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ABSTRACT

In this work, we present a new conjugate gradient method adapt-

ing the approach of the hybridization of the conjugate gradient

update parameters of DY and HS+ convexly, which is based on

a quasi-Newton philosophy. The computation of the hybrization

parameter is obtained by minimizing the distance between the hy-

brid conjugate gradient direction and the self-scaling memoryless

BFGS direction. Our numerical experiments indicate that our pro-

posed method is preferable and in general superior to classic con-

jugate gradient methods in terms of e�ciency and robustness.
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1 INTRODUCTION

Let us consider the unconstrained optimization problem

min
x ∈Rn

f (x), (1)

where f : Rn → R is a continuously di�erentiable function and its

gradient is denoted by д(x) = ∇ f (x). Conjugate gradient methods

is probably the most popular class of unconstrained optimization

algorithms, characterized by their low memory requirements, sim-

ple computations and strong global convergence properties. Gener-

ally, a nonlinear conjugate gradient method generates a sequence

of points {xk }, starting from an initial point x0 ∈ Rn , using the

iterative formula

xk+1 = xk + αkdk , k = 0, 1, . . . (2)

where xk is the k-th approximation to the solution of (1), αk > 0 is

the stepsize obtained by a line search and dk is the search direction

which is de�ned by

dk+1 = −дk+1 + βkdk , d0 = −д0 (3)

where дk = д(xk ). Conjugate gradient methods di�er in their way

of de�ning the update parameter βk . If f is a strictly convex qua-

dratic function, and the performed line search is exact, all these

methods are equivalent, but for a general function di�erent choices

of βk give rise to distinct conjugate gradient methods with quite

di�erent computational e�ciency and convergence properties.

Hager and Zhang [25] presented an excellent survey in which

the essential conjugate gradient methods are divided in two main

categories. The �rst category includes the Fletcher-Reeves (FR)method

[21], the Dai-Yuan (DY) method [16] and the Conjugate Descent

(CD) method [20] with the following update parameters

βFR
k
=

‖дk+1‖
2

‖дk ‖
2
, βDY

k
=

‖дk+1‖
2

dT
k
yk
, βCD

k
= −

‖дk+1‖
2

dT
k
дk
,
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which all share the common numerator ‖дk+1‖
2 in βk . The second

category includes the Polak-Ribière (PR)method [39], theHestenes-

Stiefel (HS) method [26] and the Liu and Storey (LS) method [30]

which all have the same numerator дT
k+1

yk in βk . The update pa-

rameters of these methods are respectively speci�ed as follows

βPR
k
=

дT
k+1

yk

‖дk ‖
2
, βHS

k
=

дT
k+1

yk

dT
k
yk
, βLS

k
= −

дT
k+1

yk

dT
k
дk
.

The conjugate gradient methods in the �rst category possess strong

global convergence properties [1, 17, 33] while the methods in the

second category lack convergence in certain circumstances and

as a result they can cycle in�nitely without presenting any sub-

stantial progress [41]. However, the methods in the �rst category

usually exhibit poor computational performance due to the jam-

ming phenomenon [40] i.e. the algorithms can take many short

steps without making signi�cant progress to the solution. In con-

trast, the methods in the second category possess an automatic

approximate restart procedure which avoids jamming from occur-

ring, hence, their numerical performance is often superior to the

performance of the methods with ‖дk+1‖
2 in the numerator of βk .

In the literature, much e�ort has been devoted to develop new

conjugate gradient methodswhich possess strong convergence prop-

erties and are also computationally superior to classical methods

by hybridizing the above two approaches. The main idea behind

the hybridization approach is to exploit the convergence proper-

ties of a conjugate gradient method from the �rst category and

switch to a conjugate gradient from the second category when the

iterations jam. Along this line, sample works include the hybridiza-

tions of FR and PR methods [22, 27, 43], the hybridizations of HS

and DY methods [18, 44] and the hybridization of LS and CD meth-

ods [43]. Notice that, in these methods the update parameter is

calculated based on discrete combinations of update parameters of

the two categories.

In more recent works, Andrei [5–7] proposed a new class of hy-

brid conjugate gradient algorithms which is based on the concept

of convex combination of classical conjugate gradient algorithms.

