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Abstract During the last decades, the classification of images constitutes a typical method for
diagnosing many abnormalities and diseases. The application of an efficient classification method
is considered essential in modern diagnostic medicine in order to increase the number of analyzed
patients and decrease the analysis time. The significant storage capabilities of electronic media have
enabled research centers to accumulate repositories of classified (labeled) images and mostly of a
large number of unclassified (unlabeled) images. Semi-supervised learning algorithms have become
a hot topic of research as an alternative to traditional classification methods, exploiting the explicit
classification information of labeled data with the knowledge hidden in the unlabeled data for building
powerful and effective classifiers. In this work, we propose a new ensemble self-labeled algorithm,
called DTCo, for X-rays classification. The efficacy of the presented algorithm is illustrated by a
series of experiments against other state-of-the-art self-labeled methods.

Keywords Semi-supervised learning · self-labeled algorithms · ensemble learning · X-ray classifica-
tion · lung abnormalities.

1 Introduction

Nowadays, machine learning and data mining have emerged as widely accepted techniques in the field
of diagnostic medicine. They have received much attention in solving medical diagnostic tasks as they
encompass the following attributes: good performance, ability to deal with missing and noisy data,
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transparency of diagnostic knowledge and explanatory decisions (Kononenko 2001). Furthermore,
commonly employed data analytic tools pose several limitations to the complex environment of health
data analysis.

Research efforts have been devoted on the development of intelligent computational systems
that efficiently analyze medical data and images in order to extract useful knowledge in the field
of pulmonary diseases and disorders. It worths mentioning that, as reported by the World Health
Organization (2017), tuberculosis (TB) is one of the top 10 causes of death, caused approximately
1.6 million deaths only in 2017 while millions of people fall sick with TB each year. At the same
time, pneumonia accounts for 16% of all children aged 0-5 years while lung cancer is the sixth more
common cause of death worldwide claiming 1.7 million lives in 2016. Although several diagnostic tests
are widely employed in the pulmonary diseases domain, their application on a large scale is usually
cumbersome, costly, time consuming to process and prone to human errors (i.e. diagnosis errors).
Therefore, lung diagnosis domain has been benefited extensively by the advances of machine learning
and data mining techniques over posterior-anterior Chest X-Rays (CXRs) in order to analyze the
suspected region and search for any abnormalities. CXR imaging is being widely applied for diagnosis
due to low cost and easy operation. Although the interpretation of such medical images is usually
performed by experts (i.e. radiologists and lung specialists), recent advances in medical informatics
has shifted the interest to the development of computer based decision support and diagnosis systems.

The rapid advances in digital chest radiography and the significant storage capabilities of elec-
tronic media, have enabled research centers to accumulate large repositories of classified (labeled)
images and mostly of unclassified (unlabeled) images from human experts. Therefore, researchers
and medical stuff have a significant potential to transform biomedical research and the delivery of
healthcare by leveraging and exploit these images. Generally, the progress in the field has been ham-
pered by the lack of available labeled images for efficiently training an accurate supervised classifier.
Nevertheless, the process of correctly labeling new unlabeled CXRs frequently requires the efforts of
specialized personnel and expert physicians, which will incur high time and monetary costs.

Semi-Supervised Learning (SSL) algorithms constitute the appropriate and effective machine
learning methodology for extracting useful knowledge from both labeled and unlabeled data. In con-
trast to traditional classification approaches, semi-supervised algorithms leverage the large amount
of unlabeled data in order to reduce data sparsity in the labeled training data and boost the classi-
fier performance, particularly focusing on the setting where the amount of available labeled data is
limited. Thus, these algorithms have received considerable attention due to their potential for reduc-
ing the effort of labeling data while still preserving competitive and sometimes better classification
performance (see Zhou (2011), Zhu (2011), Zhu & Goldberg (2009) and the references therein).

Self-labeled algorithms are probably considered the most popular class of SSL algorithms, ex-
ploiting the unlabeled data via a self-learning process based on supervised prediction models. They
perform an iterative procedure, aiming to obtain an enlarged labeled dataset, in which they accept
that their own predictions tend to be correct. Recently, Triguero et al. (2015) proposed an in-depth
taxonomy based on the main characteristics and conducted an extended study of their classification
efficacy on several datasets.

