An identity relating Fibonacci and Lucas numbers of order k

Spiros D. Dafnis ${ }^{1}$ Andreas N. Philippou ${ }^{2}$
Department of Mathematics,
University of Patras, Patras, GR 265-00, Greece

Ioannis E. Livieris ${ }^{3}$
Department of Computer \& Informatics Engineering, Technological Educational Institute of Western Greece, Antirrio,
GR 263-34, Greece

Abstract

The following relation between Fibonacci and Lucas numbers of order k,

$$
\sum_{i=0}^{n} m^{i}\left[L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right]=m^{n+1} F_{n+1}^{(k)}+k-2
$$

is derived by means of colored tiling. This relation generalizes the well-known Fibonacci - Lucas identities, $\sum_{i=0}^{n} 2^{i} L_{i}=2^{n+1} F_{n+1}, \sum_{i=0}^{n} 3^{i}\left(L_{i}+F_{i+1}\right)=3^{n+1} F_{n+1}$ and $\sum_{i=0}^{n} m^{i}\left(L_{i}+\right.$ $\left.(m-2) F_{i+1}\right)=m^{n+1} F_{n+1}$ of A.T. Benjamin and J.J. Quinn, D. Marques, and T. Edgar, respectively.

Keywords: Fibonacci numbers, Lucas numbers, order k, color tiling, generalization.

[^0]
1 Introduction

Let k be a fixed integer greater than or equal to 2 , and let n be a nonnegative integer, unless otherwise specified. We define the Fibonacci and Lucas numbers of order k as follows (see also [3, 5, 9-12]).
Definition 1.1 The sequence $\left\{F_{n}^{(k)}\right\}_{n \geq-k+1}$ is said to be the sequence of Fibonacci numbers of order k, if $F_{n}^{(k)}=0$ for $-k+1 \leq n \leq 0, F_{1}^{(k)}=1$, and $F_{n}^{(k)}=\sum_{j=1}^{k} F_{n-j}^{(k)}$ for $n \geq 2$.
Definition 1.2 The sequence $\left\{L_{n}^{(k)}\right\}_{n \geq 0}$ is said to be the sequence of Lucas numbers of order k, if $L_{0}^{(k)}=k, L_{1}^{(k)}=1, L_{n}^{(k)}=n+\sum_{j=1}^{n-1} L_{n-j}^{(k)}$ for $2 \leq n \leq k$, and $L_{n}^{(k)}=\sum_{j=1}^{k} L_{n-j}^{(k)}$ for $n \geq k+1$.

Let F_{n} and L_{n} be the Fibonacci and Lucas numbers, respectively. Then,

$$
F_{n}^{(2)}=F_{n} \quad \text { and } \quad L_{n}^{(2)}=L_{n}
$$

Benjamin and Quinn [1] used tiling and, among other identities, derived the following one (see also [2, 6, 13]),

$$
\begin{equation*}
\sum_{i=0}^{n} 2^{i} L_{i}=2^{n+1} F_{n+1} \tag{1}
\end{equation*}
$$

Recently, Marques [7] (see also Martinjak [8]) derived the new identity

$$
\begin{equation*}
\sum_{i=0}^{n} 3^{i}\left(L_{i}+F_{i+1}\right)=3^{n+1} F_{n+1} \tag{2}
\end{equation*}
$$

and Edgar [4] stated and proved the following one encompassing both (1) and (2), that is

$$
\begin{equation*}
\sum_{i=0}^{n} m^{i}\left(L_{i}+(m-2) F_{i+1}\right)=m^{n+1} F_{n+1} \tag{3}
\end{equation*}
$$

where m is an integer greater than or equal to 2 .
In this paper, we employ a known lemma (see Lemma 2.1) and a new lemma (see Lemma 2.2) to derive the following generalization of the above identities

$$
\sum_{i=0}^{n} m^{i}\left[L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right]=m^{n+1} F_{n+1}^{(k)}+k-2
$$

utilizing tiling with m colors and tiles of length at most k. Our proof depends on the following preliminary results.