Based on his numerical experiments he concluded the performance

of the hybrid variants based on the concept of convex combina-

tion is better than that of the constituents. Following Andrei’s ap-

proach, Babaie-Kafaki et al. [9–11, 13] proposed some globally con-

vergent conjugate gradient methods in which the update parame-

ter βk is determined as the convex combination of βDY
k

and βHS+
k

,

namely

βHCG+
k

= λkβ
DY
k
+ (1 − λk )β

HS+
k
, (4)

with βHS+

k
= max{βHS

k
, 0} and the scalar λk ∈ [0, 1] is the hybridiza-

tion parameter. Notice that if λk = 0, then βHCG+
k

= βHS+
k

and if

λk = 1, then βHCG+
k

= βDY
k
. Moreover, the authors presented some

promising numerical results in case the hybrization parameter is

adaptively calculated by

λk = −2
‖yk ‖

2

sT
k
yk

sT
k
дk+1

дT
k
дk+1

, (5)

which is based on a modi�ed secant equation.

Motivated by the computational e�ciency of the HCG+method,

we propose a new adaptive choice for the computation of the pa-

rameter λk based on a quasi-Newton philosophy. More speci�cally,

the value of the hybrization parameter is obtained by minimizing

the distance between the hybrid conjugate gradient direction and

the self-scaling memoryless BFGS direction.

The remainder of this paper is organized as follows. In Section 2,

we present our new hybrid conjugate gradient method and in Sec-

tion 3, we report the numerical experiments using the performance

pro�les of Dolan and Morè. Finally, Section 4 presents our conclud-

ing remarks.

2 MODIFIED HYBRID CONJUGATE

GRADIENT METHOD

2.1 Self-scaling memoryless BFGS

The self-scaling memoryless BFGS (SSML-BFGS) method is gen-

erally considered as one of the most e�cient method for solving

large-scale optimization problems [8, 28, 33] due to its strong theo-

retical properties and favorable computational performance. More-

over, it provides a good understanding about the relationship be-

tween nonlinear conjugate gradient methods and quasi-Newton

methods [4, 38, 42].

Generally, the SSML-BFGS matrices are computed based on the

L-BFGS philosophy [29, 32] using information from the most re-

cent iteration. Given an initial matrix B0 = θI , θ ∈ R\{0}, and the

BFGS update formula

Bk+1 = Bk −
Bksks

T
k
Bk

sT
k
Bksk

+

yky
T
k

sT
k
yk
,

the resultingminimal memory BFGS update scheme takes the form

Bk+1 = θk I − θk
sks

T
k

sT
k
sk
+

yky
T
k

sT
k
yk
,

whereθk ∈ R\{0} is the scaling parameter. Additionally, the search

direction in this method is generated by

dk+1 = −B−1k+1дk+1,

where B−1
k+1

is the inverse of Hessian approximation which can be

easily calculated by the following expression [32]

B−1
k+1 =

1

θk
I −

1

θk

sky
T
k
+ yks

T
k

sT
k
yk

+

(

1 +
1

θk

‖yk ‖
2

sT
k
yk

)

sks
T
k

sT
k
yk
. (6)

It is pointed out by many researchers [2, 3, 31, 34–37] that e�-

ciency of the SSML-BFGS is heavily depended on the selection of

the scaling parameter θk . The idea behind scaling is to achieve an

ideal distribution of the eigenvalues of update formula (6), improv-

ing its condition number and consequently increasing the numeri-

cal stability of the method [33]. Based on the analysis of quadratic

objective functions, there have been proposed two very popular

and e�ective adaptive formulae for the computation ofθk . The �rst

one has been proposed by Oren and Luenberger [36]

θOL
k
=

sT
k
yk

‖sk ‖
2
, (7)

while the second one by Oren and Spedicato [37]

θOS
k
=

‖yk ‖
2

sT
k
yk
. (8)
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However, Nocedal and Yuan [34] reported some very disappoint-

ing numerical experiments in which the best self-scaling BFGS al-

gorithm of Oren and Luenberger [36] performs badly compared

to the classical BFGS algorithm when applied with inexact line

search to a simple quadratic function of two variables. Later, Al-

Baali [2] presented a globally and superlinearly convergent with

inexact line search under the additional condition that

θk ≤ 1. (9)

Condition (9) is motivated by the fact that the eigenvalues of Hes-

sian approximation Bk+1 can be reduced if θk < 1 and hence

smaller eigenvalues are introduced in Bk+1 if the eigenvalues of

Bk are large. Numerical evidences [2, 3] presented that the per-

formance of the self-scaling BFGS was improved substantially and

concluded that the proposed scaled method was computationally

superior to the original one.