In this work, we propose a new ensemble self-labeled algorithm, called DTCo, for the classifica-
tion of X-rays. The proposed algorithm combines the predictions of three of the most efficient and
frequently used self-labeled algorithms, utilizing a maximum-probability voting scheme. Our prelim-
inary numerical experiments demonstrate the efficacy of DTCo for the detection of abnormalities
from X-rays, illustrating that reliable and robust classification models could be developed by the
adaptation of ensemble methodologies in the semi-supervised framework.

The remainder of this paper is organized as follows: Section 2 presents a survey of recent studies
concerning the application of data mining in X-rays classification. Section 3 presents the proposed
ensemble semi-supervised classification algorithm. Section 4 presents a series of experiments in order
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to examine and evaluate the accuracy of the proposed algorithm against the most popular self-labeled
classification algorithms and Section 5 presents our concluding remarks and future work.

2 Related work

During the last decades, we have witnessed the significance of medical imaging for the diagnosis,
the early detection and the treatment of diseases. The advances of digital technology and chest
radiography as well as the rapid development of digital image retrieval have renewed the interest
and the progress in new technologies for the diagnosis of abnormalities. In particular, there has been
a growing interest in developing Computer-Aided Diagnostic (CAD) systems for the detection of
abnormalities, therefore a variety of methods has been used aiming on classifying and/or detecting
anomalies in medical images. Most of the CAD methods proved to be powerful tools which could
assist medical staff in hospitals and lead to better results in diagnosing a patient. However, despite
all this effort, there is still no widely utilized method for classifying medical images since the medical
domain requires high accuracy; especially the rate of false negatives is imperative very low. Along
this line, van Ginneken et al. (2009) presented a survey in which they stated that forty-five years
after the initial work on CAD in chest radiology, there are still no systems that can accurately read
chest radiographs. To this end, in recent years, a number of rewarding studies has being carried out,
some of which are briefly described in the next paragraphs.

Hogeweg et al. (2010) combined a texture-based abnormality detection system with a clavicle
detection stage in order to suppress false positive responses. Based on their previous work, Hogeweg
et al. (2012) utilized a combination of pixel classifiers and activated shape models for clavicle seg-
mentation. Notice that the clavicle region consists of a notoriously difficult region for the detection of
TB since the clavicles can obscure manifestations of TB in the apex of the lung. Bearing in mind, Xu
et al. (2011) introduced a novel technique by hybridizing a model-based template matching technique
with image enhancement based on the Hessian matrix.

Muyoyeta et al. (2014) illustrated the ability of CAD systems for discriminating CXR as normal or
abnormal and the potential for roll-out of digital X-ray technology, especially in high burden settings
where human resources are scarce. They utilized data from 350 patients and concluded that CAD
and CXR can be used as a pre-screening tool before applying more expensive diagnostic tests. On
the other hand, cost effectiveness of such strategies would have to be ascertained. Another similar
work is presented by Jaeger et al. (2014) which proposed an approach for detecting tuberculosis in
conventional posteroanterior chest radiographs. Initially, their proposed method extracts the lung
region from the CXRs utilizing a graph cut segmentation method and a set of texture and shape
features in the lung region is computed in order to classify the patient as normal or abnormal. The
results of the numerical experiments on two real-world datasets, revealed that the proposed CAD
system for TB screening achieved high performance, relevant to that of human readings.

Candemir et al. (2014) presented a non-rigid registration-driven robust lung segmentation method
using image retrieval-based patient specific adaptive lung models which detect lung boundaries. More
specifically, their suggested methodology incorporates non-grid registration with CXR databases of
pre-segmented lung regions to develop an anatomical atlas as a guide combined with graph cuts
based on image region refinement. Moreover, their proposed method was evaluated utilizing three
different datasets containing in total 585 chest radiographs from patients with normal lungs and
various pulmonary diseases indicating the robustness and effectiveness of the proposed approach.

Plankis et al. (2017) developed a CAD system which calculates the lung regions of interest,
performs lung image segmentation and automated disease recognition. More specifically, the main
tasks of the proposed system comprise: a) recognition and control of radiograph images for later lung
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textures analysis, b) Daubechies wavelet transformation, c) 12 texture parameters computation based
on wavelet coefficients, d) supervised machine learning for clinical decisions, e) decision evaluation.

