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Abstract. Semi-supervised learning is an emerging subfield of machine learning, with a view to building efficient classifiers ex-

ploiting a limited pool of labeled data together with a large pool of unlabeled ones. Most of the studies regarding semi-supervised

learning deal with classification problems, whose goal is to learn a function that maps an unlabeled instance into a finite number

of classes. In this paper, a new semi-supervised classification algorithm, which is based on a voting methodology, is proposed.

The term attributed to this ensemble method is called CST-Voting. Ensemble methods have been effectively applied in various

scientific fields and often perform better than the individual classifiers from which they are originated. The efficiency of the pro-

posed algorithm is compared to three familiar semi-supervised learning methods on a plethora of standard benchmark datasets

using three representative supervised classifiers as base learners. Experimental results demonstrate the predominance of the pro-

posed method, outperforming classical semi-supervised classification algorithms as illustrated from the accuracy measurements

and confirmed by the Friedman Aligned Ranks nonparametric test.
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1. Introduction

Learning from examples is a method that has been

extensively analyzed in machine learning, a fast grow-

ing subfield of computer science. Over recent years,

different machine learning approaches have been ap-

plied in several scientific fields, such as supervised,

unsupervised and semi-supervised learning. Super-

vised learning deals with problems in which the output

classes of the instances in the training set are known,

while in unsupervised learning there is no knowledge

regarding the output classes [34].

Semi-supervised learning (SSL) is a combination

of supervised and unsupervised learning aiming to

obtain better results from each one of these meth-

ods exploiting a small pool of l labeled examples

Ld = {(x1,y1),(x2,y2), . . . ,(xl ,yl)} with xi ∈ R
n, i =

1,2, . . . , l together with a large pool of k unlabeled
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examples Ud = {x1,x2, . . . ,xk} with xi ∈ R
n, i =

1,2, . . . ,k. Since it is difficult and expensive to obtain a

fully labeled dataset in many real world problems, SSL

has turned to a powerful and effective machine learn-

ing tool for learning from both labeled and unlabeled

data [42].

Depending on the nature of the output class, SSL

is divided into two main tasks: semi-supervised clas-

sification (SSC) for discrete output class and semi-

supervised regression (SSR) for real-valued. Most of

the studies about SSL deal with classification prob-

lems, with a view to predicting a label from a finite

set of class labels. The most frequently studied clas-

sification problem is considered to be the binary clas-

sification, where the output variable y ∈ {0,1}, while

in multi-class classification y ∈ {0,1,2, . . . ,n}. SSC

can be either inductive or transductive [42]. Inductive

SSC aims to learn a classifier for future unknown data,

while transductive SSC classifies instances from the

unlabeled dataset.
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Several ensemble methods have also emerged re-

cently, combining different classifiers for the improve-

ment of the classification accuracy [21]. Ensemble

learning or committee-based learning or learning with

multiple classifier systems, concerns the formulation

and training of a set of classifiers [40] for classify-

ing new instances, usually through an iterative voting

procedure, that is based on classifiers’ individual pre-

dictions. There is a growing apprehension that ensem-

ble methods outperform each one of the single classi-

fiers within the ensemble, especially when these com-

ponent classifiers are as accurate and diverse as pos-

sible [9]. Accordingly, ensemble learning has become

an increasingly widespread methodology for building

powerful and accurate predictive models.

In view of the above, SSL methods and ensemble

methods constitute two significant machine learning

paradigms. The former attempts to achieve strong gen-

eralization by exploiting the hidden information on un-

labeled data while the latter attempts to achieve strong

generalization by using multiple classifiers [40]. Al-

though both methodologies have been applied effec-

tively in a variety of scientific fields during the past

decade, they were almost developed separately. Zhou

[40] showed that SSL and ensemble learning may be

beneficial to each other, since unlabeled data are in

abundance and can be exploited to the full by a combi-

nation of diverse classifiers.

Following up the results of this study, in the present

paper an attempt is made to put forward an ensemble

of SSC algorithms. Therefore, a new semi-supervised

ensemble algorithm, called CST-Voting, is proposed.

CST-Voting combines three representative SSL algo-

rithms, and in particular Co-training [4], Self-training

[37] and Tri-training [41], and is based on a voting

methodology. The efficiency of the proposed algorithm

is evaluated with a number of benchmark datasets in

terms of classification accuracy using three familiar su-

pervised classifiers as base learners, while several ex-

periments are carried out showing its efficacy.

The rest of this paper is organized as follows: Sec-

tion 2 refers to familiar SSL algorithms. The proposed

ensemble method is described in detail in Section 3.

The experiments’ procedure and their results are pre-

sented and analyzed in Section 4, while comparing the

proposed method to its component SSL algorithms. Fi-

nally, Section 5 concludes considering some further re-

search topics for future work.

2. Semi-supervised techniques

In recent years, a number of familiar SSC algo-

rithms have been implemented with remarkable results

in many application areas. Self-training, Co-training

and Tri-training constitute representative SSL methods

trying to effectively exploit the unlabeled data as far

as possible, since the utilization of unlabeled data is

essential for their efficiency [14].

