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Abstract

The following relation between Fibonacci and Lucas numbers of order k,

n

∑
i=0

mi

[
L(k)

i +(m−2)F(k)
i+1−

k

∑
j=3

( j−2)F(k)
i− j+1

]
= mn+1F(k)

n+1+ k−2,

is derived by means of colored tiling. This relation generalizes the well-known Fibonacci
- Lucas identities, ∑n

i=0 2iLi = 2n+1Fn+1, ∑n
i=0 3i(Li +Fi+1) = 3n+1Fn+1 and ∑n

i=0 mi(Li +
(m− 2)Fi+1) = mn+1Fn+1 of A.T. Benjamin and J.J. Quinn, D. Marques, and T. Edgar,
respectively.
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1 Introduction

Let k be a fixed integer greater than or equal to 2, and let n be a nonnegative integer,
unless otherwise specified. We define the Fibonacci and Lucas numbers of order k
as follows (see also [3, 5, 9–12]).

Definition 1.1 The sequence {F (k)
n }n≥−k+1 is said to be the sequence of Fibonacci

numbers of order k, if F (k)
n = 0 for −k+1 ≤ n ≤ 0, F (k)

1 = 1, and F(k)
n =

k

∑
j=1

F(k)
n− j

for n≥ 2.

Definition 1.2 The sequence {L(k)
n }n≥0 is said to be the sequence of Lucas numbers

of order k, if L(k)
0 = k, L(k)

1 = 1, L(k)
n = n+

n−1

∑
j=1

L(k)
n− j for 2≤ n≤ k, and L(k)

n =
k

∑
j=1

L(k)
n− j

for n≥ k+1.

Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Then,

F(2)
n = Fn and L(2)

n = Ln.

Benjamin and Quinn [1] used tiling and, among other identities, derived the fol-
lowing one (see also [2, 6, 13]),

n

∑
i=0

2iLi = 2n+1Fn+1. (1)

Recently, Marques [7] (see also Martinjak [8]) derived the new identity
n

∑
i=0

3i(Li+Fi+1) = 3n+1Fn+1, (2)

and Edgar [4] stated and proved the following one encompassing both (1) and (2),
that is

n

∑
i=0

mi(Li+(m−2)Fi+1) = mn+1Fn+1, (3)

where m is an integer greater than or equal to 2.
In this paper, we employ a known lemma (see Lemma 2.1) and a new lemma

(see Lemma 2.2) to derive the following generalization of the above identities

n

∑
i=0

mi

[
L(k)

i +(m−2)F(k)
i+1−

k

∑
j=3

( j−2)F(k)
i− j+1

]
= mn+1F (k)

n+1 + k−2,

utilizing tiling with m colors and tiles of length at most k. Our proof depends on
the following preliminary results.
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2 Preliminary Results

We consider the numbers f (k)n and c(k)n of an n-board and an n-bracelet tiling, re-
spectively, using j-squares, j = 1,2, . . . ,k. A j-square is a tile of length j. Notice
that, an 1-square is simply called a square and a 2-square a domino. Then, the
following lemma is a special case of Combinatorial Theorem 4 of Benjamin and
Quinn [2] (see pp. 36).

Lemma 2.1 Let f (k)n be the number of an n-board tilings using j-squares ( j =
1,2, . . . ,k) and F(k)

n be the n-th Fibonacci number of order k. Then, f (k)n = F(k)
n+1.

Next, we state and prove a lemma of our own.

Lemma 2.2 Let c(k)n be the number of an n-bracelet tilings using j-squares ( j =
1,2, . . . ,k) and L(k)

n be the n-th Lucas number of order k. Then,

c(k)n = L(k)
n .

Proof. We note that c(k)n is equal to the sum of the number of in phase n-bracelets
and the number of out of phase n-bracelets. The number of in phase n-bracelets is
f (k)n . An out of phase n-bracelet may end in a 2-square, or a 3-square,. . . , or a k-
square. The number of out of phase n-bracelets ending in a j-square ( j= 2,3, . . . ,k)
is ( j−1) f (k)n− j. Therefore,

c(k)n = f (k)n +
k

∑
j=2

( j−1) f (k)n− j = F(k)
n+1+

k

∑
j=2

( j−1)F(k)
n− j+1, by Lemma 2.1

=F(k)
n+1 +

k

∑
j=2

jF (k)
n− j+1−

k

∑
j=2

F(k)
n− j+1 = L(k)

n ,

by Definition 1 and the relation L(k)
n =

k
∑
j=1

jF(k)
n− j+1 for n≥ 1 (see [3, 12]). �

We proceed now to state and prove our main result, using colored tiling.

