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Abstract. The prediction of stock index movement is considered a rather significant objective in the financial world, since a

reasonably accurate prediction has the possibility of gaining profit in stock exchange, yielding high financial benefits and hedg-

ing against market risks. Undoubtedly, the area of financial analysis has been dramatically changed from a rather qualitative

science to a more quantitative science which is also based on knowledge extraction from databases. During the last years, deep

learning constitutes a significant prediction tool in analyzing and exploiting the knowledge acquired from financial data. In this

paper, we propose a new Deep Neural Network (DNN) prediction model for forecasting stock exchange index movement. The

proposed DNN is characterized by the application of conditions on the weights in the form of box-constraints, during the training

process. The motivation for placing these constraints is focused on defining the weights in the trained network in more uniform

way, by restricting them from taking large values in order for all inputs and neurons of the DNN to be efficiently exploited and

explored. The training of the new DNN model is performed by a Weight-Constrained Deep Neural Network (WCDNN) training

algorithm which exploits the numerical efficiency and very low memory requirements of the L-BFGS (Limited-memory Broy-

den–Fletcher–Goldfarb–Shanno) matrices together with a gradient-projection strategy for handling the bounds on the weights

of the network. The performance evaluation carried out on three popular stock exchange indices, demonstrates the classification

efficiency of the proposed algorithm.
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1. Introduction

Stock markets constitute a fundamental component

of financial markets and play a significant role in

the countries’ economies. They facilitate international

trade, aggregate and convoy information about com-

panies funds and enable economic growth. The stock

market index is one of the main tools used by investors

and financial managers to describe the market and

compare the returns on specific investments. Forecast-

ing stock index value and/or movement is considered

essential for portfolio management and banks’ invest-
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ments, constituting a key element for better decision-

making, in the increasing financial market volatility

and internationalized capital flows. More specifically,

the accurate prediction of the trends of the stock index

can assist investors to acquire opportunities for gaining

profit in stock exchange, minimizing investment risk

and maximizing return. The traditional prediction ap-

proach is based on historical numerical data such as the

previous trend, trading volume, earnings surprise and

some other numerical information. Notice that efficient

market hypothesis states that ”stock prices are infor-

mationally efficient” which means that it is possible to

predict stock prices based on trading data [10, 17, 18].

The vigorous advances in digital technologies as

well as the significant storage capabilities of electronic
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media have ultimately led to the accumulation and

maintenance of large repositories of data from daily

activity of different resources by the stock markets.

Therefore, researchers and financial stockholders are

under extreme pressure to analyze them for extract-

ing useful knowledge in order to support policy deci-

sions. However, financial data has enormous noise and

complex dimensionality due to the volatile and chaotic

dynamics of the markets and the many non-decidable,

nonstationary stochastic factors involved. As a result,

the process of leveraging and analyzing these data con-

stitutes an attractive and challenging task for many fi-

nancial experts and investors which often require huge

efforts [4, 13].

During the last decades, several techniques have

been applied and developed to predict stock trends,

while most sophisticated analysis employs machine

learning algorithms in order to gain a more meticulous

view into the stock index. Artificial Neural Networks

(ANNs) constitute a machine learning technique which

has been widely utilized for predicting stock values

and stock index movement [2, 12, 15, 16]. Due to their

excellent capability of self-adopting and self-learning,

they have been successfully applied to exploit financial

data while in most cases they were found to be more

accurate than other prediction models [7, 19, 22] Nev-

ertheless, recent studies have shown that ANNs exhibit

inconsistent and unpredictable behavior on stock mar-

ket data [23]. The major drawback of ANNs is that

they are characterized by shallow architectures since

they are mostly constituted by one hidden layer. Fur-

thermore, another drawback is the poor performance of

the training algorithm since it may be trapped into a lo-

cal optimal solution during the training process, there-

fore over-fitting. Deep learning has been proposed as

a new direction for addressing these drawbacks and it

has been successful applied in many real-world appli-

cation areas (see [6, 8, 21] and the references there in).

Deep learning networks are characterized by deeper ar-

chitectures with many hidden layers, producing even

better performance than shallow models to financial

time series data [1,7,16,17,25]. To this end, during the

last decade, the developments and advances of deep

learning in decision-making have gained popularity,

addressing many issues in banking and finance.