Self-training or self-teaching is considered to be a

simple and effective SSL method. The self-training

idea first appeared in Yarowsky’s study concerning the

implementation of an unsupervised algorithm for word

sense disambiguation [37]. In accordance to Ng and

Cardie [27], self-training is a ”single-view weakly su-

pervised algorithm” which is based on its own predic-

tions on unlabeled data to teach itself. At first, a classi-

fier is trained from a small amount of labeled data con-

stituting the training set, which is then used for clas-

sifying a predefined number of unlabeled data [42].

The most confident predictions, i.e. the unlabeled ex-

amples that have a high probability of been assigned

with the correct label, are added to the labeled training

set and the classifier is retrained. The previous learn-

ing process is repeated until all unlabeled data are fi-

nally labeled. Self-training is considered to be an iter-

ative bootstrapping method since it is based on its own

predictions to teach itself. However, false predictions

of the classifier on the initial steps frequently result to

a large number of erroneous predictions [37]. There-

fore, several techniques and filters have been applied

to reduce the impact of misclassified instances during

the initial stages of the learning process [42]. In [26], a

soft-labeling approach is adopted to minimize the ex-

pected loss of a classifier, while in [10], a new SSC

method is proposed to overcome false labeling during

the learning process and improve the classification per-

formance. According to this method, unlabeled data

are only used to generate new synthetic data extend-

ing the amount of labeled data and the final classifier

is learned in the extended feature space. Very recently,

a new method called SSL Sparse Representation based

Classification was introduced addressing the problem

of a small number of noisy labeled examples [12].

Co-training [4] is a widely used method in SSL

setting that was originally proposed by Blum and

Mitchell and is principally based on the assumption

that each example in the dataset can be partitioned

into two distinct views. Moreover, each view is as-

sumed to be sufficient to make correct classifications

and the two views are considered to be conditionally
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independent given the class label. Two learning algo-

rithms are trained separately for each view using the

initial labeled dataset and the most confident predic-

tions of each algorithm on unlabeled data are used to

augment the training set of the other algorithm through

an iterative learning process until some stopping crite-

rion is met, i.e. for a predefined number of iterations.

In essence, Co-training is a ”two-view weakly super-

vised algorithm” [27] since it uses the Self-training ap-

proach on each view. The efficacy of the method is in-

fluenced mainly by the appropriate selection of the two

algorithms, as well as the existence of two different

views and the above-mentioned assumptions. Nigam

and Gani [28] showed that Co-training outperforms

other SSL algorithms when there is a natural exis-

tence of two distinct and independent views. However,

the existence of two independent views on a dataset

can hardly be met in practice. Several variants of Co-

training algorithm have been developed to overcome

this hurdle, such as Democratic Co-training [39] and

Tri-training [41]. A very recent approach employs an

improved variant of Co-training algorithm for software

defect prediction using random under-sampling tech-

nique [24].

Tri-Training is an improved single-view extension

of the Co-training algorithm exploiting unlabeled data

without relying on the existence of two views of in-

stances [41]. Tri-training is a bagging ensemble of

three classifiers [15], since they are initially con-

structed by Bagging [5] and trained on data subsets

generated through bootstrap sampling from the origi-

nal labeled training set. If two of the classifiers agree

on the labeling of an unlabeled example, then this

example is used to teach the third classifier. In con-

trast to other variants of the Co-learning approach,

Tri-training does not require different supervised algo-

rithms, leading to greater applicability and implemen-

tation of the algorithm in many real world datasets.

Several notable ensemble methods have also applied

in the SSL setting mainly based on the Co-training

paradigm, such Co-Forest [22] and CoBC [15]. In Co-

Forest, an initial ensemble of random trees is trained

on bootstrap sub-samples generated from the original

labeled dataset, while in CoBC, a committee of di-

verse classifiers is used instead of redundant and in-

dependent views. In [36], a prediction model based on

semi-supervised twin support vector machine is intro-

duced for medical prognosis of patients. In a very re-

cent study [38], a progressive SSL ensemble approach

is introduced that handles high dimensional datasets

through random subspaces, as well as datasets with a

limited amount of labeled instances enlarging the train-

ing set by a progressive generation process and a self

sample selection process. Following up the results of

these studies, a new semi-supervised ensemble method

is proposed and described in the next section.

3. Proposed method

In general, the generation of an ensemble of classi-

fiers considers mainly two steps: Selection and Com-

bination.

The selection of the appropriate component clas-

sifiers is considered to be an essential step towards

obtaining highly accurate classifier systems [40]. The

key points for the effectiveness of the method is the

component classifiers to be as accurate and diverse

as possible. A commonly used approach is to gen-

erate classifiers by applying different learning algo-

rithms (with heterogeneous model representations) to

a single dataset (see [25,32]). On this basis, the learn-

ing algorithms which constitute the proposed ensem-

ble are: Co-training, Self-training and Tri-training.

What all these methods have in common is that they

are self-labeled methods operating in different ways,

trying to take full advantage of the hidden infor-

mation in unlabeled data. The crucial difference be-

tween them is the mechanism used to label unla-

beled data. Co-training is a multi-view method, while

Self-training and Tri-training are single-view methods.

Moreover, Co-training and Tri-training are indeed en-

semble methods, since they both make use of multiple

classifiers.

The combination of the component learning al-

gorithms takes place through several methodologies.