For more choices and information on scalar θk , we refer to [2, 3,

31, 34–37] and the references therein.

2.2 New hybrization parameter based on the

SSML-BFGS update

Motivated by the computational e�ciency of the SSML-BFGS, we

propose and an adaptive choice for parameter λk following a simi-

lar methodology of that in [12, 15]. More speci�cally, we consider

to de�ne parameter λk in such a way to reduce the distance be-

tween the search direction matrix of the HCG+ and the SSML-

BFGS direction.

For this purpose, following Perry’s point of view, it is notable

that from (3) and (4), the search direction of the HCG+ method can

be written as

dk+1 = −Qk+1дk+1, (10)

where

Qk+1 = I − λk
dkд

T
k+1

dT
k
yk

− (1 − λk )
dky

T
k

dT
k
yk
.

Therefore, the HCG+method can be considered as a quasi-Newton

method [17, 33] in which the inverse Hessian is approximated by

the nonsymmetric matrixQk+1. Subsequently, based on the above

discussion, we consider to compute parameter λk as the solution

of the following minimization problem

min
λk>0

‖Dk+1‖F (11)

whereDk+1 = Q
T
k+1

−B−1
k+1

and ‖ · ‖F is the Frobenius matrix norm.

Since ‖Dk+1‖
2
F
= tr(DT

k+1
Dk+1) and after some algebra, we obtain

‖Dk+1‖
2
F = αλ2k + βλk + γ .

where

α =
‖sk ‖

2 ‖дk ‖
2

(sT
k
yk )

2

β = −2

[

sT
k
дk

sT
k
yk
+

(

1
θk

− 1
)

‖sk ‖
2(yT

k
дk )

(sT
k
yk )2

−

(

1 + 1
θk

‖yk ‖
2

sT
k
yk

)

‖sk ‖
2(sT

k
дk )

(sT
k
yk )2

]

and γ is a real constant, independent of λk . Clearly, the computa-

tion of ‖Dk+1‖
2
F
can be considered as a second degree polynomial

of variable λk where the coe�cient of λ2
k
is always positive. There-

fore, the unique solution of the minimization problem (11) is given

by

λ∗
k
=

(sT
k
дk )(s

T
k
yk )

‖дk ‖
2‖sk ‖

2
+

(

1

θk
− 1

)

yT
k
дk

‖дk ‖
2
−

(

1 +
1

θk

‖yk ‖
2

sT
k
yk

)

sT
k
дk

‖дk ‖
2
.

(12)

Clearly, an important property of the value of λ∗
k
is that matrix

Qk+1 is as close as possible to the SSML-BFGSmatrix (6). Moreover,

in order to have a convex combination in (4), we restrict the values

of λk in the interval [0, 1], namely if λ∗
k
< 0 then we set λ∗

k
= 0

and also, if λ∗
k
> 1 then we set λ∗

k
= 1.

3 EXPERIMENTAL RESULTS

In this section, we compare the numerical performance of our pro-

posedmodi�edhybrid conjugate gradient method, denotedMHCG+

to CG-DESCENT method [23] and HCG+ method [10] on a set of

134 problems from the CUTEr [14]. The implementation code was

written in C on a 2.66GHz Quad-Core processor with 4GB RAM

running Linux operating system. In our experiments, we use the

condition ‖дk ‖∞ ≤ 10−6 as stopping criterion and all algorithms

were implemented with the same line search as CG-DESCENT [23]

with its default parameters. The detailed numerical results can be

found in http://www.math.upatras.gr/~livieris/Results/MHCG.zip.

