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Abstract

The following relation between Fibonacci and Lucas numbers of order %,
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is derived by means of colored tiling. This relation generalizes the well-known Fibonacci
- Lucas identities, Y7 (2/L; = 2" F, .y, 7 3/(L;i + Fiy1) = 3" F,yy and 30 omi(L; +
(m—2)F;y1) = m""F, | of AT. Benjamin and J.J. Quinn, D. Marques, and T. Edgar,
respectively.
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1 Introduction

Let k be a fixed integer greater than or equal to 2, and let n be a nonnegative integer,
unless otherwise specified. We define the Fibonacci and Lucas numbers of order k
as follows (see also [3,5,9-12]).

Definition 1.1 The sequence {Fn(k)}nz_k_t'_l is said to be the sequence of Fibonacci
numbers of order k, if Fn(k) =0for —k+1<n<0, Fl(k) =1, and Fn(k) = i Fn(f)j
forn > 2. !

Definition 1.2 The sequence {L,(qk) }n>0 1s said to be the sequence of Lucas numbers

k k k =k Dok
oforderk,ifL(()):k,Li):1,L§l):n+2L,(1_)jfor2§n§k,andL£,): ZL,(l_)j
Jj=1 j=1
forn>k+1.

Let F, and L, be the Fibonacci and Lucas numbers, respectively. Then,
FY=F, and %=1,

Benjamin and Quinn [1] used tiling and, among other identities, derived the fol-
lowing one (see also [2,6, 13]),

n
N 2L =2"E . (1)
i=0
Recently, Marques [7] (see also Martinjak [8]) derived the new identity
n
> 3 (Li+Fir1) =3 Fop, 2)
i=0

and Edgar [4] stated and proved the following one encompassing both (1) and (2),
that is .
Y, (Li+ (m—2)Fi1) = m"™ ' Fypy, 3)
i=0
where m is an integer greater than or equal to 2.
In this paper, we employ a known lemma (see Lemma 2.1) and a new lemma
(see Lemma 2.2) to derive the following generalization of the above identities

n k
St |10+ m-2)F) = ¥ (i=2FY, | =m Y k-2,
i=0 j=3

utilizing tiling with m colors and tiles of length at most k. Our proof depends on
the following preliminary results.
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2 Preliminary Results

(k)

We consider the numbers f,gk) and ¢, of an n-board and an n-bracelet tiling, re-
spectively, using j-squares, j = 1,2,...,k. A j-square is a tile of length j. Notice
that, an 1-square is simply called a square and a 2-square a domino. Then, the
following lemma is a special case of Combinatorial Theorem 4 of Benjamin and
Quinn [2] (see pp. 36).

Lemma 2.1 Let fn be the number of an n-board tilings using j- squares (j =

1,2,...,k)and Fn( ) be the n-th Fibonacci number of order k. Then, f n(i)l

Next, we state and prove a lemma of our own.

(k)

Lemma 2.2 Let ¢, be the number of an n-bracelet tilings using j-squares (j =
1,2,...,k) and L,(l ) be the n-th Lucas number of order k. Then,

Proof. We note that c,gk) is equal to the sum of the number of in phase n-bracelets
and the number of out of phase n-bracelets. The number of in phase n-bracelets is

f,gk). An out of phase n-bracelet may end in a 2-square, or a 3-square,..., or a k-
square. The number of out of phase n-bracelets ending in a j-square (j =2,3,...,k)

is (j— l) I (k) Therefore

C” - +2(J —F(kl—i-z ]—lF(k)jH,byLemmaZl
Jj=

(k) k)
_F 1+2]F —j+1 ZF —j+1 L” ’
by Definition 1 and the relation L Z ]F 4 forn > 1 (see [3,12]). O

We proceed now to state and prove our main result, using colored tiling.