Santosh & Antani (2018) developed a novel concept of using right and left lung region changes
into account and represent in terms of symmetry, and have automated the chest X-ray system for
the evidence of tuberculosis. Their method utilizes common pulmonary abnormalities exhibited in
CXR images including cavitations, consolidations, infiltrates, blunted costophrenic angles, opacities,
pleural effusion Moreover, to compute lung region symmetry, we have used multi-scale shape features
and edge-based and texture-based features (take internal content). Unlike other the state-of-the art
techniques, they have proved that the way the features are represented is the appropriate for chest X-
ray screening to detect pulmonary abnormalities. They presented some encouraging performance by
using voting-based combination of three different classifiers: random forest, artificial neural network
and Bayesian network on two CXR benchmarks.

Alam et al. (2018) developed an efficient lung cancer detection and prediction algorithm using
multi-class support vector machine classifier. In every stage of classification, the image enhancement
and the image segmentation have been done separately. Furthermore, image scaling, color space
transformation and contrast enhancement have been utilized for image enhancement while threshold
and marker-controlled watershed based segmentation has been utilized for segmentation. Next, a set
of textural features extracted from the separated regions of interest is been categorized by the support
vector machine classifier. The proposed algorithm can efficiently detect cancer affected cell and the
corresponding stage such as initial, middle, or final stage while if no cancer affected cell is found in
the input image then it checks the probability of lung cancer.

In more recent works, Livieris et al. (2018) proposed CST-Voting, an ensemble semi-supervised
learning algorithm for CXR classification of tuberculosis. Their proposed algorithm exploits the
individual predictions of three of the most efficient and frequently used self-labeled algorithms i.e.,
Co-training, Self-training and Tri-training, using a voting methodology. The authors presented some
numerical experiments demonstrating the efficiency of the proposed algorithm against several semi-
supervised learning algorithms, and illustrating that reliable and robust prediction models could be
developed utilizing a few labeled and many unlabeled data.

3 DTCo algorithm

In this section, we present a detailed description of the proposed self-labeled algorithm for X-ray
classification, which is based on a maximum-probability voting scheme.

Motivated by Livieris et al. (2018) and Livieris (2019), we consider to develop an ensemble algo-
rithm based on the idea of generating classifiers by applying different self-labeled algorithms (with
heterogeneous model representations) to a single dataset. On this basis, the learning algorithms,
which constitute the proposed ensemble, are: Democratic Co-learning, Tri-training and Co-Bagging.
The motivation for this selection is based upon the fact that these algorithms have been presented
as the most efficient and robust self-labeled algorithms Triguero et al. (2015).

These algorithms are self-labeled ones, which exploit the hidden information in unlabeled data
using different methodologies. More specifically, Democratic Co-learning algorithm (Zhou & Goldman
2004) follows the multi-view theory but from another aspect based on the idea of ensemble learning
and majority voting. More analytically, this algorithm utilizes multiple algorithms for producing the
necessary information and endorses a voted majority process for the final decision, instead of asking
for more than one views of the corresponding data. Tri-training algorithm constitutes an improved
single-view extension of the Co-training algorithm. This algorithm can be considered as a bagging
ensemble of three classifiers which are trained on data subsets generated through bootstrap sampling
from the original labeled training set (Hady & Schwenker 2010). In each Tri-training round, the
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labeled set of each classifier is augmented with a unlabeled instance, labeled from the other two
classifiers in case it disagrees. Co-Bagging algorithm (Hady & Schwenker 2010) creates several base
classifiers using the same learning algorithm on a bootstrap sample created by random resampling
with replacement from the original training set. Each bootstrap sample contains about 2/3 of the
original training set, where each example can appear multiple times.

A high-level description of the DTCo algorithm is presented in Algorithm 1 which consists of two
phases: Training phase and Voting-Fusion phase.

