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Abstract: During last decades intensive efforts have been devoted to the extraction of useful1

knowledge from large volumes of medical data employing advanced machine learning and data2

mining techniques. Advances in digital chest radiography, have enabled research and medical3

centers to accumulate large repositories of classified (labeled) images and mostly of unclassified4

(unlabeled) images from human experts. Machine learning methods such as semi-supervised5

learning algorithms have been proposed as a new direction to address the problem of shortage6

of available labeled data, by exploiting the explicit classification information of labeled data7

with the information hidden in the unlabeled data. In the present work, we propose a new8

ensemble semi-supervised learning algorithm for the classification of lung abnormalities from chest9

X-rays based on a new weighted voting scheme. The proposed algorithm assigns a vector of10

weights on each component classifier of the ensemble based on its accuracy on each class. Our11

numerical experiments illustrate the efficiency of the proposed ensemble methodology against other12

state-of-the-art classification methods.13

Keywords: Machine learning; semi-supervised learning; self-labeled algorithms; classifiers;14

ensemble learning; weighted voting; image classification; lung abnormalities.15

1. Introduction16

The automatic detection of abnormalities, diseases and pathologies constitutes a significant17

factor in computer-aided medical diagnosis and a vital component in radiologic image analysis.18

For over a century, radiology is a typical method for abnormality detection. A typical radiological19

examination is performed by utilizing a posterior-anterior chest radiograph, which is most commonly20

called Chest X-Ray (CXR). CXR imaging is widely used for health diagnosis and monitoring, due to21

its relatively low cost and easy accessibility, thus it has been established as the single most acquired22

medical image modality [1]. It constitutes a significant factor for the detection and diagnosis of23

several pulmonary diseases, such as tuberculosis, lung cancer, pulmonary embolism and interstitial24

lung disease [1]. However, due to increasing workload pressures, many radiologists today have to25

examine an enormous number of CXRs daily. Thus, a prediction system trained to predict the risk of26

specific abnormalities given a particular CXR image is considered essential for providing high quality27

medical assistance. More specifically, such a decision support system has the potential to support the28

reading workflow, improve efficiency and reduce prediction errors. Moreover, it could be used to29

enhance the confidence of the radiologist or prioritize the reading list where critical cases would be30

read first.31

The significant advances in digital chest radiography and the continuously enlarged storage32

capabilities of electronic media, have enabled research centers to accumulate large repositories of33
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classified (labeled) images and mostly of unclassified (unlabeled) images from human experts. To34

this end, researchers and medical staff were able to leverage and exploit these images by the adoption35

of machine learning and data mining techniques for the development of intelligent computational36

systems in order to extract useful and valuable information. As a result, the areas of biomedical37

research and diagnostic medicine have been dramatically transformed, from rather qualitative38

sciences which were based on observations of whole organisms to more quantitative sciences which39

are now based on the extraction of useful knowledge from voluminous of data [2].40

Nevertheless, distinguishing the various chest abnormalities from CXRs is a rather challenging41

task, not only for a prediction model but even for an human expert. The progress in the field has been42

hampered by the lack of available labeled images for efficiently training a powerful and accurate43

supervised classification model. Moreover, the process of correctly labeling new unlabeled CXRs44

usually incurs monetary costs and high time since it constitutes a long and complicated process and45

requires the efforts of specialized personnel and expert physicians.46

Semi-Supervised Learning (SSL) algorithms have been proposed as a new direction to address47

the problem of shortage of available labeled data, comprising characteristics of both supervised48

and unsupervised learning algorithms. These algorithms efficiently develop powerful classifiers49

by meaningfully relating the explicit classification information of labeled data with the information50

hidden in the unlabeled data [3,4]. Self-labeled algorithms probably constitute the most popular51

class of SSL algorithms due to their simplicity of implementation, their wrapper-based philosophy52

and good classification performance [2,5–8]. This class of algorithms exploits a large amount of53

unlabeled data via a self-learning process based on supervised learners. In other words, they perform54

an iterative procedure, enriching the initial labeled data, based on the assumption that their own55

predictions tend to be correct.56

Recently, Triguero et al. [9] proposed an in-depth taxonomy based on the main characteristics57

presented in them and conducted a comprehensive research of their classification efficacy on several58

datasets. Generally, self-labeled algorithm can be classified in two main groups: Self-training and59