The proposed ensemble incorporates a majority voting

methodology, since it is a simple and easy to imple-

ment method for combining the individual predictions

of component classifiers in an ensemble. According to

this approach, the ensemble output is the one made by

more than half of them.

The pseudo-code of the proposed ensemble method

is shown in Algorithm 1. Initially, Self-training, Co-

training and Tri-training algorithms are trained on the

labeled dataset L and then applied on unlabeled dataset

U. L is augmented incrementally and the process is

repeated until some stopping criterion is met or U is

empty. The final hypothesis of an unlabeled example

of the test set, i.e. the ensemble output, is produced via

majority voting.



4 Kostopoulos et al. / CST-Voting: A semi-supervised ensemble method for classification problems

Algorithm 1: CST-Voting

Input: D - Initial training dataset.

r - Ratio of labeled instances along D.

L - Set of labeled training instances.

U - Set of unlabeled training instances.

E - Ensemble of algorithms.

MaxIter - Maximum number of iterations.

ConLev - Confidence level.

C, h, h1, h2, h3 - Base learners.

/* Co-training algorithm */

L1=L(V1), L2=L(V2), V1,V2 are two feature views of instances

Initially train h1 , h2 for each view V1, V2 on L1, L2 respectively

repeat

Compute h1 , h2 predictions for all instances in U

for each view

choose the Most Confidence Predictions and add to the

training set of the other

end for

Retrain h1, h2 for each view on new enlarged L1, L2 respec-

tively

until U is empty

/* Self-training algorithm */

L3=L

Initially train h on L3.

for i = 1 to MaxIter do

Apply h on U .

Select instances with a predicted probability more than 90%

per iteration (xMCP).

Remove xMCP from U and add to L3.

Retrain h on new enlarged L3.

end for

/* Tri-training algorithm */

L4=L

for i=1,2,3 do

Train hi on L4.

end for

repeat

for i=1,2,3 do

for x ∈U do

L′={ }
if h j(x)=hk(x) ( j,k 6= i)

then L′ = L′∪ (x,h j(x))

end if

Retrain hi on L′.

end for

end for

until some stopping criterion is met or U is empty

Construct a set of algorithms, E(Co(C), Self(C), Tri(C))

/* Testing phase */

for each x from test set

Apply Self-training, Co-training, Tri-training on x.

Use majority vote to predict the label y∗ of x.

end for

Output: The labels of instances in the testing set

4. Experimental results

The experiments were based on 40 benchmark

datasets from UCI Machine Learning Repository [23]

and KEEL repository [2]. A brief description of

datasets structure (number of instances, number of at-

tributes and output classes) is presented in Table 2.

These datasets have been partitioned using the 10-

fold cross-validation procedure so that each fold had

the same distribution as the entire dataset. For each

dataset, 90% was used as training set, while the re-

maining 10% was used as testing set to evaluate the

performance of the learning algorithms. The training

partition of each fold was divided into labeled and un-

labeled subsets according to a selected ratio value. In

order to study the influence of the amount of labeled

data, three different ratios were used: 10%, 20%, and

30%.

The performance of the proposed ensemble algo-

rithm was compared to its component SSC algorithms,

and in particular Self-training, Co-training and Tri-

training in terms of classification accuracy. Accuracy

is one of the most frequently used measures for assess-

ing the overall effectiveness of a classification algo-

rithm [31] and is defined as the percentage of correctly

classified instances. Furthermore, the implementation

code was written in Java, using Weka Machine Learn-

ing Toolkit [16]. A plethora of experiments were car-

ried out on each dataset deploying three well-known

supervised classifiers as base learners in each SSL

method thus creating a total of 120 datasets (3 labeled

ratios for 40 datasets). A brief description of the three

supervised classifiers is given below:

– J48, a very effective classification algorithm for

building decision trees. It is a Weka implemen-

tation of the C4.5 Decision Tree algorithm [30],

a widely used classification algorithm categoriz-

ing instances to a predefined set of classes accord-

ing to their attribute values from the root of a tree

down to a leaf. The accuracy of a leaf corresponds

to the percentage of correctly classified instances

of the training set.

– JRip, a well-known inference and rule-based al-

gorithm which was originally introduced by Co-

hen [8]. It is a java optimized version of the

RIPPER (Repeated Incremental Pruning to Pro-

duce Error Reduction) algorithm, implemented

in Weka. JRip is considered to be a very effec-

tive algorithm, especially on large samples with

noisy data. Moreover, RIPPER produces error
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rates competitive with C4.5 and better running

times.

– kNN, a representative instance-structured learn-

ing algorithm [1] based on the assumption that

similar examples are close to each other. More

specifically, a distance function is used to predict

the output class of an instance through identify-

ing the most frequently found class among the k

nearest neighbors of it. The function should min-

imize the distance between two equally classified

examples.

Studies have shown that the above classifiers consti-

tute some of the most effective and widely used data

mining algorithms [35] for classification problems.

Moreover, Co-training, Self-training and Tri-training

algorithms often achieve impressive results when C4.5

is used as base learner, while Tri-training also performs

well with kNN as base learner [33]. The configuration

parameters of all the SSL methods and base learners

used in the experiments is presented in Table 1. Re-

garding the base learners, the default parameter set-

tings included in the Weka software were applied.