Recently, there has been proposed a new approach

for improving the generalization ability of ANNs.

More specifically, Livieris [9] applied additional con-

ditions on the weights in the form of bound-constraints,

during the training process. Thus, re-formulating the

problem of training a neural network to a constrained

optimization problem, that is

min{E(w) : w ∈ B}, (1)

with

B = {w ∈R
n : l ≤ w ≤ u}, (2)

where E(w) is the error function which depends on the

connection weights w of the network and the vectors

l,u ∈ R
n denote the lower and upper bounds on the

weights, respectively. Furthermore, in order to evalu-

ate the efficacy and the efficiency of this approach, a

weight constrained training algorithm was proposed,

presenting some interesting and promising results. The

rationale behind this approach aims in defining the

weights of the trained network in a more uniform way

in order to explore and exploit all inputs and neurons

of the network.

Motivated by the previous works, we propose a

deep learning neural network prediction model with

three hidden layers for forecasting stock exchange in-

dex movement. The classification efficiency of the pro-

posed model is based on a new weight-constrained

deep neural network training algorithm which adopts

the advantages of the approach presented in [9]. The

performance evaluation carried out on three of the

most popular stock exchange indices, the Dow Jones

Industrial Average (DJIA) index, the National Asso-

ciation of Securities Dealers Automated Quotations

(NASDAQ) index and the Standard & Poor’s (S&P)

500 index, demonstrates the classification efficiency of

the proposed algorithm. The aim of this work focuses

on demonstrating the superiority of constrained neural

networks in stock market data analysis.

The remainder of this paper is organized as follows:

Section 2 presents a survey of recent studies concern-

ing the application of deep learning in stock market

analysis. Section 3 presents a detailed description of

the proposed weight constrained deep learning algo-

rithm. Section 4 presents a brief description of the data

collection and data preparation utilized in our study.

Section 5 presents our experimental results, utilizing

the performance profiles Dolan and Morè [3]. Finally,

Section 6 presents the concluding remarks and our pro-

posals for future research.
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2. Related work

Research on the predictability of stock markets has

a long history in financial economics; while opinions

differ on the efficiency of markets, many widely ac-

cepted empirical studies show that financial markets

are to some extent predictable. Recently, there has

been a resurgence of interest in deep learning which

has been effectively applied to financial problems. A

number of rewarding studies have been carried out in

recent years and some useful outcomes are briefly pre-

sented below.

Patel et al. [17] aimed on addressing the problem of

predicting direction of movement of stock and stock

price index for Indian stock markets. Their approaches

for the input data consists of two methodologies in

which the first involves computation of ten techni-

cal parameters using stock trading data while the sec-

ond focuses on representing these technical parame-

ters as trend deterministic data. Furthermore, they in-

vestigated four prediction models: artificial neural net-

works, support vector machines, random forests and

Naive-Bayes. Their extensive numerical experimental

revealed that for the first approach of input data ran-

dom forests presented the best overall classification

efficiency and the performance of models improved

when the technical parameters were represented as

trend deterministic data.

Tsantekidis et al. [25] proposed a deep learning

methodology, based on recurrent neural networks, for

predicting future mid-price movements from large-

scale high-frequency limit order data. Their proposed

prediction model consists of a Long Short-Term Mem-

ory (LSTM) neural network which was evaluated on

a large-scale dataset of limit order book events. The

presented experimental results illustrated that it signif-

icantly outperforms other prediction models such as

support vector machines and artificial neural networks.

Singh et al. [23] presented a novel hybrid method-

ology utilizing 2-Directional 2-Dimensional Princi-

pal Component Analysis for dimensionality reduction

together with deep learning for stock data forecast-

ing. The data utilized in their study were collected

from NASDAQ concerning 2843 working days of the

Google stock multimedia (chart). Moreover, the au-

thors presented some encouraging experimental re-

sults, revealing that their proposed methodology out-

performs state-of-the-art prediction models.

Chong et al. [1] presented a systematic analysis of

the use of deep learning networks for stock market

analysis. Additionally, they described in detail a com-

prehensive and objective assessment of both the advan-

tages and drawbacks of deep learning algorithms for

stock market analysis and prediction. Based on their

numerical experiments the authors presented the supe-

riority of deep learning networks and also suggested

promising extensions and directions of further investi-

gation.