2 Preliminary Results

We consider the numbers $f_{n}^{(k)}$ and $c_{n}^{(k)}$ of an n-board and an n-bracelet tiling, respectively, using j-squares, $j=1,2, \ldots, k$. A j-square is a tile of length j. Notice that, an 1 -square is simply called a square and a 2 -square a domino. Then, the following lemma is a special case of Combinatorial Theorem 4 of Benjamin and Quinn [2] (see pp. 36).
Lemma 2.1 Let $f_{n}^{(k)}$ be the number of an n-board tilings using j-squares $(j=$ $1,2, \ldots, k)$ and $F_{n}^{(k)}$ be the n-th Fibonacci number of order k. Then, $f_{n}^{(k)}=F_{n+1}^{(k)}$.
Next, we state and prove a lemma of our own.
Lemma 2.2 Let $c_{n}^{(k)}$ be the number of an n-bracelet tilings using j-squares ($j=$ $1,2, \ldots, k)$ and $L_{n}^{(k)}$ be the n-th Lucas number of order k. Then,

$$
c_{n}^{(k)}=L_{n}^{(k)} .
$$

Proof. We note that $c_{n}^{(k)}$ is equal to the sum of the number of in phase n-bracelets and the number of out of phase n-bracelets. The number of in phase n-bracelets is $f_{n}^{(k)}$. An out of phase n-bracelet may end in a 2 -square, or a 3 -square, \ldots, or a k square. The number of out of phase n-bracelets ending in a j-square $(j=2,3, \ldots, k)$ is $(j-1) f_{n-j}^{(k)}$. Therefore,

$$
\begin{aligned}
c_{n}^{(k)} & =f_{n}^{(k)}+\sum_{j=2}^{k}(j-1) f_{n-j}^{(k)}=F_{n+1}^{(k)}+\sum_{j=2}^{k}(j-1) F_{n-j+1}^{(k)}, \text { by Lemma } 2.1 \\
& =F_{n+1}^{(k)}+\sum_{j=2}^{k} j F_{n-j+1}^{(k)}-\sum_{j=2}^{k} F_{n-j+1}^{(k)}=L_{n}^{(k)},
\end{aligned}
$$

by Definition 1 and the relation $L_{n}^{(k)}=\sum_{j=1}^{k} j F_{n-j+1}^{(k)}$ for $n \geq 1$ (see [3, 12]).
We proceed now to state and prove our main result, using colored tiling.

3 Main result

Theorem 3.1 Let $\left\{F_{n}^{(k)}\right\}_{n \geq-k+1}$ and $\left\{L_{n}^{(k)}\right\}$ be the Fibonacci sequence of order k and the Lucas sequence of order k, respectively. Then, for $m \geq 2$, and $n \geq 0$,

$$
\sum_{i=0}^{n} m^{i}\left[L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=3}^{k}(j-2) F_{i-j+1}^{(k)}\right]=m^{n+1} F_{n+1}^{(k)}+k-2 .
$$

Proof. We consider colored tiling with m colors. Let $A_{n, m}^{(k)}$ and $B_{n, m}^{(k)}$ be the sets of an n-board colored tiling and an n-bracelet colored tiling, respectively, using j-squares $(j=2,3, \ldots, k)$ in m^{j} different colors. Clearly,

$$
\begin{equation*}
\left|A_{n, m}^{(k)}\right|=m^{n} f_{n}^{(k)}, \quad \text { and } \quad\left|B_{n, m}^{(k)}\right|=m^{n} c_{n}^{(k)} \tag{4}
\end{equation*}
$$

Without loss of generality, we suppose that one of the first m colors is white, and we consider the following subsets of $A_{n, m}^{(k)}$ and $B_{n, m}^{(k)}$.
(a) $A_{n, m}^{\left(k, j_{i}\right)}$ denotes the set of n-board colored tiling with a non-white j-square $(j=$ $1,2, \ldots, k)$ ending on the i-th cell and white 1 -squares on the cells $i+1, i+$ $2, \ldots, n,(i=1,2, \ldots, n)$.
(b) $B_{n, m}^{\left(k_{l}\right)}$ denotes the set of in-phase and out of phase n-bracelet colored tilings ending in an l-square, $l=1,2, \ldots, k$ (the distinction between in-phase and out of phase n-bracelet tilings originates from Benjamin and Quinn [1]).
Clearly,

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{k}\left|A_{n, m}^{\left(k, j_{j}\right)}\right|=\left|A_{n, m}^{(k)}\right|-1 \tag{5}
\end{equation*}
$$

since the left hand-side of the equality does not include the unique all-white squares tiling of a board of length n.