Co-training. In the original Self-training [10], a single classifier is iteratively trained on an enlarged60

labeled dataset with its most confident predictions on unlabeled data while in Co-training [11], two61

classifiers are separately trained utilizing two different views on a labeled dataset and then each62

classifier augments the labeled data of the other with its most confident predictions on unlabeled63

data. Along this line, several self-labeled algorithms have been proposed in the literature, while64

some of them exploit ensemble methodologies and techniques.65

Democratic-Co learning [12] is based on an ensemble philosophy since it uses three independent66

classifiers following a majority voting and a confidence measurement strategy for predicting the67

values of unlabeled examples. Tri-training algorithm [13] utilizes a bagging ensemble of three68

classifiers which are trained on data subsets generated through bootstrap sampling from the original69

labeled set and teach each other using on majority voting strategy. Co-Forest [14] utilizes bootstrap70

sample data from the labeled set in order to train Random trees. At each iteration, each random71

tree is reconstructed by newly selected unlabeled instances for its concomitant ensemble, utilizing a72

majority voting technique. Co-Bagging [15] trains multiple base classifiers on bootstrap data created73

by random resampling with replacement from the training set. Each bootstrap sample contains about74

2/3 of the original training set, where each example can appear multiple times. Recently, a new75

approach is given by Livieris et al. [2,8,16,17] and Livieris [18] in which some ensemble self-labeled76

algorithms are proposed based on voting schemes. The proposed algorithms exploit the individual77

predictions of the most efficient and frequently used self-labeled algorithms using simple voting78

methodologies.79

Motivated by these works, we propose a new semi-supervised self-labeled algorithm, which80

is based on a sophisticated ensemble philosophy. The proposed algorithm exploits the individual81

predictions of self-labeled algorithms, using a new weighted voting methodology. The proposed82

weighted strategy assigns weights on each component classifier of the ensemble based on its accuracy83
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on each class. Our main aim is to measure the effectiveness of our weighted voting ensemble scheme84

over the majority voting ensembles, using identical component classifiers in all cases. On top of85

that we want to verify that powerful classification models could be developed by the adaptation of86

advanced ensemble methodologies in the SSL framework. Our preliminary numerical experiments87

prove the efficiency and the classification accuracy of the proposed algorithm, demonstrating that88

reliable prediction models could be developed by incorporating ensemble methodologies in the89

semi-supervised framework.90

The remainder of this paper is organized as follows: Section 2 presents a brief survey of recent91

studies concerning the application of machine learning for the detection of lung abnormalities from92

X-rays. Section 3 presents a detailed description of the proposed weighted voting scheme and93

ensemble algorithm. Section 4 presents a series of experiments carried out in order to examine and94

evaluate the accuracy of the proposed algorithm against the most popular self-labeled classification95

algorithms. Finally, Section 5 discusses the conclusions and some research topics for future work.96

2. Related work97

The significance of medical imaging for the diagnosis of diseases has been established, for the98

treatment of chest pathologies and their early detection. During the last decades, the advances99

of digital technology and chest radiography as well as the rapid development of digital image100

retrieval have renewed the progress in new technologies for the diagnosis of lung abnormalities.101

More specifically, research has been focused on the development of Computer-Aided Diagnostic102

(CAD) models for abnormality detection in order to assist medical staff. Along this line, a variety103

of methodologies have been proposed based on machine learning techniques, aiming on classifying104

and/or detecting abnormalities in patients’ medical images. A number of studies have been carried105

out in recent years; some useful outcomes of them are briefly presented below.106

