ex-
hibited similar regression performance. Regarding the classification problem of
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Model Description

SVR Kernel = RBF, C = 1.0, gamma = 10−1.

ANN 1 hidden layer with 20 neurons and an output layer of 1 neuron.

DTR Criterion = ’mse’, max depth = unlimited, min samples split = 2.

LSTM1 LSTM layer with 70 units.
Output layer with 1 neuron.

LSTM2 LSTM layer with 70 units.
Dense layer with 8 neurons.
Output layer with 1 neuron.

LSTM3 LSTM layer with 70 units.
LSTM layer with 30 units.
Output layer with 1 neuron.

LSTM4 LSTM layer with 50 units.
LSTM layer with 20 units.
Dense layer with 8 neurons.
Output layer with 1 neuron.

Table 2. Parameter specification of state-of-art machine learning and deep learning
forecasting models

predicting if the price will increase, decrease or stay stable on the following
day, CNN-LSTM exhibited the best performance considerably outperforming all
other state-of-the-art models. More specifically, CNN-LSTM reported 55.25%,
55.03% and 53.97% accuracy for forecasting horizon equal to 4, 6 and 12, re-
spectively, followed by LSTM2 which reported 50.69%, 50.69% and 49.44%, in
the same situations. Moreover, CNN-LSTM exhibited the best (highest) AUC
for all prices of forecasting horizon and the best F1-score for F = 6 and F = 12.

Next, we demonstrate a deeper insight about the classification efficiency of
the proposed forecasting model CNN-LSTM by presenting the confusion ma-
trix regarding all forecasting horizons and compare it with that of the LSTM2

model which presented the best performance among state-of-the-art models. The
confusion matrix can be considered as a complete evaluation methodology for
describing and depicting in a compact way, valuable and useful information,
regarding to a model’s forecasting performance.

Tables 6 and 7 present the confusion matrices of LSTM2 and CNN-LSTM,
respectively. Notice that each row and each column of all confusion matrices rep-
resent the instances in an actual and in a predicted class, respectively. Firstly,
based on the presented confusion matrices we can easily conclude that the ex-
clusive prediction accuracy of the “Stable” class is very high for both compared
prediction model. Additionally, the CNN-LSTM model managed to exhibit the
best distribution of correctly identified instances per class for every forecasting
horizon. This probably means that this model managed to keep a balance on
learning the patterns which describe every class, consisting in total a more re-
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liable and robust prediction model. In contrast, the LSTM2 model seems to be
significantly biased since it misclassified most “Down” instances as “Up”. This
implies that it ignored most data patterns and information which describe and
seperate “Up” and “Down” classes.

Model RMSE MAE Acc AUC F1

ANN 0.113 0.087 51.53% 0.651 0.584
SVR 0.093 0.067 50.69% 0.638 0.565
DTR 0.125 0.100 47.22% 0.578 0.473

LSTM1 0.109 0.083 49.44% 0.632 0.557
LSTM2 0.112 0.086 50.69% 0.656 0.638
LSTM3 0.110 0.084 49.44% 0.618 0.532
LSTM4 0.111 0.084 50.07% 0.605 0.508

CNN-LSTM 0.093 0.067 55.25% 0.680 0.571

Table 3. Performance comparison of the CNN-LSTM model against traditional re-
gression models for F = 4

Model RMSE MAE Acc AUC F1

ANN 0.106 0.081 50.14% 0.651 0.579
SVR 0.092 0.067 48.61% 0.633 0.566
DTR 0.125 0.099 47.64% 0.578 0.472

LSTM1 0.107 0.082 51.36% 0.643 0.566
LSTM2 0.102 0.077 50.69% 0.631 0.553
LSTM3 0.106 0.080 49.86% 0.634 0.561
LSTM4 0.114 0.087 50.83% 0.618 0.527

CNN-LSTM 0.093 0.067 55.03% 0.674 0.589

Table 4. Performance comparison of the CNN-LSTM model against traditional re-
gression models for F = 6

Model RMSE MAE Acc AUC F1

ANN 0.119 0.092 49.86% 0.629 0.550
SVR 0.094 0.069 48.39% 0.635 0.558
DTR 0.128 0.099 50.97% 0.592 0.482

LSTM1 0.111 0.086 48.33% 0.632 0.563
LSTM2 0.109 0.084 49.44% 0.628 0.551
LSTM3 0.104 0.079 51.67% 0.649 0.579
LSTM4 0.127 0.100 49.31% 0.624 0.545

CNN-LSTM 0.104 0.078 53.97% 0.670 0.620

Table 5. Performance comparison of the CNN-LSTM model against traditional re-
gression models for F = 12
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Down − Up

Down 14 0 55

− 2 15 0

Up 9 0 49

F = 4

Down − Up

Down 22 0 47

− 5 12 0

Up 16 0 42

F = 6

Down − Up

Down 40 0 29

− 10 7 0

Up 31 0 27

F = 12

Table 6. Confusion matrices of LSTM2 model for forecasting horizon 4, 6 and 12

Down − Up

Down 28 0 41

− 5 12 0

Up 20 0 38

F = 4

Down − Up

Down 31 0 28

− 5 12 0

Up 20 0 38

F = 6

Down − Up

Down 35 0 34

− 9 8 0

Up 27 0 31

F = 12

Table 7. Confusion matrices of CNN-LSTM model for forecasting horizon 4, 6 and 12

Summarizing, it is worth mentioning that the interpretation of Tables 3-7
highlight that CNN-LSTM model is generally preferable for forecasting natural
gas price and movement, considerably outperforming traditional state-of-the-art
models in both regression and classification tasks.