Consider the subsets $A_{n, m}^{\left(k, 1_{i}\right)}(i=1,2, \ldots, n)$ of $A_{n, m}^{(k)}$. Removing white tiles from $i+1, i+2, \ldots, n$ and gluing cells i and 1 together, we get i-bracelet colored tilings ending in squares of $m-1$ different colors $(m \geq 2)$. Since the bracelets ending in squares can end in m different colors, we obtain

$$
\begin{equation*}
\left|B_{i, m}^{\left(k_{1}\right)}\right|=\frac{m}{m-1}\left|A_{n, m}^{\left(k, 1_{i}\right)}\right| \tag{6}
\end{equation*}
$$

Next, let us consider the following subsets $A_{n, m}^{\left(k, j_{i}\right)}(j \leq i \leq n$ and $j=2,3, \ldots, k)$ of $A_{n, m}^{(k)}$. Removing white tiles from $i+1, i+2, \ldots, n$ and gluing cells i and 1 together, we get i-bracelet colored tilings ending in j-squares. Taking into consideration that for each in-phase i-bracelet ending in a j-square (the j-square covers cells $i-j+1$, $i-j+2, \ldots, i)$ there are $j-1$ more out of phase j-squares, we get

$$
\begin{equation*}
\left|B_{i, m}^{\left(k_{j}\right)}\right|=j\left|A_{n, m}^{\left(k, j_{j}\right)}\right| \tag{7}
\end{equation*}
$$

where $j \leq i \leq n$ and $j=2,3, \ldots, k$. Using (4) and Lemma 2.2, we get

$$
\begin{equation*}
\sum_{i=1}^{n}\left|B_{i, m}^{(k)}\right|=\sum_{i=1}^{n} m^{i} c_{i}^{(k)}=\sum_{i=1}^{n} m^{i} L_{i}^{(k)} \tag{8}
\end{equation*}
$$

Next, using (6) and (7) as well as (5) and the equality $\left|A_{n, m}^{\left(k, j_{i}\right)}\right|=m^{j}\left|A_{i-j, m}^{(k)}\right|$, which holds true since the j-square can be tiled in m^{j} different ways and the rest of the board in $\left|A_{i-j, m}^{(k)}\right|$ ways, we get

$$
\begin{align*}
\sum_{i=1}^{n}\left|B_{i, m}^{(k)}\right| & =\sum_{i=1}^{n} \sum_{l=1}^{k}\left|B_{i, m}^{\left(k_{l}\right)}\right|=\sum_{i=1}^{n}\left(\frac{m}{m-1}\left|A_{n, m}^{\left(k, 1_{i}\right)}\right|+\sum_{j=2}^{k} j\left|A_{n, m}^{\left(k, j_{i}\right)}\right|\right) \\
& =\frac{1}{m-1} \sum_{i=1}^{n}\left(m\left|A_{n, m}^{\left(k, 1_{i}\right)}\right|+(m-1) \sum_{j=2}^{k} j\left|A_{n, m}^{\left(k, j_{i}\right)}\right|\right) \\
& =\frac{1}{m-1} \sum_{i=1}^{n}\left(m\left|A_{n, m}^{\left(k, 1_{i}\right)}\right|+\sum_{j=2}^{k} m\left|A_{n, m}^{\left(k, j_{j}\right)}\right|+\sum_{j=2}^{k}((m-1) j-m)\left|A_{n, m}^{\left(k, j_{j}\right)}\right|\right) \\
& =\frac{1}{m-1}\left(m \sum_{i=1}^{n} \sum_{j=1}^{k}\left|A_{n, m}^{\left(k, j_{i}\right)}\right|+\sum_{i=1}^{n} \sum_{j=2}^{k}((j-1) m-j)\left|A_{n, m}^{\left(k, j_{j}\right)}\right|\right) \\
& =\frac{1}{m-1}\left(m\left(\left|A_{n, m}^{(k)}\right|-1\right)+\sum_{i=1}^{n} \sum_{j=2}^{k} m^{j}((j-1) m-j)\left|A_{i-j, m}^{(k)}\right|\right) \tag{9}
\end{align*}
$$