In the Training phase, the self-labeled algorithms which constitute the ensemble i.e., Democratic
Co-learning, Tri-training and Co-Bagging, are independently trained using the same labeled L and
unlabeled U datasets (Steps 1-3). In the Voting-Fusion phase, the trained self-labeled algorithms are
applied on each instance in the testing set (Step 5). Next, the individual predictions of the three
algorithms are combined via a maximum probability-based voting scheme. More specifically, the self-
labeled algorithm which exhibits the most confident prediction over an unlabeled example of the
test set is selected (Step 7). In case the confidence of the prediction of the selected classifier meets
a predefined threshold (ThresLev) then the classifier labels the example otherwise the prediction is
not considered reliable enough (Step 9). In this case, the output of the ensemble is defined as the
combined predictions of three self-labeled learning algorithms via a simple majority voting, namely
the ensemble output is the one made by more than half of them (Step 11).

Algorithm 1 DTCo

Input: L − Set of labeled instances.
U − Set of unlabeled instances.
C − Base learner.

Output: The labels of instances in the testing set.

/* Phase I: Training */
1: Democratic Co(L,U)
2: Tri-training(L,U)
3: Co-Bagging(L,U)

/* Phase II: Voting-Fusion */
4: for each x ∈ T do
5: Apply Democratic Co-learning, Tri-training and Co-Bagging on x.
6: Find the classifier C∗ with the highest confidence prediction on x.
7: if (Confidence of C∗ ≥ ThresLev) then
8: C∗ predicts the label y of x.
9: else
10: Use majority vote to predict the label y of x.
11: end if
12: end for

4 Experimental methodology

In this section, we conducted a of experiments in order to evaluate the performance of the proposed
algorithm DTCo against the most popular self-labeled algorithms i.e. Self-training (Yarowsky 1995),
Co-training (Blum & Mitchell 1998), Tri-training (Zhou & Li 2005), Co-Bagging (Hady & Schwenker
2010), CST-Voting (Livieris et al. 2018), Co-Forest (Li & Zhou 2007) and Democratic-Co learning
(Zhou & Goldman 2004). The first five self-labeled methods were evaluated by deploying as base
learners the MultiLayer Perceptron (MLP), the kNN algorithm and the C4.5 decision tree algorithm
as in Livieris et al. (2018), Triguero et al. (2015).
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The implementation code was written in Java, using the WEKA 3.9 Machine Learning Toolkit
(Hall et al. 2009), In order to study the influence of the amount of labeled data, four different ratios
(R) of the training data were used, i.e., 10%, 20%, 30% and 40%. All self-labeled algorithms utilized
the configuration parameter settings as in Triguero et al. (2015) while all base learners were used
with their default parameter settings included in the WEKA 3.9 library. Moreover, similar to Livieris
(2019), we set parameter ThresLev = 95%.

4.1 Datasets

The classification algorithms were evaluated using the the Shenzhen lung mask (Tuberculosis) dataset
and the chest X-ray (Pneumonia) dataset.

Shenzhen lung mask (Tuberculosis) dataset : The dataset1 was constructed by manually-segmented
lung masks for the Shenzhen Hospital X-ray set as presented in Stirenko et al. (2018). These segmented
lung masks were original utilized for the description of the lung segmentation technique in combination
with lossless and lossy data augmentation. The segmentation masks for the Shenzhen Hospital X-
ray set were manually prepared by students and teachers of the Computer Engineering Department,
Faculty of Informatics and Computer Engineering, National Technical University of Ukraine “Igor
Sikorsky Kyiv Polytechnic Institute” Jaeger et al. (2014). The set contained 326 normal CXRs and
336 abnormal ones with tuberculosis, collected within a one-month period, mostly in September 2012.
Notice that all algorithms were evaluated using the stratified 10-fold cross-validation on this dataset.

Chest X-ray (Pneumonia) dataset : The dataset2 contains 5830 chest X-ray images (anterior-
posterior), selected from retrospective cohorts of pediatric patients of one to five years old from
Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was per-
formed as part of patients’ routine clinical care. For the analysis of chest X-ray images, all chest
radiographs were initially screened for quality control by removing all low quality or unreadable
scans. The diagnoses for the images were then graded by two expert physicians and in order to
account for any grading errors, the evaluation set was also checked by a third expert. Similar to
Kermany et al. (2018), the dataset was partitioned into two sets (training/testing). The training set
consisting of 5216 examples (1341 normal, 3875 pneumonia) and the testing set with 624 examples
(234 normal, 390 pneumonia).