Table 1

Parameters configuration for all SSL methods and base learners

Algorithm Parameters

kNN Number of neighbors=3

Euclidean distance

J48 Confidence factor used for pruning=0.25

Minimum number of instances per leaf=2

Number of folds used for reduced-error pruning=3

Pruning is performed after tree building

JRip Number of optimization runs=2

Number of folds used for reduced-error pruning=3

Minimum total weight of the instances in a rule=2.0

Pruning is performed after tree building

Self-training MaxIter=40

Co-training MaxIter=40

Initial unlabeled pool=75

Tri-training No parameters specified

The experimental results using 10%, 20% and 30%

labeled ratio are presented in Tables 3, 4 and 5 respec-

tively.

Table 2

Brief description of datasets

Dataset #Instances #Features #Classes

automobile 205 26 7

banana 5300 2 2

breast 286 9 2

bupa 345 6 2

cleveland 297 13 5

coil2000 9822 85 2

contraceptive 1473 9 3

crx 125 15 2

dermatology 366 33 6

german 1000 20 2

glass 214 9 7

haberman 306 3 2

heart 270 13 2

hepatitis 155 19 2

housevotes 435 16 2

iris 150 4 3

led7digit 500 7 10

magic 19020 10 2

mammographic 961 5 2

monk2 432 6 2

movement 360 90 15

mushroom 8124 22 2

page-blocks 5472 10 5

pendigits 10992 16 10

phoneme 5404 5 2

pima 768 8 2

ring 7400 20 2

satimage 6435 36 7

segment 2310 19 7

spambase 4597 55 2

splice 3190 60 3

texture 5500 40 11

thyroid 7200 21 3

tic-tac-toe 958 9 2

twonorm 7400 20 2

vehicle 846 18 4

wisconsin 683 9 2

wine 178 13 3

yeast 1484 8 10

zoo 101 17 7
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Table 3

Classification accuracy (labeled ratio 10%)

Dataset Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting

(JRip) (JRip) (JRip) (JRip) (C4.5) (C4.5) (C4.5) (C4.5) (3NN) (3NN) (3NN) (3NN)

automobile 49.21 74.17 70.42 69.83 50.37 68.63 77.42 71.75 72.29 67.25 72.92 72.29

banana 72.83 74.40 72.74 72.96 74.94 77.83 74.51 75.13 74.75 78.38 74.96 75.34

breast 71.71 73.05 69.29 72.07 74.15 73.44 73.42 74.15 75.17 75.86 74.80 75.85

bupa 57.11 57.11 57.13 57.11 56.25 56.25 56.84 56.25 57.11 57.11 57.13 57.11

cleveland 54.45 53.78 54.45 54.45 53.43 54.09 55.44 54.76 56.75 56.76 57.73 57.09

coil2000 94.00 94.02 94.01 94.03 94.03 94.03 94.03 94.03 93.61 93.61 93.72 93.61

contraceptive 46.57 46.30 46.84 47.32 51.46 51.87 51.06 51.73 51.86 47.67 51.25 51.86

crx 87.29 86.38 88.07 87.29 85.74 85.59 85.91 86.06 85.77 84.84 86.06 86.38

dermatology 88.27 86.83 88.51 90.70 93.46 88.85 93.18 93.19 96.46 94.54 96.73 96.46

german 70.10 71.90 69.60 70.40 71.70 72.20 71.80 71.70 72.40 71.90 72.20 72.80

glass 41.95 66.19 66.73 62.94 70.15 54.68 68.74 68.31 68.59 66.17 71.84 72.77

haberman 71.92 71.59 72.57 71.91 72.87 72.87 72.87 72.87 73.55 73.55 74.22 73.55

heart 80.22 78.15 81.17 80.53 78.16 78.15 77.83 80.47 81.20 81.86 81.87 81.20

hepatitis 78.71 81.13 79.88 81.17 82.58 81.33 83.04 82.58 87.63 86.42 85.75 87.71

housevotes 97.03 97.03 97.03 97.03 96.12 96.12 96.12 96.12 91.87 91.87 91.87 91.87

iris 93.33 92.67 91.33 92.67 84.00 92.00 94.00 93.33 94.00 94.00 92.67 94.00

led7digit 50.20 69.60 69.80 70.80 46.00 50.20 70.80 54.40 64.20 61.00 72.40 70.00

magic 82.26 80.90 82.33 82.65 84.13 81.71 84.25 84.34 81.96 80.50 81.57 82.13

mammographic 84.46 82.89 83.98 84.22 85.06 82.77 84.10 85.06 82.53 83.13 83.13 82.41

monk2 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14

movement 46.11 50.56 50.83 51.67 42.78 47.78 59.44 53.89 60.83 51.39 64.44 63.89

mushroom 100.0 100.0 100.0 100.0 100.0 99.89 100.0 100.0 100.0 100.0 100.0 100.0

page-blocks 96.05 95.45 96.51 96.45 96.49 95.19 96.51 96.62 96.25 95.61 96.33 96.18

pendigits 91.50 89.79 91.47 93.44 88.29 85.90 88.29 89.38 96.38 93.50 96.31 96.28

