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Abstract Ensemble learning constitutes one of the most fundamental and reliable strategies
for building powerful and accurate predictive models, aiming to exploit the predictions of
a number of multiple learners. In this paper, we propose two ensemble prediction models
which exploit the classification performance of Weight-Constrained Neural Networks (WC-
NNs). The proposed models are based on Bagging and Boosting,which constitute two of
the most popular strategies, to efficiently combine the predictions of WCNN classifiers. We
conducted a series of experiments using a variety of benchmarks from UCI repository in
order to evaluate the performance of the two proposed modelsagainst other state-of-the-art
ensemble classifiers. The reported experimental results illustrate the prediction accuracy of
the proposed models providing empirical evidence that the hybridization of ensemble learn-
ing and WCNNs can build efficient and powerful classificationmodels.
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