4.2 Performance evaluation of self-labeled algorithms

The performance of the self-labeled algorithms was evaluated using the following four performance
metrics: Sensitivity (Sen), Specificity (Spe), F -measure (F1) and Accuracy (Acc) which are respec-
tively defined by

Sen =
TP

TP + FN
, Spe =

TN

TN + FP
, F1 =

2TP

2TP + FN + FP
Acc =

TP + TN

TP + TN + FP + FN
,

where TP stands for the number of instances which have been correctly classified as positive, TN

stands for the number of instances which have been correctly classified as negative, FP (type I error)
stands for the number of instances which have been wrongly classified as positive, FN (type II error)
stands for the number of instances which have been wrongly classified as negative. Sensitivity of
classification is the proportion of actual positives that are predicted as positive; Specificity represents
the proportion of actual negatives that are predicted as negative; F1 consists of a harmonic mean of
precision and recall; while Accuracy is the ratio of correct predictions of a classifier.

1 https://www.kaggle.com/kmader/pulmonary-chest-xray-abnormalities/home
2 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Tables 1 and 2 present the performance of all self-labeled methods for Tuberculosis dataset using
labeled ratio 10% − 20% and 30% − 40%, respectively. Notice that the highest classification per-
formance for labeled ratio and performance metric is highlighted in bold. The aggregated results
showed that DTCo was the most efficient and robust method independent of the utilized ratio of
labeled instances in the training set.

Algorithm Ratio = 10% Ratio = 20%
Sen Spe F1 Acc Sen Spe F1 Acc

Self-train (MLP) 65.23% 64.46% 64.65% 64.84% 67.74% 66.20% 66.90% 66.96%
Self-train (C4.5) 63.08% 69.69% 64.94% 66.43% 67.74% 67.25% 67.26% 67.49%
Self-train (NB) 68.82% 62.37% 66.32% 65.55% 67.74% 63.76% 66.08% 65.72%

Co-train (MLP) 62.72% 64.46% 62.95% 63.60% 64.52% 64.81% 64.29% 64.66%
Co-train (C4.5) 70.97% 54.01% 65.02% 62.37% 70.61% 58.54% 66.22% 64.49%
Co-train (NB) 58.06% 65.16% 59.89% 61.66% 65.23% 67.60% 65.70% 66.43%

Tri-train (MLP) 67.38% 65.51% 66.43% 66.43% 67.03% 67.94% 67.03% 67.49%
Tri-train (C4.5) 64.16% 70.03% 65.81% 67.14% 67.38% 66.55% 66.79% 66.96%
Tri-train (NB) 65.23% 66.20% 65.23% 65.72% 64.87% 63.07% 63.96% 63.96%

CST-Voting (MLP) 67.74% 64.81% 66.43% 66.25% 67.38% 67.60% 67.14% 67.49%
CST-Voting (C4.5) 66.31% 68.29% 66.67% 67.31% 69.53% 66.55% 68.19% 68.02%
CST-Voting (NB) 65.95% 66.90% 65.95% 66.43% 66.31% 67.60% 66.43% 66.96%

Co-Bagging (MLP) 65.59% 66.20% 65.47% 65.90% 65.95% 66.20% 65.71% 66.08%
Co-Bagging (C4.5) 64.87% 60.63% 63.18% 62.72% 66.31% 62.72% 64.80% 64.49%
Co-Bagging (NB) 64.52% 66.20% 64.75% 65.37% 65.23% 66.90% 65.47% 66.08%

Co-Forest 62.01% 58.89% 60.70% 60.42% 66.31% 59.58% 63.79% 62.90%
Democratic-Co 71.33% 67.60% 69.70% 69.43% 71.68% 67.25% 69.81% 69.43%
DTCo 70.61% 68.99% 69.73% 69.79% 70.97% 68.99% 69.96% 69.96%

Table 1 Performance of all self-labeled algorithms for ratio R = 10% and R = 20% for Tuberculosis dataset

Algorithm Ratio = 30% Ratio = 40%
Sen Spe F1 Acc Sen Spe F1 Acc

Self-train (MLP) 68.10% 66.90% 67.38% 67.49% 65.23% 68.99% 66.18% 67.14%
Self-train (C4.5) 62.01% 68.64% 63.84% 65.37% 62.72% 68.64% 64.34% 65.72%
Self-train (NB) 66.31% 68.64% 66.79% 67.49% 68.10% 68.64% 67.98% 68.37%