In more recent works, Pang et al. [16] focused on

achieving better stock market predictions by devel-

oping an innovative neural network approach. More

specifically, they illustrated the concept of “stock vec-

tor”, based on the development of word vector in deep

learning, which implies that the input is the multi-stock

high-dimensional historical data instead of a single in-

dex or single stock index. Additionally, they proposed

a deep LSTM neural network with one embedded layer

and a LSTM neural network with automatic encoder to

predict the stock market. In both models the embedded

layer and the automatic encoder were utilized to vec-

torize the data, in a bid to forecast the stock via LSTM

neural network. The presented accuracy of these two

prediction models for the Shanghai A-shares compos-

ite index was 57.2% and 56.9%, respectively; while for

individual stocks was 52.4% and 52.5%, respectively.

Fisher et al. [5] evaluated the performance of LSTM

neural networks to financial time series prediction

tasks. More specifically, their research was focused

on predicting out-of-sample directional movements for

the constituent stocks of the S&P 500 from 1992 until

2015. They compared the performance of the LSTM

network against a random forest, a standard deep net,

as well as a simple logistic regression. Their extensive

numerical experiments revealed that the LSTM net-

works were the most efficient and accurate machine

learning technique. Based on the common patterns of

the LSTM portfolio, they also devised a simplified

rules-based trading strategy. Additionally, the authors

stated that their proposed methodology was able to ef-

fectively extract meaningful information from noisy fi-

nancial time series data.

In this work, we propose a new weight-constrained

DNN model with three hidden layers for forecasting

stock exchange index movement which constitutes the

main novelty of this work. The model is characterized

by the application of conditions on the weights in the

form of box-constraints, during the training process.

The motivation for placing constraints on the values of

weights is to considerably reduce the likelihood that

some weights will “blow up” to unrealistic values by

restricting them from taking large values. The train-

ing of the new model is performed by a new Weight-
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Algorithm 1: Weight-Constrained Deep Neural Network (WCDNN)

Step 1: Initiate w0 and vectors l and u.

Step 2: Set k = 0.

Step 3: repeat

Step 4: Calculate the error function value Ek and its gradient ∇Ek at wk.

Step 5: Set the quadratic model (3) at wk.

Step 6: Calculate the generalized Cauchy point wC. (Stage I)

Step 7: Define the active set A (wC).

Step 8: Minimize the quadratic model (3) with respect to the non-active variables (Stage II)

wk+1 = arg min
w∈DS

mk(w)

where DS =
{

w ∈ R | li ≤ wi ≤ ui, ∀i 6∈ A (wC)
}

.

Step 9: Set dk = wk+1 −wk. (Stage III)

Step 10: Compute the learning rate ηk satisfying the strong Wolfe line search conditions (4) and (5).

Step 11: Update the weights wk+1 = wk +ηkdk and set k = k+1.

Step 12: until (stopping criterion).

Constrained Deep Neural Network (WCDNN) training

algorithm which utilized a gradient-projection strategy

for handling the bounds on the weights of the network

together with the computational efficiency of the L-

BFGS matrices.

3. Weight constrained deep neural network

training algorithm

In this section, we present the proposed Weight-

Constrained Deep Neural Network (WCDNN) train-

ing algorithm for the prediction of stock index move-

ment. For completeness, a high level description of the

proposed algorithm is presented in Algorithm 1.

At each iteration, the proposed algorithm WCDNN

calculates the error function value Ek and its gradient

∇Ek at wk (Step 4). Then, WCDNN approximates the

error function E(w) by a quadratic model mk(w) at a

point wk, namely

mk(w) = Ek+gT
k (w−wk)+

1

2
(w−wk)

T Bk(w−wk) (3)

where Ek = E(wk), gk is the gradient of the error func-

tion at wk and Bk is a positive-definite L-BFGS Hes-

sian approximation [11] (Step 5).

In the sequel, the algorithm performs a minimiza-

tion procedure of the approximation model mk(w) to

compute the new vector of weights, which consists of

three stages: the generalized Cauchy point, the sub-

space minimisation; and the line search.

Stage I: Cauchy point computation. The quadratic

model (3) is approximately minimized subject to the

feasible domain B utilizing the gradient projection

method in order to compute the generalized Cauchy

point wC (Step 6). Eventually, the active set A (wC)

is calculated which consists of the indices of weights

whose values at wC are at lower or upper bound; thus

these weights are held fixed (Step 7).