Noting that $\left|A_{n, m}^{(k)}\right|=m^{n} F_{n+1}^{(k)}$ and $\left|A_{i-j, m}^{(k)}\right|=m^{i-j} F_{i-j+1}^{(k)}$ because of (4) and Lemma 2.1, relations (8) and (9) imply

$$
\begin{equation*}
\sum_{i=1}^{n} m^{i} L_{i}^{(k)}=\frac{1}{m-1}\left(m^{n+1} F_{n+1}^{(k)}-m+\sum_{i=1}^{n} \sum_{j=2}^{k} m^{i}((j-1) m-j) F_{i-j+1}^{(k)}\right) \tag{10}
\end{equation*}
$$

Rearranging relation (10) and using some simple calculations and the relations

$$
L_{n}^{(k)}=\sum_{j=1}^{k} j F_{n-j+1}^{(k)} \quad(n \geq 1) \quad \text { and } \quad F_{i+1}^{(k)}=\sum_{j=1}^{k} F_{i-j+1} \quad(i \geq 1)
$$

we get

$$
\sum_{i=1}^{n} m^{i}\left[L_{i}^{(k)}+(m-2) F_{i+1}^{(k)}-\sum_{j=2}^{k}(j-2) F_{i-j+1}^{(k)}\right]=m^{n+1} F_{n+1}^{(k)}-m
$$

from which the theorem follows.

We end this paper by noting that, for $k=2$, Theorem 3.1 readily reduces to identity (3). If in addition $m=2$ (respectively 3), Theorem 3.1 reduces to identity (1) (respectively identity (2)).

References

[1] A.T. Benjamin and J.J. Quinn. Fibonacci and Lucas identities through colored tiling. Utilitas Mathematica, pages 137-142, 1999.
[2] A.T. Benjamin and J.J. Quinn. Proofs that really count: The art of combinatorial proof. Number 27 in Dolciani. MAA Press, 2003.
[3] Ch.A. Charalambides. Lucas numbers and polynomials of order k and the length of the longest circular success run. The Fibonacci Quarterly, 29:290-297, 1991.
[4] T. Edgar. Extending some Fibonacci-Lucas relations. The Fibonacci Quarterly, 54(1):79-79, 2016.
[5] E.P. Miles Jr. Generalized Fibonacci numbers and associated matrices. American Mathematical Monthly, 67(8):745-752, 1960.
[6] H. Kwong. An alternate proof of Sury's Fibonacci-Lucas relation. The American Mathematical Monthly, 121(6):514-514, 2014.
[7] D. Marques. A new Fibonacci-Lucas relation. The American Mathematical Monthly, 122(7):683-683, 2015.
[8] I. Martinjak. Two extensions of the Sury's identity. The American Mathematical Monthly, 123(11):919-919, 2016.
[9] A.N. Philippou. A note on the Fibonacci sequence of order k and multinomial coefficients. The Fibonacci Quarterly, 24(2):82-86, 1983.
[10] A.N. Philippou. Distributions and Fibonacci polynomials of order k, longest runs, and reliability of consecutive- k-out-of- n : F systems. In G.E. Bergum A.N. Philippou and A.F. Horadam, editors, Fibonacci Numbers and Their Applications, Reidel Publishing Compamy, pages 203-227, 1986.
[11] A.N. Philippou. Fibonacci polynomials. In M. Hazewinkel, editor, Invited contribution in Encyclopedia of Mathematics, Supplement III, Kluwer Academic Publishers, pages 152-154, 2001.
[12] A.N. Philippou. Lucas polynomials. In M. Hazewinkel, editor, Invited contribution in Encyclopedia of Mathematics, Supplement III, Kluwer Academic Publishers, pages 243-244, 2001.
[13] B. Sury. A polynomial parent to a Fibonacci-Lucas relation. The American Mathematical Monthly, 121(3):236, 2014.

[^0]: ${ }^{1}$ Email: dafnisspyros@gmail.com
 ${ }^{2}$ Email: anphilip@math.upatras.gr
 ${ }^{3}$ Email: livieris@teiwest.gr