E�ciency comparisons were made utilizing the performance

pro�le introduced by Dolan and Morè [19], on the total number

of function and gradient evaluations being equal to Nf + 3Nд [24],

whereNf and Nд denote the number of function and gradient eval-

uations, respectively and on the CPU time (in seconds). The use of

pro�les provide a wealth of information such as solver e�ciency,

robustness and probability of success in compact form and elim-

inate the in�uence of a small number of problems on the bench-

marking process and the sensitivity of results associated with the

ranking of solvers [19]. The performance pro�le plots the fraction

P of problems for which any given method is within a factor τ

of the best solver. The horizontal axis of the �gure gives the per-

centage of the test problems for which a method is the fastest (ef-

�ciency); while the vertical axis gives the percentage of the test

problems that were successfully solved by each method (robust-

ness). The top curve is the method that solved the most problems

in a time that was within a factor τ of the best time. The curves in

the following �gures have the following meaning:

• “MHCG+1 ” stands for the conjugate gradient method with

the update parameter βHCG+
k

in which λk is de�ned by (12)

and θk = min
{

θOL
k
, 1

}

.

• “MHCG+2 ” stands for the conjugate gradient method with

the update parameter βHCG+
k

iin which λk is de�ned by (12)

and θk = min
{

θOS
k
, 1

}

.

• “CG-DESCENT” stands for theCG-DESCENTmethod (ver-

sion 5.3) [23].

• “HCG+” stands for the conjugate gradient method with

the update parameter βHCG+
k

in which λk is de�ned by (5)

as in [10].

http://www.math.upatras.gr/~livieris/Results/MHCG.zip
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Notice that although the descent property may not always hold

for the methods of HCG+, MHCG+1 and MHCG+2 , uphill search di-

rection seldom occurred in our experiments; when occurred, we

restarted the algorithm with dk = −дk as in [10].
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Figure 1: Log10 scaled performance pro�les for MHCG+1 ,

MHCG+2 and CG-DESCENT based on total number of func-

tion and gradient evaluations
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Figure 2: Log10 scaled performance pro�les for MHCG+1 ,

MHCG+2 and CG-DESCENT based on CPU time

Figure 1 presents the performance pro�les of MHCG+1 , MHCG+2
and CG-DESCENT in the perspectives of the total number of func-

tion and gradient evaluations. MHCG+1 and MHCG+2 solve about

50.7% and 49.3% of the test problems with the least number of func-

tion and gradient evaluations, respectively while CG-DESCENT

solves about 42.5% of the test problems. As regards the CPU time,

our proposed methods illustrate the highest probability of being

the optimal solver since they corresponds to the top curves. The

interpretation of Figure 2 illustrates that MHCG+1 and MHCG+2 ex-

hibit the best performance with respect to CPU time since they

both solve (66.5%) 89 out of 134 of the test problems, with the least

computational timewhile CG-DESCENT solves only (60.4%) 81 out

of 134 test problems. Based on the above observations, we con-

clude that both our proposed methods outperform CG-DESCENT

in terms of e�ciency and robustness, regarding all performance

metrics.
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Figure 3: Log10 scaled performance pro�les for MHCG+1 ,

MHCG+2 and HCG+ based on total number of function and

gradient evaluations
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Figure 4: Log10 scaled performance pro�les for MHCG+1 ,

MHCG+2 and HCG+ based on CPU time

Figures 3 and 4 present the performance pro�les of MHCG+1 ,

MHCG+2 and HCG+, relative to both performance metrics. Clearly,
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both our proposedmethods outperformHCG+ illustrating the high-

est probability of being the most robust solver with MHCG+2 pre-

senting slightly better performance. More speci�cally, Figure 3 re-

ports that MHCG+2 solves 49.3% of the test problems with the least

computational cost while HCG+ solves 45.5%. Furthermore, the in-

terpretation of Figure 4 shows that MHCG+1 and MHCG+2 solve

about 66.4% and 68.7% of the test problems, respectively with the

least CPU time while HCG+ solves about 56.7% of the test prob-

lems.

Since all conjugate gradient methods have been implemented

with the same line search, we conclude that our proposed methods

generate the best search directions on average.

4 CONCLUSIONS

In this work, we presented a new conjugate gradient method incor-

porating the approach of the hybridization of the update parame-

ters of DY and HS+ convexly in which the computation of the hy-

brization parameter is based on a quasi-Newton philosophy. More

speci�cally, the value of the parameter is obtained by minimiz-

ing the distance between the hybrid conjugate gradient direction

and the self-scaling memoryless BFGS direction. Numerical com-

parisons have been made between our proposed method and the

classical conjugate gradient methods CG-DESCENT [23] and the

HCG+ [10] on a set of unconstrained optimization problems of the

CUTEr collection. The reported numerical results illustrated the

computational e�ciency and robustness of our proposed method.
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