Co-train (C4.5) 69.89% 65.85% 68.18% 67.84% 70.25% 67.60% 69.01% 68.90%
Co-train (MLP) 65.23% 66.20% 65.23% 65.72% 65.23% 66.55% 65.35% 65.90%
Co-train (NB) 68.82% 67.94% 68.21% 68.37% 68.82% 67.94% 68.21% 68.37%

Tri-train (MLP) 68.10% 69.34% 68.22% 68.73% 68.10% 69.69% 68.35% 68.90%
Tri-train (C4.5) 64.52% 69.34% 65.81% 66.96% 68.10% 69.34% 68.22% 68.73%
Tri-train (NB) 65.95% 66.55% 65.83% 66.25% 66.67% 66.90% 66.43% 66.78%

CST-Voting (MLP) 68.10% 68.64% 67.98% 68.37% 65.95% 69.69% 66.91% 67.84%
CST-Voting (C4.5) 67.03% 69.34% 67.51% 68.20% 69.89% 69.69% 69.52% 69.79%
CST-Voting (NB) 68.46% 68.64% 68.21% 68.55% 69.18% 69.34% 68.93% 69.26%

Co-Bagging (MLP) 65.95% 66.90% 65.95% 66.43% 68.46% 68.29% 68.09% 68.37%
Co-Bagging (C4.5) 71.68% 66.55% 69.57% 69.08% 72.76% 70.03% 71.48% 71.38%
Co-Bagging (NB) 65.95% 66.90% 65.95% 66.43% 66.31% 67.94% 66.55% 67.14%

Co-Forest 67.03% 66.20% 66.43% 66.61% 68.10% 66.20% 67.14% 67.14%
Democratic-Co 72.40% 66.90% 70.14% 69.61% 66.31% 68.99% 66.91% 67.67%
DTCo 73.12% 69.34% 71.45% 71.20% 73.48% 69.69% 71.80% 71.55%

Table 2 Performance of all self-labeled algorithms for ratio R = 30% and R = 40% for Tuberculosis dataset
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Tables 3 and 4 present the classification performance for the Pneumonia dataset using labeled
ratio 10% − 20% and 30% − 40%, respectively. As mentioned above, the accuracy measure of the
best-performing algorithm is highlighted in bold. Similar observations can be made with the previous
benchmark. More specifically, DTCo exhibited the best overall classification performance for Acc and
F1 performance metrics., relative to all utilized labeled ratio.

Algorithm Ratio = 10% Ratio = 20%
Sen Spe F1 Acc Sen Spe F1 Acc

Self-train (MLP) 95.64% 47.44% 84.20% 77.56% 97.95% 33.33% 82.33% 73.72%
Self-train (C4.5) 93.59% 53.42% 84.49% 78.53% 93.85% 53.85% 84.72% 78.85%
Self-train (NB) 93.85% 44.87% 82.71% 75.48% 94.36% 45.30% 83.07% 75.96%

Co-train (C4.5) 96.15% 44.02% 83.71% 76.60% 96.67% 44.44% 84.06% 77.08%
Co-train (MLP) 97.18% 38.46% 83.02% 75.16% 97.69% 34.19% 82.38% 73.88%
Co-train (NB) 96.92% 32.05% 81.55% 72.60% 96.92% 32.05% 81.55% 72.60%

Tri-train (MLP) 96.15% 43.59% 83.61% 76.44% 94.87% 45.73% 83.43% 76.44%
Tri-train (C4.5) 93.59% 57.26% 85.38% 79.97% 94.10% 57.69% 85.75% 80.45%
Tri-train (NB) 93.59% 44.44% 82.49% 75.16% 92.82% 44.44% 82.09% 74.68%

CST-Voting (MLP) 96.92% 46.58% 84.66% 78.04% 97.69% 38.46% 83.28% 75.48%
CST-Voting (C4.5) 94.62% 55.56% 85.52% 79.97% 94.87% 56.84% 85.95% 80.61%
CST-Voting (NB) 95.13% 42.74% 82.91% 75.48% 95.13% 43.59% 83.09% 75.80%

