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Abstract Ensemble learning constitutes one of the most fundamentalediable strategies
for building powerful and accurate predictive models, aignio exploit the predictions of
a number of multiple learners. In this paper, we propose mgemble prediction models
which exploit the classification performance of Weight-Swained Neural Networks (WC-
NNSs). The proposed models are based on Bagging and Boostinigh constitute two of
the most popular strategies, to efficiently combine theiptieshs of WCNN classifiers. We
conducted a series of experiments using a variety of bendsnfeom UCI repository in
order to evaluate the performance of the two proposed medglsist other state-of-the-art
ensemble classifiers. The reported experimental reshltdrite the prediction accuracy of
the proposed models providing empirical evidence that yheidization of ensemble learn-
ing and WCNNSs can build efficient and powerful classificatioodels.

Keywords Weight-constrained neural networkensemble learningbagging- boosting-
AdaBoost.
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