Stage II: Subspace minimization. After the active set

of variables is obtained, then the model (3) is approx-

imately minimized with respect to the non-active vari-

ables utilizing a direct primal method [11] (Step 8).

It is worth mentioning that the minimization is per-

formed in the subspace composed by non-active vari-

ables, allowing savings in computational time, espe-

cially when dealing with large and deep neural net-

works.

Stage III: Line search. The new vector of weights

wk+1 is computed by performing a line search along

the search direction dk (Step 9) which satisfies the

strong Wolfe line search conditions

Ek+1 ≤ Ek + c1ηk∇ET
k dk, (4)

|∇ET
k+1dk| ≤ c2|∇ET

k dk|. (5)

with 0 ≤ c1 ≤ c2 < 1 (Step 10).
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Index Training set Testing test

Decrease % Increase % Decrease % Increase %

DJIA10 916 45.73% 1087 54.27% 114 47.50% 126 52.50%

DJIA20 910 45.66% 1083 54.34% 110 47.62% 121 52.38%

DJIA30 905 45.64% 1078 54.36% 116 50.22% 115 49.78%

NASDAQ10 880 43.93% 1123 56.07% 114 47.50% 126 52.50%

NASDAQ20 874 43.85% 1119 56.15% 110 47.62% 121 52.38%

NASDAQ30 871 43.92% 1112 56.08% 104 47.06% 117 52.94%

S&P10 912 45.53% 1091 54.47% 117 48.75% 123 51.25%

S&P20 906 45.46% 1087 54.54% 114 49.35% 117 50.65%

S&P30 901 45.44% 1082 54.56% 108 48.87% 113 51.13%

Table 1

The number of up and down movements of DJIA index, NASDAQ

index and S&P 500 index

4. Datasets

For the purpose of this study, we have used data

from 2264 trading days from January 4, 2009 to De-

cember 31, 2018, including daily indicators from the

daily price of the DJIA index, NASDAQ index and

S&P 500 index1. The data were divided in training

set and testing set. The training set consists of data

from January 4, 2009 to December 31, 2017 (9 years)

which ensures a substantial amount of data for train-

ing whereby 9 years of index movements should cover

a wide range of long term and short term trends. The

testing set comprises data from January 4, 2018 to De-

cember 31, 2018 which ensures that we forecast our

evaluation metrics on unseen out-of-sample data.”

Each record of includes daily information about the

stock market. Table 2 presents a set of the five specific

attributes utilized in our study. The first two attributes

concern the price of the index at the beginning and at

the end of the day. The following two attributes repre-

sent the highest and the lowest price of the index dur-

ing the day. The last attribute concerns the number of

shares of stock (in thousands) that traded hands in each

day.

Summarizing, nine datasets have been created, three

for each financial index, for a window size of 10, 20

and 30. Window size is the number of days for which

the data is being taken into account for predicting the

next day’s data. For example, window size 10 means

data is being taken for 10 days and results are predicted

for 11th day.

1All data were obtained from http://finance.yahoo.com

website.

Attribute Values

Opening price Numeric

Closing price Numeric

High price Numeric

Low price Numeric

Volume (in thousands) Numeric

Table 2

Attribute description

– The datasets DJIA10, DJIA20 and DJIA30

contain the attributes concerning indicators from

10, 20 and 30 days of the DJIA index, respec-

tively.

– The datasets NASDAQ10, NASDAQ20 and

NASDAQ30 contain the attributes concerning

indicators from 10, 20 and 30 days of the NAS-

DAQ index, respectively.

– The datasets S&P10, S&P20 and S&P30 con-

tain the attributes concerning indicators from 10,

20 and 30 days of the S&P 500 index, respec-

tively.

Thus, we utilized various window sizes to test which

sizes gives the better result. In our numerical exper-

iments, we included windows size of 10, 20 and 30,

which provide us better classification performance.

5. Experimental results

In this section, we conduct a performance evalua-

tion of the proposed WCDNN algorithm against the

state-of-art training algorithms Resilient backpropaga-

tion [20] and Stochastic Gradient Descent with mo-

mentum [24].
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Table 3 presents the number of features (#Features),

the deep network architectures (with 3 hidden layers)

and the total number of weights for each window size.