phoneme 80.61 79.46 80.79 81.38 81.31 80.51 81.66 81.70 82.20 80.74 82.24 82.42

pima 74.48 73.96 73.05 74.35 75.91 73.83 74.74 76.04 73.96 73.17 73.44 74.22

ring 91.70 92.42 91.88 93.24 81.49 79.66 81.62 85.42 62.01 60.77 62.77 61.19

satimage 83.56 83.56 82.83 85.45 84.09 83.42 84.46 85.25 89.00 88.61 88.97 89.45

segment 90.43 86.75 92.21 94.03 94.46 90.87 94.11 94.81 92.86 91.00 92.99 93.20

spambase 92.52 91.98 91.83 93.13 93.02 90.57 92.74 93.09 92.96 92.39 93.07 93.24

splice 93.98 94.26 93.70 95.02 94.23 86.36 94.26 94.51 77.02 77.81 77.18 77.68

texture 86.11 85.44 86.11 89.73 86.91 85.35 87.40 89.04 96.22 95.31 96.27 96.45

thyroid 99.15 98.14 99.15 99.19 99.38 97.42 99.25 99.36 98.58 98.93 98.42 98.63

tic-tac-toe 96.97 97.28 97.70 97.60 84.44 84.44 84.54 86.63 98.85 98.02 98.54 98.75

twonorm 84.31 84.05 85.01 89.04 79.74 78.86 80.18 84.64 93.73 93.93 93.78 94.81

vehicle 61.24 60.07 61.36 64.07 67.37 67.38 67.73 68.44 64.46 69.04 67.98 68.46

wisconsin 95.13 93.41 94.84 95.41 95.57 92.42 96.00 96.28 96.28 96.28 96.56 96.42

wine 61.24 60.07 61.36 64.07 93.30 89.35 88.24 91.60 96.05 95.49 96.05 96.05

yeast 74.20 74.53 75.07 74.20 76.15 76.28 75.54 76.21 74.60 74.74 75.48 74.80

zoo 87.09 85.18 87.09 87.09 92.18 79.27 92.18 92.18 95.00 80.18 95.00 95.00
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Table 4

Classification accuracy (labeled ratio 20%)

Dataset Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting

(JRip) (JRip) (JRip) (JRip) (C4.5) (C4.5) (C4.5) (C4.5) (3NN) (3NN) (3NN) (3NN)

automobile 73.58 72.83 68.50 76.67 78.04 68.71 73.71 74.96 72.29 64.04 75.37 72.29

banana 72.94 74.55 73.36 74.19 74.75 81.74 74.26 74.75 74.72 76.66 74.66 75.38

breast 72.38 71.71 68.94 72.03 74.84 73.09 68.23 74.51 74.82 75.50 74.48 75.50

bupa 57.11 57.11 59.17 57.11 56.25 56.25 56.25 56.25 57.11 57.11 59.17 57.11

cleveland 53.78 54.12 54.78 54.12 52.76 53.76 57.37 54.10 57.10 56.43 57.73 56.43

coil2000 94.03 94.01 94.02 94.03 94.03 94.03 94.03 94.03 93.61 93.61 93.73 93.61

contraceptive 46.98 47.25 45.29 46.58 49.62 51.94 52.35 52.00 51.86 51.59 52.00 52.95

crx 86.99 85.01 87.60 86.99 85.89 85.44 86.37 86.06 85.31 85.15 85.29 85.46

dermatology 89.04 85.51 89.87 90.97 93.72 89.62 92.91 93.99 96.46 95.64 95.91 96.19

german 71.90 70.60 67.10 70.00 71.90 72.80 73.50 72.90 72.50 72.50 72.80 72.80

glass 68.07 66.28 63.38 68.12 62.60 59.00 69.18 68.74 67.03 69.00 68.57 70.87

haberman 71.92 72.25 72.91 72.25 72.87 72.87 73.17 72.87 73.55 73.55 73.20 73.55

heart 79.52 76.87 76.55 79.53 78.46 77.22 76.51 77.51 81.86 79.54 81.19 81.53

hepatitis 79.25 82.58 81.21 81.92 82.54 80.04 81.92 81.33 88.33 87.67 82.58 87.04

housevotes 97.03 97.03 97.03 97.03 96.12 96.99 95.69 96.12 91.87 92.28 91.87 91.87

iris 94.00 94.00 94.67 94.67 93.33 95.33 94.00 93.33 94.00 93.33 92.00 93.33

led7digit 65.20 66.20 70.80 70.00 67.40 61.20 71.00 68.60 72.00 73.20 73.20 73.00

magic 82.19 81.70 82.61 82.83 84.02 82.48 83.91 84.24 81.97 80.67 81.40 82.17

mammographic 83.73 82.29 82.65 83.73 84.82 82.65 83.01 84.34 82.77 82.41 83.13 83.01

monk2 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14

movement 24.17 49.44 51.94 45.83 47.22 54.72 54.17 55.28 51.67 47.22 63.06 55.00

mushroom 100.0 100.0 100.0 100.0 100.0 99.89 99.96 100.0 100.0 100.0 100.00 100.0

page-blocks 96.11 96.14 96.03 96.40 96.60 95.32 96.75 96.80 96.27 95.56 96.03 96.20