In the sequel, we evaluate the forecasting reliability of the proposed model
CNN-LSTM models, by performing a test of autocorrelation in the residuals [4].
This test examines the presence of autocorrelation between the residuals (dif-
ferences between predicted and actual prices) which in case it exists, implies
that the forecasting model may be inefficient, since it did not manage to capture
all the possible information contained in the training set. Two significant tools
for testing the autocorrelation of the residuals are the Auto-Correlation Func-
tion (ACF) plot and the Ljung-Box Q-test. The ACF [4] is obtained from the
linear correlation of each residual to the others in different lags and illustrates
the intensity of the temporal auto-correlation. The portmanteau Ljung-Box Q-
test [4] assesses the null hypothesis (H0) that “a series of residuals exhibits no
autocorrelation for a fixed number of lags”.

Figures 3, 4 and 5 present the Auto-Correlation Function (ACF) plot of
LSTM2 and CNN-LSTM, for forecasting horizon equal to 4, 6 and 12, respec-
tively. Notice that the confident limits (blue line) are constructed assuming that
the residuals follow a Gaussian probability distribution. The ACF plot of CNN-
LSTM are within 95% percent confidence interval for all lags regarding F = 6,
which verifies that the residuals have no auto-correlation while for F = 4 and
F = 12 the ACF plots present a small spike at lag 5, which reveal that there ex-
ists some negligibly autocorrelation in the residuals. In contrast, the ACF plots
of LSTM2 indicated that the assumption of no auto-correlation in the errors is
violated which suggests that the model’s forecasts may be inefficient, relative to
all utilized prices of the forecasting horizon.

Table 8 reports the statistical analysis, performed by Ljung-Box Q-test for
10 lags with significance level α = 5%. The portmanteau test suggests that the
CNN-LSTM model does not violate the assumption of no autocorrelation in the
errors for F = 4 and F = 6 which implies that its forecasts may be efficient; while
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for the LSTM2 model, it suggests that there exists significant autocorrelation in
the residuals at the 5% level.
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Fig. 3. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 4

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

o-
C

or
re

la
tio

n

0 1 2 3 4 5 6 7 8 9 10

Lag

(a) LSTM2

-0.2

0

0.2

0.4

0.6

0.8

1

A
ut

o-
C

or
re

la
tio

n

0 1 2 3 4 5 6 7 8 9 10

Lag

(b) CNN-LSTM

Fig. 4. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 6
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Fig. 5. ACF plots on the residuals of LSTM2 and CNN-LSTM for F = 12

6 Discussion and conclusions

In this section, we perform a discussion regarding the numerical performance of
our proposed CNN-LSTM model for forecasting natural gas price and movement
as well as the main findings and the limitations of this research.
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Model F = 4 F = 6 F = 12
p-value H0 p-value H0 p-value H0

LSTM2 0.0001 Rejected 0.0270 Rejected 0 Rejected
CNN-LSTM 0.0974 Accepted 0.1072 Accepted 0.0207 Rejected

Table 8. Ljung-Box Q-test for 10 lags with significance level α = 5%

The main contribution of this work is the development of a new forecasting
model for the short-term prediction of natural gas price and movement. The
proposed forecasting model exploits the capability of convolutional layers for
learning the internal representation of the natural gas data and the efficiency
of LSTM layers for identifying short-term and long-term dependencies. A sig-
nificant advantage of the model is that it has the ability to predict the price of
natural gas on the next day (regression) and also predicts if the price on the
next day will increase, decrease or stay stable (classification) with respect to
today’s price. The presented numerical experiments highlighted that although
LSTM models constitute a wide and efficient choice for addressing time-series
problems, their use along with convolutional layers could provide a significant
boost in increasing the forecasting performance.

The problem of forecasting natural gas price and movement can be considered
to belong on chaotic time series problems. This means that accurate and reliable
predictions are almost impossible since these problems are close to random walk
processes, while the identification of possible existing patters and their proper
distinguishment among a large pool of noisy instances, seems to be a significantly
challenging task.

The proposed forecasting model managed to achieve a noticeable performance
increase in terms of accuracy, compared to traditional state-of-the-art prediction
models, although the RMSE and MAE scores were slightly better. One possible
reason is that the feature preprocessing stage, provided by the convolutional
layers, managed to restrict the noise of each input sequence instance, extracting
valuable and meaningful feature maps which assisted the LSTM model on its
final prediction task.

It is worth mentioning that in real world applications such as the decision
support for investment tasks regarding to natural gas stocks, a prediction model
which achieves high classification accuracy would be considered much more ef-
ficient and valuable, compared to a model with better regression performance
but lower accuracy score, since these investment decisions follow a “buy, hold,
sell” strategy based on the price movement predictions “Up, Stable, Down”.
Therefore, the proposed model has a potential to assist trading and investment
decisions forming up a reliable natural gas price movement predictor.

Finally, a limitation of the prediction model that it is unable to efficiently
identify and report possible input sequences which can actually lead to more
accurate predictions. This ability could be crucial and significant in real world
applications, since investment and trading decisions would be performed just
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only when the model identified reliable and accurate patterns, while noisy and
uncertain input signals would be totally ignored, leading to safer decisions and
probably higher returns. This constitutes an interesting and promising idea,
which we intend to pursue in our future research.
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