Jaeger et al. [19] proposed a CAD system for tuberculosis in conventional posteroanterior chest107

radiographs. Their proposed model initially utilizes a graph cut segmentation method to extract the108

lung region from the CXRs and then a set of texture and shape features in the lung region is computed109

in order to classify the patient as normal or abnormal. Their extensive numerical experiments on two110

real-world datasets illustrated the efficiency of the proposed CAD system for tuberculosis screening,111

achieving higher performance compared to that of human readings.112

Melendez et al. [20] recommend a novel CAD system for detecting tuberculosis on chest113

X-rays based on multiple-instance learning. Their proposed system is based on the idea of utilizing114

probability estimations, instead of the sign of a decision function, to guide the multiple-instance115

learning process. Furthermore, an advantage of their method is that it does not require labeling116

of each feature sample during the training process but only a global class label characterizing a group117

of samples.118

Alam et al. [21] utilized a multi-class support vector machine classifier and developed an efficient119

lung cancer detection and prediction model. The image enhancement and the image segmentation120

have been done independently, in every stage of the classification process. Image scaling, color space121

transformation and contrast enhancement have been utilized for image enhancement while threshold122

and marker-controlled watershed have been utilized for segmentation. In the sequel, the support123

vector machine classifier categorizes a set of textural features extracted from the separated regions of124

interest. Based on their numerical experiments, the authors concluded that the proposed algorithm125

can efficiently detect a cancer affected cell and its corresponding stage such as initial, middle, or final.126

Furthermore, in case no cancer affected cell is found in the input image then it checks the probability127

of lung cancer.128

In more recent works, Madani [22] focused on the detection of abnormalities in chest X-ray129

images, having available only a fairly small size dataset of annotated images. Their proposed130

method deals with both problems of labeled data scarcity and data domain overfitting, by utilizing131

Generative Adversarial Networks (GAN) in a SSL architecture. In general, GAN utilize two networks:132
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a generator which seeks to create as realistic images as possible and a discriminator which seeks to133

distinguish between real data and generated data. Next, these networks are involved in a minimax134

game to find the Nash equilibrium between them. Based on their experiments the author concluded135

that the annotation effort is reduced considerably to achieve similar performance through supervised136

training techniques.137

In [2], Livieris et al. evaluated the classification efficacy of an ensemble SSL algorithm, called138

CST-Voting, for CXR classification of tuberculosis. The proposed algorithm combines the individual139

predictions of three efficient self-labeled algorithms i.e Co-training, Self-training and Tri-training140

using a simple majority voting methodology. The authors presented some interesting results,141

illustrating the efficiency of the proposed algorithm against several classical algorithms. Additionally,142

their experiments lead them to the conclusion that reliable and robust prediction models could143

be developed utilizing a few labeled and many unlabeled data. In [16] the authors extended the144

previous work and proposed DTCo algorithm for the classification of X-rays. The proposed ensemble145

algorithm exploits the predictions of Democratic-Co learning, Tri-training and Co-Bagging utilizing146

a maximum-probability voting scheme. Along this line, Livieris et al. [17] proposed EnSL algorithm147

which constitutes a generalized scheme of the previous works. More specifically, EnSL constitutes148

a majority voting scheme of N self-labeled algorithms. Their preliminary numerical experiments149

demonstrated that robust classification models could be developed by the adaptation of ensemble150

methodologies in the SSL framework.151

Guan and Huang [23] considered the problem of multi-label thorax disease classification on chest152

X-ray images by proposing a Category-wise Residual Attention Learning (CRAL) framework. CRAL153

predicts the presence of multiple pathologies in a class-specific attentive view, aiming to suppress the154

obstacles of irrelevant classes by endowing small weights to the corresponding feature representation155

while the same time, the relevant features would be strengthened by assigning larger weights. More156

analytically, their proposed framework consists of two modules: feature embedding module and157

attention learning module. The feature embedding module learns high-level features using a neural158

network classifier while the attention learning module focuses on exploring the assignment scheme159

of different categories. Based on their numerical experiments, the authors stated that their proposed160

methodology constitutes a new state of the art.161

3. A new weighted voting ensemble self-labeled algorithm162

In this section, we present a detailed description of the proposed self-labeled algorithm, which163

is based on an ensemble philosophy, entitled Weighed voting Ensemble Self-Labeled (WvEnSL)164

algorithm.165

Generally, the generation of an ensemble of classifiers considers mainly two steps: Selection and166