Window #Features Neural network Total number

size architecture of weights

10 50 50-100-50-20-2 11212

20 100 100-120-60-15-2 20327

30 150 150-200-75-20-2 46837

Table 3

Brief description of datasets and neural network architectures used

in our study

All neural networks utilized logistic sigmoid acti-

vation functions, received the same sequence of input

patterns and the initial weights were initiated using

the Nguyen-Widrow method [14]. The implementation

code was written in Matlab 7.6 and the Resilient back-

propagation and the Stochastic Gradient Descent with

momentum were utilized with their default optimized

parameter settings [20,24]. The simulations have been

carried out on a PC (2.66GHz Quad-Core processor,

4GB RAM) running Linux operating system while the

results have been averaged over 100 simulations.

The performance of the training algorithms was

evaluated utilizing the following two performance

metrics: F1-score and accuracy. It is worth noticing

that F1-score consists of a harmonic mean of precision

and recall while accuracy is the ratio of correct predic-

tions of a classification model [9].

Furthermore, since a small number of simulations

tend to dominate these results, the cumulative total

for a performance metric over all simulations does

not seem to be too informative. Therefore, similar to

[9], we also utilized the performance profiles of Dolan

and Morè [3] relative to both performance metrics,

to present perhaps the most complete information in

terms of robustness, efficiency and solution quality.

The use of performance profiles eliminates the influ-

ence of a small number of simulations on the bench-

marking process and the sensitivity of results associ-

ated with the ranking of solvers [3]. The performance

profile plots the fraction P of simulations for which any

given algorithm is within a factor τ of the best training

algorithm.

The curves in the following figures have the follow-

ing meaning:

– “RPROP” stands for Resilient backpropagation.

– “SGD” stands for Stochastic Gradient Descent

with momentum.

– “WCDNN1” stands for Algorithm 1 with bounds

on the weights −1 ≤ wi ≤ 1.

– “WCDNN2” stands for Algorithm 1 with bounds

on the weights −2 ≤ wi ≤ 2.

5.1. Performance evaluation on DJIA index

Tables 4 and 5 present the performance of the

training algorithms RPROP, SGD, WCDNN1 and

WCDNN2 for DJIA index, regarding F1-score and ac-

curacy, respectively. Notice that the highest classifica-

tion accuracy is highlighted in bold for each window

size and performance metric. It is worth mentioning

that WCDNN1 and WCDNN2 outperformed the classi-

cal training algorithms, relative to all window sizes. In

more detail, WCDNN2 reported the highest F1-score

for windows size 10 and 20, followed by WCDNN1;

while for window size 30, WCDNN1 exhibited the best

F1-score. Additionally, WCDNN1 presented 54.04%,

56%, 53.64% average classification accuracy for win-

dow size 10, 20 and 30, respectively, exhibiting the

highest performance.

Algorithm DJIA10 DJIA20 DJIA30

RPROP 62.14% 61.12% 57.51%

SGD 61.86% 61.79% 59.06%

WCDNN1 63.33% 63.03% 60.50%

WCDNN2 64.07% 63.10% 60.36%

Table 4

Performance evaluation of training algorithms for DJIA index, rela-

tive to F1-score

Algorithm DJIA10 DJIA20 DJIA30

RPROP 52.28% 54.17% 51.03%

SGD 52.13% 54.43% 52.29%

WCDNN1 54.04% 56.00% 53.64%

WCDNN2 53.32% 55.43% 53.36%

Table 5

Performance evaluation of training algorithms for DJIA index, rela-

tive to accuracy
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Fig. 1. Log10 scaled performance profiles for DJIA index based on

F1-score
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Figures 1 and 2 present the performance profiles for

DJIA index of all deep learning algorithms, based on

F1-score and accuracy, respectively. Clearly, the pro-

posed algorithm WCDNN1 presented the highest prob-

ability of being the optimal solver, regarding all win-

dow sizes, followed by WCDNN2. More specifically,

regarding the F1-score, WCDNN2 exhibited the best

performance for window size 10; while for window

size 20 exhibited almost identical performance with

WCDNN1. Furthremore, WCDNN1 reported 45%,

56% and 50% of simulations with the highest classi-

fication accuracy, for windows size 10, 20 and 30, re-

spectively; while WCDNN2 reported 32%, 29% and

33% in the same situations. Based on the above dis-

cussion, we concluded that the bounds on the weights,

substantially led to the development of trained deep

neural networks with improved classification accuracy.