pendigits 91.26 90.61 90.91 93.26 87.96 86.24 87.62 88.76 96.41 94.04 96.13 96.32

phoneme 81.01 79.68 81.55 81.46 81.48 80.14 81.09 81.37 82.48 82.12 82.70 83.33

pima 76.56 73.44 73.19 75.26 76.96 74.48 75.13 75.91 74.35 75.27 72.00 74.35

ring 91.86 92.34 92.55 93.27 80.76 80.09 81.38 85.05 62.05 60.42 62.91 61.05

satimage 82.98 83.96 83.48 85.63 84.26 84.60 84.18 85.66 88.81 88.30 88.81 89.09

segment 89.74 88.83 91.86 93.16 93.90 92.12 93.98 94.20 92.64 91.00 92.38 92.99

spambase 92.07 91.76 92.18 93.11 92.72 91.46 92.50 93.24 93.00 92.52 93.15 93.28

splice 94.01 93.67 92.48 94.64 94.17 91.29 93.82 94.23 77.12 77.55 75.99 77.15

texture 86.80 84.56 86.25 90.13 86.64 86.65 86.65 89.33 96.11 95.36 95.98 96.47

thyroid 99.22 97.43 99.19 99.22 99.29 98.99 99.36 99.33 98.42 99.10 98.33 98.61

tic-tac-toe 96.97 96.76 97.91 97.29 84.44 81.94 83.29 85.59 98.85 97.60 98.01 98.75

twonorm 83.81 85.24 84.26 89.16 79.78 79.76 79.49 85.22 93.66 93.82 94.15 94.92

vehicle 61.71 65.73 62.88 64.77 68.68 68.57 66.79 69.04 68.46 67.97 67.98 68.57

wisconsin 95.27 95.27 95.70 95.70 95.13 94.28 95.85 96.14 96.28 96.42 96.42 96.42

wine 61.71 65.73 62.88 64.77 91.60 87.09 93.30 92.71 96.05 96.05 96.60 96.60

yeast 74.94 75.01 74.81 74.87 75.40 75.88 74.26 75.14 74.53 74.67 74.94 74.60

zoo 85.09 83.09 87.09 85.09 90.18 82.36 92.18 91.18 92.09 80.27 95.00 93.09
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Table 5

Classification accuracy (labeled ratio 30%)

Dataset Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting Self-Train Co-Train Tri-Train CST-Voting

(JRip) (JRip) (JRip) (JRip) (C4.5) (C4.5) (C4.5) (C4.5) (3NN) (3NN) (3NN) (3NN)

automobile 72.21 74.21 69.79 76.04 76.75 72.46 63.54 75.54 67.25 68.50 62.25 69.79

banana 73.08 78.98 73.19 74.25 74.77 79.09 74.98 74.92 74.81 79.66 74.57 75.75

breast 73.79 75.22 70.70 74.86 74.51 72.39 74.85 74.51 74.82 74.82 73.40 75.17

bupa 56.54 57.11 56.81 56.54 56.25 56.25 57.13 56.25 56.54 57.11 56.81 56.54

cleveland 53.78 53.45 53.78 53.78 54.10 54.43 54.40 54.09 57.10 58.06 59.68 58.40

coil2000 94.04 94.01 94.01 94.03 94.03 94.03 94.03 94.03 93.61 93.61 93.69 93.61

contraceptive 46.10 46.98 44.80 46.64 50.17 49.77 50.45 51.19 50.31 50.78 51.59 51.25

crx 87.91 86.38 87.14 86.84 85.44 85.44 85.76 86.66 86.08 84.85 85.61 86.23

dermatology 88.27 86.04 85.77 91.53 93.20 92.91 92.36 94.55 96.19 96.18 96.46 96.19

german 71.30 70.60 68.10 71.30 72.20 70.90 70.60 71.70 72.20 71.60 72.70 72.10

glass 64.96 63.87 59.76 63.48 68.74 67.32 58.90 66.36 71.34 69.94 64.31 70.39

haberman 72.57 71.59 70.29 72.25 72.87 73.52 73.53 72.87 71.90 73.55 71.26 73.55

heart 81.51 76.89 78.56 81.86 78.46 75.22 77.54 80.14 81.52 81.54 82.19 81.85

hepatitis 81.92 82.50 81.29 83.83 81.92 81.25 83.79 82.50 86.38 85.13 87.13 86.38

housevotes 96.59 97.03 97.03 97.03 96.12 96.12 94.38 96.12 91.87 91.43 91.00 91.43

iris 93.33 96.00 92.00 94.00 94.00 94.00 94.67 95.33 94.00 96.00 92.67 94.00

led7digit 69.00 71.20 69.00 70.80 72.00 67.20 71.60 71.60 72.40 72.40 73.40 73.00

magic 82.42 81.28 82.63 82.88 84.03 83.05 83.69 84.48 82.03 81.24 81.27 82.38

mammographic 84.22 83.61 83.37 84.22 83.61 83.13 83.13 84.58 82.17 82.53 83.86 83.37

monk2 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14 67.14

movement 41.11 51.39 51.11 52.78 50.56 55.00 52.78 56.39 61.39 52.50 57.22 58.89

mushroom 100.0 99.98 100.0 100.0 100.0 99.93 100.0 100.0 100.0 100.0 100.0 100.0

page-blocks 96.13 95.82 96.13 96.36 96.38 95.82 96.16 96.40 96.29 96.18 95.98 96.25