Combination. The selection of the component classifiers is considered essential for the efficiency of167

the ensemble and the key point for its efficacy is based on their diversity and their accuracy; while168

the combination of the individual classifiers’ predictions takes place through several techniques with169

different philosophy [24,25].170

By taking these into consideration, the proposed algorithm is based on the idea of selecting171

a set C = (C1, C2, . . . , CN) of N self-labeled classifiers by applying different algorithms (with172

heterogeneous model representations) to a single dataset and the combination of their individual173

predictions takes place through a new weighted voting methodology. It is worth noticing that174

weighted voting is a commonly used strategy for combining predictions in pairwise classification175

in which the classifiers are not treated equally. Each classifier is evaluated on a evaluation set D and176

associated with a coefficient (weight), usually proportional to its classification accuracy.177

Let us consider a dataset D with M classes, which is utilized for the evaluation of each178

component classifier. More specifically, the performance of each classifier Ci, with i = 1, 2, . . . , N179

is evaluated on D and a N × M matrix W is defined, as follows180
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where each element wi,j is defined by

wi,j =
2p

(Ci)
j

|Dj|+ p
(Ci)
j + q

(Ci)
j

, (1)

where Dj is the set of instances of the dataset belonging to the class j, p
(Ci)
j are the number of correct181

predictions of classifier Ci on Dj and q
(Ci)
j are the number of incorrect predictions of Ci that an instance182

belongs to class j. Clearly, each weight wi,j is the F1-score of classifier Ci for j class [26]. The rationale183

behind (1) is to measure the efficiency of each classifier, relative to each class j of the evaluation set D.184

Subsequently, the class ŷ of each unknown instance x in the test set is computed by

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j),

where function arg max returns the value of index corresponding to the largest value from array,185

A = {1, 2, . . . , M} is the set of unique class labels and χA is the characteristic function which takes186

into account the prediction j ∈ A of a classifier Ci on an instance x and creates a vector in which187

the j coordinate takes a value of one and the rest take the value of zero. At this point, it is worth188

mentioning that in our implementation we selected to evaluate the performance of each classifier of189

the ensemble on the initial training labeled set L.190

A high-level description of the proposed framework is presented in Table 1 which consists191

of three phases: Training, Evaluation and Weighted-Voting Prediction. In the Training phase, the192

self-labeled algorithms, which constitute the ensemble are trained utilizing the same labeled L and193

unlabeled dataset U (Steps 1-3). Subsequently, in the Evaluation phase, the trained classifiers are194

evaluated using the training set L in order to calculate the weight matrix W (Steps 4-9). Finally, in195

the Weighted-Voting Prediction phase, the final hypothesis on each unlabeled example x of the test196

set combines the individual predictions of self-labeled algorithms utilizing the proposed weighted197

voting methodology (Steps 10-15). An overview of the proposed WvEnSL is depicted in Figure 1.198

Table 1. WvEnSL framework

Input: L − Set of labeled instances (Training labeled set).

U − Set of unlabeled instances (Training unlabeled set).

T − Set of unlabeled test instances (Testing set).

D − Set of instances for evaluation (Evaluation set).

C = (C1, C2, . . . , CN) − Set of self-labeled classifiers which constitute the ensemble.

Output: The labels of instances in the testing set.