Furthermore, the tighter the bounds get, the higher the

chance for good classification generalisation.

5.2. Performance evaluation on NASDAQ index

Tables 6 and 7 present the average performance of

each training algorithm for NASDAQ index, relative

to all windows sizes. As mentioned above, the accu-

racy measure of the best performing algorithm is high-

lighted in bold. Regarding F1-score, WCDNN1 pre-

sented the best performance for window size 10 and 30

(66.41% and 61.76%, respectively) while WCDNN2

presented the best performance for window size 20

(62.08%). Relative to the classification accuracy, the

aggregated results show that WCDNN1 is the most ef-

fective algorithm for all windows sizes. Finally, it is

worth mentioning that all training algorithms exhibited

the best performance for window size 10.

Algorithm NASDAQ10 NASDAQ20 NASDAQ30

RPROP 64.32% 60.90% 59.42%

SGD 63.98% 59.82% 59.43%

WCDNN1 66.41% 61.67% 61.76%

WCDNN2 65.92% 62.08% 61.67%

Table 6

Performance evaluation of training algorithms for NASDAQ index,

relative to F1-score

Algorithm NASDAQ10 NASDAQ20 NASDAQ30

RPROP 53.99% 52.06% 51.59%

SGD 54.89% 52.12% 52.48%

WCDNN1 57.10% 54.08% 54.48%

WCDNN2 56.18% 53.94% 54.35%

Table 7

Performance evaluation of training algorithms for NASDAQ index,

relative to accuracy

Figures 3 and 4 illustrate the performance pro-

files for NASDAQ index, F1-score and accuracy, in-

vestigating the classification efficiency of each deep

learning algorithm. Firstly, it is worth noticing that

WCDNN1 and WCDNN2 outperformed the classical

training algorithms, regarding both performance met-

rics. As regards the F1-score metric, WCDNN1 illus-

trated the best performance for window size 10 and

30; while WCDNN2 presented the best performance

for window size 20. Relative to accuracy, WCDNN1

and WCDNN2 reported 52% and 24% of simulations

with the highest classification accuracy for windows

size 10, respectively while RPROP and SGD reported

16% and 10%, respectively. For windows size 20,

WCDNN1 and WCDNN2 presented 38% and 42% of

simulations with the highest classification accuracy, re-

spectively while RPROP and SGD presented 16% and

14%, respectively. For windows size 30, WCDNN1

and WCDNN2 reported 52% and 44% of simulations

with the highest classification accuracy, respectively

while RPROP and SGD reported 10% and 6%, respec-

tively. Therefore, we conclude the tighter the bounds

get, the higher the classification accuracy.
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Fig. 3. Log10 scaled performance profiles for NASDAQ index based

on F1-score
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Fig. 4. Log10 scaled performance profiles for NASDAQ index based

on accuracy

5.3. Performance evaluation on S&P 500 index

Tables 8 and 9 present the average performance of

each training algorithm for S&P 500 index, relative

to F1-score and accuracy, respectively. As regards the

performance the proposed algorithm, WCDNN1 and

WCDNN2 outperformed the classical training algo-

rithms, regarding all window sizes and performance

metrics. Furthermore, for window size 10, WCDNN2

reported the highest F1-score; while WCDNN1 presents

the best classification accuracy. For window size

20 and 30, the best performance was presented by

WCDNN1 and WCDNN2, respectively, relative to

both performance metrics. Thus, we conclude that

in contrast to the previous benchmarks, in case the

bounds are too tight, this substantially did not benefit

much the classification performance of the networks.
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Finally, it is worth mentioning that all algorithms ex-

hibited the best performance for window size 10.

Algorithm S&P10 S&P20 S&P30

RPROP 63.05% 58.98% 57.83%

SGD 61.58% 58.77% 58.15%

WCDNN1 63.56% 60.26% 59.35%

WCDNN2 64.07% 59.84% 59.77%

Table 8

Performance evaluation of training algorithms for S&P 500 index,

relative to F1-score

Algorithm S&P10 S&P20 S&P30

RPROP 52.46% 52.20% 52.05%

SGD 52.82% 52.03% 52.42%

WCDNN1 54.63% 54.06% 53.69%

WCDNN2 54.13% 52.94% 53.83%

Table 9

Performance evaluation of training algorithms for S&P 500 index,

relative to accuracy

Figure 5 presents the performance profiles for S&P

500 index based on the F1-score metric. Both ver-

sions of the proposed algorithm illustrated the highest

probability of being the optimal training algorithms.