pendigits 91.47 90.79 90.65 93.27 88.55 86.83 87.40 89.09 96.39 94.91 95.90 96.30

phoneme 80.94 79.83 80.18 80.96 81.85 80.61 80.94 81.61 82.66 81.18 81.27 81.98

pima 76.04 71.10 75.78 75.78 75.53 75.92 73.56 75.78 73.70 73.83 74.36 75.91

ring 92.42 91.84 92.42 93.47 80.34 80.80 82.16 86.01 62.57 60.99 61.70 61.20

satimage 83.67 83.62 83.20 85.35 84.13 84.27 83.92 85.16 88.75 88.81 88.52 89.03

segment 90.91 89.18 91.17 93.81 93.85 93.16 91.90 94.59 92.94 92.34 91.69 93.25

spambase 92.09 91.72 91.81 92.89 92.83 91.98 91.83 93.24 92.91 92.70 92.85 93.07

splice 94.01 94.29 92.57 94.51 94.11 92.57 93.32 94.45 76.99 77.15 74.01 76.87

texture 87.20 86.45 85.84 90.27 87.69 86.85 86.56 89.38 96.18 95.53 95.73 96.20

thyroid 99.24 99.17 99.15 99.25 99.25 99.11 99.15 99.29 98.56 98.65 98.35 98.72

tic-tac-toe 97.70 97.08 97.81 97.91 84.75 83.51 82.88 87.15 98.85 96.87 96.45 98.33

twonorm 84.58 84.57 85.51 89.41 79.28 79.46 80.34 85.76 93.51 93.92 94.24 94.81

vehicle 64.90 65.72 62.41 65.37 70.69 67.96 68.44 69.97 68.58 68.45 68.33 69.40

wisconsin 95.57 92.70 95.70 95.13 95.57 95.28 95.85 96.71 96.28 96.57 96.13 96.28

wine 62.18 65.73 62.88 65.47 94.41 89.28 90.95 96.60 96.05 95.49 95.49 96.05

yeast 74.53 74.54 74.06 74.60 75.27 74.39 74.93 75.47 74.80 74.94 74.80 75.21

zoo 86.09 83.27 85.09 86.09 91.18 87.27 94.09 91.18 93.18 89.09 92.09 93.09
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Table 6

Total wins of each algorithm

10% 20% 30%

Algorithm JRip J48 3NN JRip J48 3NN JRip J48 3NN

Self-Training 3 4 2 3 7 7 5 4 9

Co-Training 4 4 5 6 4 4 8 8 4

Tri-Training 8 7 13 10 9 9 1 2 9

CST-Voting 19 17 12 13 16 11 19 19 13

The number of wins of each one of the tested meth-

ods according to the supervised classifier used as base

learner and the ratio of labeled data in the training set

is presented in Table 6, while the best scores are high-

lighted in bold.It should me mentioned that draw cases

between algorithms have not been encountered. The

above aggregated results show that CST-Voting is by

far the most effective method in all cases except the

one using 3NN as base learner with a labeled ratio of

10%. In this case, Tri-training(3NN) performs better

in 13 datasets, followed by CST-Voting (12 wins), Co-

training (5 wins) and Self-training (2 wins). In more

detail:

– Depending upon the base classifier, CST-Voting

(JRip) scores the best accuracy value in 19, 13 and

19 datasets (a total of 51 out of 99 datasets), us-

ing a labeled ratio of 10%, 20% and 30% respec-

tively. CST-Voting(J48) performs better in 17, 16

and 19 datasets (a total of 52 out of 101 datasets),

while CST-Voting(3NN) prevails in 12, 11 and 13

datasets (a total of 36 out of 98 datasets) respec-

tively. So, CST-Voting performs better using JRip

or J48 as base learners.

– Regarding the ratio of labeled instances in the

training set, CST-Voting performs better in 48 out

of 98 datasets for 10% labeled ratio, in 40 out of

99 datasets for 20% labeled ratio and in 51 out of

101 datasets for 30% labeled ratio. It is clear that

CST-Voting achieves better results for 10% and

30% labeled ratio.

Additionally, a more representative visualization of

the classification performance of the compared SSC

methods is presented in Figures 1, 2 and 3. Each figure

displays a radar chart illustrating the accuracy measure

of each tested algorithm according to the supervised

classifier used as base learner and the labeled ratio.

Fig. 1. Comparison of algorithms (JRip base classifier)

Fig. 2. Comparison of SSL algorithms (J48 base classifier)

Fig. 3. Comparison of SSL algorithms (3NN base classifier)
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To evaluate the performance of the tested algo-

rithms, we performed multiple comparisons of the ac-

curacy results between the proposed method and the

set of SSC algorithms used in our study. Therefore,

the Friedman Aligned Ranks nonparametric test [19]

was applied first and after the Finner post hoc test [11]

with a significance level α = 0.05. Friedman Aligned

Ranks test is considered to be one of the most well-

known tools for multiple statistical comparison tests

when comparing more than two methods [13]. Accord-

ing to the computed Friedman test results (Tables 7, 8

and 9) the algorithms are ordered from the best per-

former (lowest ranking value) to the lowest one (high-

est ranking value). It is observed that CST-Voting pre-

vails in all 9 cases (3 different classifiers and 3 differ-

ent labeled ratios) indicating its efficiency.