3 Main result

Theorem 3.1 Let {F(k)
n }n≥−k+1 and {L(k)

n } be the Fibonacci sequence of order k
and the Lucas sequence of order k, respectively. Then, for m≥ 2, and n≥ 0,

n

∑
i=0

mi

[
L(k)

i +(m−2)F(k)
i+1−

k

∑
j=3

( j−2)F(k)
i− j+1

]
= mn+1F (k)

n+1 + k−2.
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Proof. We consider colored tiling with m colors. Let A(k)
n,m and B(k)

n,m be the sets of an
n-board colored tiling and an n-bracelet colored tiling, respectively, using j-squares
( j = 2,3, . . . ,k) in mj different colors. Clearly,

|A(k)
n,m|= mn f (k)n , and |B(k)

n,m|= mnc(k)n . (4)

Without loss of generality, we suppose that one of the first m colors is white, and
we consider the following subsets of A(k)

n,m and B(k)
n,m.

(a) A(k, ji)
n,m denotes the set of n-board colored tiling with a non-white j-square ( j =

1,2, . . . ,k) ending on the i-th cell and white 1-squares on the cells i+ 1, i+
2, . . . ,n, (i = 1,2, . . . ,n).

(b) B(kl)
n,m denotes the set of in-phase and out of phase n-bracelet colored tilings

ending in an l-square, l = 1,2, . . . ,k (the distinction between in-phase and out
of phase n-bracelet tilings originates from Benjamin and Quinn [1]).

Clearly,
n

∑
i=1

k

∑
j=1
|A(k, ji)

n,m |= |A(k)
n,m|−1, (5)

since the left hand-side of the equality does not include the unique all-white squares
tiling of a board of length n.

Consider the subsets A(k,1i)
n,m (i = 1,2, . . . ,n) of A(k)

n,m. Removing white tiles from
i+1, i+2, . . .,n and gluing cells i and 1 together, we get i-bracelet colored tilings
ending in squares of m−1 different colors (m ≥ 2). Since the bracelets ending in
squares can end in m different colors, we obtain

|B(k1)
i,m |=

m
m−1

|A(k,1i)
n,m |. (6)

Next, let us consider the following subsets A(k, ji)
n,m ( j ≤ i ≤ n and j = 2,3, . . . ,k) of

A(k)
n,m. Removing white tiles from i+1, i+2, . . . ,n and gluing cells i and 1 together,

we get i-bracelet colored tilings ending in j-squares. Taking into consideration that
for each in-phase i-bracelet ending in a j-square (the j-square covers cells i− j+1,
i− j+2, . . . , i) there are j−1 more out of phase j-squares, we get

|B
(k j)
i,m |= j|A(k, ji)

n,m |, (7)

where j ≤ i≤ n and j = 2,3, . . . ,k. Using (4) and Lemma 2.2, we get

n

∑
i=1
|B(k)

i,m|=
n

∑
i=1

mic(k)i =
n

∑
i=1

miL(k)
i . (8)
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Next, using (6) and (7) as well as (5) and the equality |A(k, ji)
n,m |= mj|A(k)

i− j,m|, which
holds true since the j-square can be tiled in mj different ways and the rest of the
board in |A(k)

i− j,m| ways, we get

n

∑
i=1
|B(k)

i,m|=
n

∑
i=1

k

∑
l=1
|B(kl)

i,m |=
n

∑
i=1

(
m

m−1
|A(k,1i)

n,m |+
k

∑
j=2

j|A(k, ji)
n,m |

)

=
1

m−1

n

∑
i=1

(
m|A(k,1i)

n,m |+(m−1)
k

∑
j=2

j|A(k, ji)
n,m |

)

=
1

m−1

n

∑
i=1

(
m|A(k,1i)

n,m |+
k

∑
j=2

m|A(k, ji)
n,m |+

k

∑
j=2

((m−1) j−m) |A(k, ji)
n,m |

)

=
1

m−1

(
m

n

∑
i=1

k

∑
j=1
|A(k, ji)

n,m |+
n

∑
i=1

k

∑
j=2

(( j−1)m− j) |A(k, ji)
n,m |

)

=
1

m−1

(
m
(
|A(k)

n,m|−1
)
+

n

∑
i=1

k

∑
j=2

mj (( j−1)m− j) |A(k)
i− j,m|

)
. (9)

Noting that |A(k)
n,m|=mnF(k)

n+1 and |A(k)
i− j,m|=mi− jF (k)

i− j+1 because of (4) and Lemma 2.1,
relations (8) and (9) imply

n

∑
i=1

miL(k)
i =

1
m−1

(
mn+1F(k)

n+1−m+
n

∑
i=1

k

∑
j=2

mi (( j−1)m− j)F(k)
i− j+1

)
. (10)

Rearranging relation (10) and using some simple calculations and the relations

L(k)
n =

k

∑
j=1

jF (k)
n− j+1 (n≥ 1) and F(k)

i+1 =
k

∑
j=1

Fi− j+1 (i≥ 1),

we get

n

∑
i=1

mi

[
L(k)

i +(m−2)F(k)
i+1−

k

∑
j=2

( j−2)F(k)
i− j+1

]
= mn+1F(k)

n+1−m,

from which the theorem follows. �

We end this paper by noting that, for k = 2, Theorem 3.1 readily reduces to
identity (3). If in addition m = 2 (respectively 3), Theorem 3.1 reduces to identity
(1) (respectively identity (2)).
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