Co-Bagging (MLP) 45.64% 45.30% 51.15% 45.51% 96.15% 37.61% 82.33% 74.20%
Co-Bagging (C4.5) 92.56% 53.85% 84.05% 78.04% 93.59% 56.84% 85.28% 79.81%
Co-Bagging (NB) 90.77% 47.44% 81.66% 74.52% 91.54% 50.85% 82.83% 76.28%

Co-Forest 97.18% 27.35% 80.72% 70.99% 98.46% 35.04% 82.94% 74.68%
Democratic-Co 96.15% 47.01% 84.36% 77.72% 97.18% 47.44% 84.98% 78.53%
DTCo 97.69% 54.27% 86.79% 81.41% 97.95% 55.98% 87.31% 82.21%

Table 3 Performance of all self-labeled algorithms for ratio R = 10% and R = 20% for Prnumonia dataset

Algorithm Ratio = 30% Ratio = 40%
Sen Spe F1 Acc Sen Spe F1 Acc

Self-train (MLP) 98.46% 34.19% 82.76% 74.36% 97.18% 40.60% 83.48% 75.96%
Self-train (NB) 93.85% 45.30% 82.81% 75.64% 94.62% 46.15% 83.39% 76.44%
Self-train (C4.5) 94.10% 56.84% 85.55% 80.13% 94.10% 57.26% 85.65% 80.29%

Co-train (MLP) 97.18% 38.89% 83.11% 75.32% 98.21% 37.18% 83.26% 75.32%
Co-train (C4.5) 96.67% 44.44% 84.06% 77.08% 96.92% 44.44% 84.19% 77.24%
Co-train (NB) 96.92% 32.05% 81.55% 72.60% 96.92% 32.91% 81.73% 72.92%

Tri-train (MLP) 96.41% 47.01% 84.49% 77.88% 96.41% 47.86% 84.68% 78.21%
Tri-train (C4.5) 94.10% 58.12% 85.85% 80.61% 94.87% 58.55% 86.35% 81.25%
Tri-train (NB) 91.54% 45.30% 81.60% 74.20% 93.08% 47.01% 82.78% 75.80%

CST-Voting (MLP) 97.69% 38.89% 83.37% 75.64% 97.69% 41.45% 83.92% 76.60%
CST-Voting (C4.5) 95.13% 59.40% 86.68% 81.73% 95.13% 59.83% 86.78% 81.89%
CST-Voting (NB) 94.87% 44.44% 83.15% 75.96% 95.64% 45.30% 83.73% 76.76%

Co-Bagging (MLP) 96.67% 43.16% 83.78% 76.60% 96.67% 44.87% 84.15% 77.24%
Co-Bagging (C4.5) 94.10% 57.69% 85.75% 80.45% 95.13% 57.69% 86.28% 81.09%
Co-Bagging (NB) 92.31% 51.28% 83.33% 76.92% 91.79% 51.71% 83.16% 76.76%

Co-Forest 98.21% 41.03% 84.08% 76.76% 97.69% 40.17% 83.64% 76.12%
Democratic-Co 97.69% 47.44% 85.23% 78.85% 98.21% 51.71% 86.46% 80.77%
DTCo 97.95% 57.26% 87.61% 82.69% 98.21% 55.56% 87.34% 82.21%

Table 4 Performance of all self-labeled algorithms for ratio R = 30% and R = 40% for Prnumonia dataset
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5 Conclusions

In this work, we proposed a new semi-supervised self-labeled algorithm for X-rays classification, called
DTCo, based on an ensemble philosophy. DTCo combines the individual predictions of three efficient
self-labeled algorithms, i.e., i.e., Democratic Co-learning, Tri-training and Co-Bagging, endorsing a
maximum-probability voting process. The efficacy of the proposed algorithm was demonstrated by a
series of experiments on two chest X-ray datasets, illustrating that reliable and robust classification
models could be developed by the adaptation of ensemble methodologies in the semi-supervised
learning framework.

Our future work is focused on enhancing the classification efficiency of DTCo utilizing more
efficient and sophisticated ensemble schemes for combination of predictions of the self-labeled algo-
rithms. Furthermore, since our numerical experiments are quite promising another interesting aspect
is focusing on expanding our experiments and applying further the proposed algorithm to several
biomedical datasets for image classification.
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