In more detail, WCDNN2 exhibited the best perfor-

mance, reporting 37% and 52% of simulations with

the best F1-score for window size 10 and 30, respec-

tively; followed by WCDNN1 which reported 30%

and 38% in the same situations. For window size 20,

WCDNN1 and WCDNN2, exhibited almost identical

performance, presenting 34% and 32% of simulations

with the best F1-score, respectively while RPROP and

SGD presented 26% and 12%, respectively.

Figure 6 presents the performance profiles for S&P

500 index based on the accuracy metric investigating

the efficiency of each training algorithm. Similar con-

clusions can be made with the previous analysis. Both

WCDNN1 and WCDNN2 exhibited the best perfor-

mance, regarding all window sizes. More specifically,

WCDNN1 reported 40%, 45% and 38% of simulations

with the highest classification accuracy for windows

size 10, 20 and 30, respectively; while WCDNN2 re-

ported 37%, 29% and 41% in the same situations. As
regards the classical training algorithms, RPROP pre-

sented 13%, 24% and 21% of simulations with the best

accuracy for windows size 10, 20 and 30, respectively;

while SGD presented 18%, 8% and 10% in the same

situations.
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Fig. 5. Log10 scaled performance profiles for S&P 500 index based

on F1-score
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Fig. 6. Log10 scaled performance profiles for S&P 500 index based

on accuracy

Summarizing, the interpretation of Tables 4-9 and

Figures 1-6 demonstrate that WCDNN performed bet-

ter than the classical training algorithms Rprop and

SGD. This better performance can be attributed to the

application of box-constraints on the weights, which

inhibits weights to take up unrealistic (large) values.

Therefore, the preliminary numerical experiments pro-

vide empirical evidence that the proposed training al-

gorithm trains deep neural networks with better classi-

fication performance on average.

Regarding the selection of the bounds on the weights,

we observed that WCDNN presented the best aver-

age performance utilizing the bounds [−1,1] in five

datasets i.e. DJIA20, DJIA30, NASDAQ10, NAS-

DAQ30, S&P20. In contrast, WCDNN using the

bounds [−2,2], exhibited the best average performance

in two datasets i.e. DJIA10, NASDAQ20 and S&P30;

while for datasets NASDAQ20 and S&P10 WCDNN

reported similar performance, regarding both selected

weight bounds. Therefore, we are able to conclude that

the tighter the bounds get, the higher the chance for

good generalization performance in most cases; never-

theless, this is not a general case.

6. Conclusions and future research

In this work, we proposed a new weight-constrained

DNN model with three hidden layers for forecasting

stock exchange index movement. The proposed model

is characterized by the application of box-constraints

on its weights during the training process. The ratio-

nale for placing additional constraints on the values of

weights is to define the weights of the trained network

in a more uniform way in order to explore and exploit

all inputs and neurons of the deep neural network. In

other words, our approach aims in considerably reduc-

ing the likelihood that some weights will “blow up”

to unrealistic values by restricting them from taking

large values. The training of the new model is per-

formed by a new training algorithm, called WCDNN,

which exploits the computational efficiency and very

low memory requirements of the L-BFGS matrices to-

gether with a gradient-projection strategy for handling

the bounds on the weights of the network. Our numeri-

cal experiments illustrated the classification efficiency

of the proposed algorithm, as confirmed statistically

by the performance profiles. Therefore, we are able to

conclude that the proposed algorithm, appears to effi-

ciently train deep neural networks with improved clas-
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sification ability in domains such as forecasting stock

index movement.

In our future work, we intent to incorporate our

proposed methodology to more advanced and com-

plex neural network architectures such as recurrent

and LSTM neural networks, together with regulariza-

tion techniques. Furthermore, another interesting di-

rection for future research could be the evaluation the

proposed methodology versus relevant frameworks ad-

dressing the forecasting stock exchange index move-

ment. Finally, since our experimental results are quite

encouraging, a next step could be the application of

our proposed framework for predicting the value stock

price indices and prices.
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