Since the null hypothesis of equivalence of medians

of algorithms is rejected, the Finner post hoc statistical

procedure is applied to detect the specific differences

among the algorithms. Finner test is easy to compre-

hend and usually offers better results than other tests,

such as Holm test [20] or Hochberg test [18], espe-

cially when the number of algorithms to be compared

is low [13]. The complete post hoc results are also pre-

sented in Tables 7, 8 and 9 using CST-Voting as control

method. The proposed ensemble method takes prece-

dence over the rest SSL algorithms, since it gives sta-

tistically better results in all cases except the one us-

ing 3NN as base learner with a labeled ratio of 10%,

confirming that the proposed ensemble method ob-

tains higher classification accuracy than its constituent

parts.

Table 7

Friedman Aligned Ranks test-Finner post hoc test (α = 0.05)

Ratio Classifier Friedman Finner post-hoc test

(JRip) Ranking p-value Null Hypothesis

10%

CST-Voting 45.7125

Self-training 80.1875 0.00088 rejected

Tri-training 97.3750 0.00000 rejected

Co-training 98.7250 0.00000 rejected

20%

CST-Voting 46.1375

Self-training 87.7875 0.00006 rejected

Tri-training 90.2000 0.00003 rejected

Co-training 97.8750 0.00000 rejected

30%

CST-Voting 43.9250

Tri-training 81.3375 0.00000 rejected

Co-training 87.6125 0.00000 rejected

Self-training 109.1250 0.00088 rejected

Table 8

Friedman Aligned Ranks test-Finner post hoc test (α = 0.05)

Ratio Classifier Friedman Finner post-hoc test

(J48) Ranking p-value Null Hypothesis

10%

CST-Voting 49.6500

Self-training 70.8500 0.04073 rejected

Tri-training 84.2250 0.00169 rejected

Co-training 117.2750 0.00000 rejected

20%

CST-Voting 53.4250

Self-training 79.5000 0.02273 rejected

Tri-training 79.6500 0.02273 rejected

Co-training 109.4250 0.00000 rejected

30%

CST-Voting 43.9250

Tri-training 81.3375 0.00030 rejected

Co-training 87.6125 0.00005 rejected

Self-training 109.1250 0.00000 rejected

Table 9

Friedman Aligned Ranks test-Finner post hoc test (α = 0.05)

Ratio Classifier Friedman Finner post-hoc test

(3NN ) Ranking p-value Null Hypothesis

10%

CST-Voting 58.6500

Self-training 67.0500 0.41748 accepted

Tri-training 82.8750 0.03875 rejected

Co-training 113.4250 0.00000 rejected

20%

CST-Voting 56.3875

Tri-training 79.1000 0.02836 rejected

Self-training 82.3375 0.02451 rejected

Co-training 104.1750 0.00010 rejected

30%

CST-Voting 54.1625

Tri-training 75.5375 0.03909 rejected

Co-training 95.1625 0.00015 rejected

Self-training 97.1375 0.00010 rejected

5. Conclusions

In the present study, a new SSL ensemble algorithm,

called CST-Voting, is proposed. Semi-supervised learn-

ing is an emerging subfield of machine learning, with

a view to building efficient classifiers exploiting a lim-

ited pool of labeled data together with a large pool

of unlabeled ones. CST-Voting combines three famil-

iar SSL algorithms: Co-training, Self-training and Tri-

training. The efficiency of the proposed algorithm was

evaluated on a number of benchmark datasets in terms

of classification accuracy using JRip, C4.5 and 3NN

supervised classifiers as base learners and different ra-

tio of labeled data. A plethora of experiments were

carried out indicating the effectiveness of the proposed
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ensemble, as confirmed statistically by the Friedman

Aligned Ranks nonparametric test and the Finner post

hoc test.

CST-Voting outperforms its component algorithms,

which use the same base classifiers, confirming the

effectiveness of ensemble methods. Co-training, Self-

training and Tri-training exploit unlabeled examples

through different mechanisms and thereby ensure the

ensemble diversity. Therefore, combining the ensem-

ble methodology and SSC algorithms seems to lead to

more efficient, stable and robust predictive models.

Since the experiments results are quite encouraging,

a next step should be the usage of other supervised

classifiers as base learners, such as support vector ma-

chines [6,29] and neural networks [3,17]. Moreover, an

interesting aspect is the implementation of the method

in specific scientific fields applying real world datasets,

such as the educational field.

Another interesting aspect for future work is a par-

allel implementation of the CST-Voting method. Re-

cently, a distributed SSL method with kernel ridge re-

gression has been effectively applied to data subsets

that are distributively stored on multiple servers [7].

Implementing each one of the components SSL algo-

rithms in parallel machines is a very important aspect

to be studied, as huge amount of data can be processed

in significantly less time.

Appendix

A java software tool implementing the proposed en-

semble method can be found in http://www.math.

upatras.gr/~livieris/Software/CST_Voting.

zip
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