3 Main result

Theorem 3.1 Ler {Fn(k)}nz_kH and {Lﬁlk) } be the Fibonacci sequence of order k
and the Lucas sequence of order k, respectively. Then, form > 2, and n > 0,

o ik 4 k k
zmz Ll()‘i‘(m_z)Fl() 2(] 2)F(3+1 — n+1F( )1+k 2.
i=0 Jj=3
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Proof. We consider colored tiling with m colors. Let A,(1 ,)n and B( ) be the sets of an
n-board colored tiling and an n-bracelet colored tiling, respectlvely, using j-squares
(j=12,3,...,k) in m/ different colors. Clearly,

A =m0 and (B = mrel. @)

Without loss of generality, we suppose that one of the first m colors is white, and
we consider the following subsets of A( ,)n and B( )

(a) A(k 1) denotes the set of n-board colored tiling with a non-white j-square (j =
1,2, ...,k) ending on the i-th cell and white 1-squares on the cells i +1,i +
Ln,(i=1,2,...,n).

(b) B,(qkﬁ,), denotes the set of in-phase and out of phase n-bracelet colored tilings
ending in an /-square, [ = 1,2,. ..,k (the distinction between in-phase and out
of phase n-bracelet tilings originates from Benjamin and Quinn [1]).

Clearly,
(k. ji
22|A i) |Anm|—1 (5)
i=1j=
since the left hand-side of the equahty does not include the unique all-white squares
tiling of a board of length n.

Consider the subsets A,S",,i 2 i=1,2,....,n)of Ay () . Removing white tiles from
i+1,i+2,...,n and gluing cells i and 1 together, we get i-bracelet colored tilings
ending in squares of m — 1 different colors (m > 2). Since the bracelets ending in
squares can end in m different colors, we obtain

L |— IA ). (6)

Next, let us consider the following subsets A$Z7;,{i) (j<i<nand j=2,3,...,k) of

A,(qk,),, Removing white tiles from i+ 1,i+2,...,n and gluing cells i and 1 together,
we get i-bracelet colored tilings ending in j-squares. Taking into consideration that
for each in-phase i-bracelet ending in a j-square (the j-square covers cells i — j+ 1,
i—j+2,...,i0) there are j — 1 more out of phase j-squares, we get

k) (k. ji)
B = jlalP), (7

where j <i<nand j=2,3,...,k. Using (4) and Lemma 2.2, we get

n

2|Blm|—2mc =Y mL. ®)

i=1
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Next, using (6) and (7) as well as (5) and the equality |A,(17,;{’ | =m/ |A |, which
holds true since the j-square can be tiled in m/ different ways and the rest of the
board in |A

i—jml»

| ways, we get

1— ]m
2’31m|_22’ k])‘:Z(m ‘_i_z ’Ak]l )

i=li= i—1
_ b S (kl) k 7];
_m—1;< |Anm"”| ; )

1 n
:m2< \A;k,,i |+Z ’Akjl)’+2( m—1)j— m)|An;/'{t ‘>

i=1 5

1 n k ..

<t (nE S S 0 et
i=1j=1 i=1j=2

(o a o
_m_l(m(|An.,m| 1)+i§{j§2m (j—1)m ])|Ai—j,m|>- ©)

| =mi~ JF( ) because of (4)and Lemma 2.1,

Noting that ]Ag,k%] m"'F, (kl and \A S

relations (8) and (9) imply

i—j,m

i=1 i=1j=

no 1
> :m< "R - m+22m —1)m—j)Fi(_k3-+1>- (10)

Rearranging relation (10) and using some simple calculations and the relations

2] n— ]+1 (I’lZl) and 1+1—2Fz j+1 l>1)’
we get
NP MO © < (k) | (k)
zml L™+ (m_z)Fi+1 2(] 2)F” jrt| T m"t F. —m,
i=1 j=2
from which the theorem follows. 0

We end this paper by noting that, for k = 2, Theorem 3.1 readily reduces to
identity (3). If in addition m = 2 (respectively 3), Theorem 3.1 reduces to identity
(1) (respectively identity (2)).
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