/* Phase I: Training */
Step 1: for i = 1 to N do
Step 2: Train Ci using the labeled L and the unlabeled dataset U.
Step 3: end for

/* Phase II: Evaluation */
Step 4: for i = 1 to N do
Step 5: Apply Ci on the evaluation set D.
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Step 6: for j = 1 to M do199

Step 7: Calculate the weight200

wi,j =
2p

(Ci)
j

|Dj|+ p
(Ci)
j + q

(Ci)
j

.

201 Step 8: end for202

Step 9: end for203

204

/* Phase III: Weighted-Voting Prediction */205

Step 10: for each x ∈ T do206

Step 11: for i = 1 to N do207

Step 12: Apply classifier Ci on x.208

Step 13: end for209

Step 14: Predict the label ŷ of x using210

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j).

211 Step 15: end for212

Phase I
Training

Classifier 1

Labeled
set
L

Unlabeled
set
U

Classifier 2

Labeled
set
L

Unlabeled
set
U

Classifier N

Labeled
set
L

Unlabeled
set
U

Weighted matrix

W =











w1,1 w1,2 . . . w1,M

w2,1 w2,2 . . . w2,M
...

...
. . .

...
wN,1 wN,2 . . . wN,M











Evaluation
set
D

Phase II
Evaluation

Weighted voting

Test set
T

Phase III
Weighted-Voting
Prediction

Figure 1. WvEnSL framework
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4. Experimental methodology213

In this section, we present a series of experiments in order to evaluate the performance of the214

proposed WvEnSL algorithm for X-ray classification against the most efficient ensemble self-labeled215

algorithms i.e. CST-Voting, DTCo and EnSL which utilize simple voting methodologies. The216

implementation code was written in JAVA, making use of the WEKA 3.9 Machine Learning Toolkit217

[27].218

The performance of the classification algorithms is evaluated using the following performance219

metrics: F-measure (F1) and Accuracy (Acc). It is worth mentioning that F1 consists of a harmonic220

mean of precision and recall while Accuracy is the ratio of correct predictions of a classifier.221

4.1. Datasets222

The compared classification algorithms were evaluated utilizing the chest X-ray (Pneumonia)223

dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images dataset.224

• Chest X-ray (Pneumonia) dataset: The dataset contains 5830 chest X-ray images225

(anterior-posterior) which were selected from retrospective cohorts of pediatric patients226

of one to five years old from Guangzhou Women and Children’s Medical Center, Guangzhou.227

All chest X-ray imaging was performed as part of patients’ routine clinical care. For the analysis228

of chest X-ray images, all chest radiographs were initially screened for quality control by229

removing all low quality or unreadable scans. The diagnoses for the images were then graded230

by two expert physicians before being cleared for training the artificial intelligence system. In231

order to account for any grading errors, the evaluation set was also checked by a third expert.232

The dataset was partitioned into two sets (training/testing). The training set consisting of 5216233

examples (1341 normal, 3875 pneumonia) and the testing set with 624 examples (234 normal,234

390 pneumonia) as in [28].235

• Shenzhen lung mask (Tuberculosis) dataset: Shenzhen Hospital is one of the largest hospitals in236

China for infectious diseases with a focus both on their prevention, as well as treatment. The237

X-rays were collected within a one-month period, mostly in September 2012, as a part of the238

daily routine, using a Philips DR Digital Diagnost system. The dataset was constructed by239

manually-segmented lung masks for the Shenzhen Hospital X-ray set as presented in [29]. These240

segmented lung masks were originally utilized for the description of the lung segmentation241

technique in combination with lossless and lossy data augmentation. The segmentation masks242

for the Shenzhen Hospital X-ray set were manually prepared by students and teachers of243

the Computer Engineering Department, Faculty of Informatics and Computer Engineering,244

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” [29]. The245

set contained 279 normal CXRs and 287 abnormal ones with tuberculosis. All classification246

algorithms were evaluated using the stratified 10-fold cross-validation.247

• CT Medical images dataset: This data collectioncontains 100 images [30] which constitute part of a248

much larger effort, focused on connecting cancer phenotypes to genotypes by providing clinical249

images matched to subjects from the cancer genome Atlas [31]. The images consist of the middle250

slice of all Computed Tomography (CT) images taken from 69 different patients. The dataset251

is designed to allow different methods to be evaluated for examining the trends in CT image252

data associated with using contrast and patient age. The basic idea is to identify image textures,253

statistical patterns and features correlating strongly with these traits and possibly build simple254

tools for automatically classifying these images when they have been misclassified (or finding255

outliers which could be suspicious cases, bad measurements, or poorly calibrated machines).256

All classification algorithms were evaluated using the stratified 10-fold cross-validation.257
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The training partition was randomly divided into labeled and unlabeled subsets. In order to258

study the influence of the amount of labeled data, four different ratios (R) of the training data were259

used: 10%, 20%, 30% and 40%. Using the recommendation established in [9,32] in the division process260

we do not maintain the class proportion in the labeled and unlabeled sets since the main aim of261

semi-supervised classification is to exploit unlabeled data for better classification results. Hence, we262

use a random selection of examples that will be marked as labeled instances, and the class label of263

the rest of the instances will be removed. Furthermore, we ensure that every class has at least one264

representative instance.265

4.2. Performance evaluation of WvEnSL against ensemble self-labeled algorithms266

Next, we focus our interest on the experimental analysis for evaluating the classification267

performance of WvEnSL algorithm against the ensemble self-labeled algorithms CST-Voting and268

DTCo, which utilize simple voting methodologies. It is worth noticing that our main goal is to269

measure the effectiveness of the proposed weighted voting strategy over the simple majority voting;270

therefore we will compare ensembles using identical set of classifiers. This will eliminate the source271

of discrepancy originated from unequal classifiers. Thus, the difference in accuracy can solely be272

attributed to the difference of voting methodologies.273

Furthermore, the base learners utilized in all self-labeled algorithms are the Sequential Minimum274

Optimization (SMO) [33], the C4.5 decision tree algorithm [34] and the kNN algorithm [35] as in275

[2,7–9]. which probably constitute the most effective and popular machine learning algorithms for276

classification problems [36].277

• “CST-Voting (SMO)” stands for an ensemble of Co-training, Self-training and Tri-training with278

SMO as base learner using majority voting [2].279

• “WvEnSL1 (SMO)” stands for Algorithm WvEnSL using the same components classifiers as280

CST-Voting (SMO).281

• “CST-Voting (C4.5)” stands for an ensemble of Co-training, Self-training and Tri-training with282

C4.5 as base learner using majority voting [2].283

• “WvEnSL1 (C4.5)” stands for Algorithm WvEnSL using the same components classifiers as284

CST-Voting (C4.5).285

• “CST-Voting (kNN)” stands for an ensemble of Co-training, Self-training and Tri-training with286

kNN as base learner using majority voting [2].287

• “WvEnSL1 (kNN)” stands for Algorithm WvEnSL using the same components classifiers as288

CST-Voting (kNN).289

• “DTCo” stands for an ensemble of Democratic-Co learning, Tri-training and Co-Bagging with290

C4.5 as base learner using majority voting [16].291

• “WvEnSL2” stands for Algorithm WvEnSL using the same components classifiers as DTCo.292

• “EnSL” stands for an ensemble of Self-training, Democratic-Co learning, Tri-training and293

Co-Bagging with C4.5 as base learner using majority voting [17].294

• “WvEnSL3” stands for Algorithm WvEnSL using the same components classifiers as EnSL.295

The configuration parameters for all supervised classifiers and self-labeled algorithms, utilized296

in our experiments, are presented in Table 2.297

Tables 3, 4 and 5 presents the performance of all ensemble self-labeled methods on Pneumonia298

dataset, Tuberculosis dataset and CT Medical dataset, respectively. Notice that the highest299

classification performance for each ensemble of classifiers and performance metric is highlighted300

in bold. The aggregated results showed that the new weighted voting strategy exploits the301

individual predictions of each component classifier more efficiently than the simple voting schemes,302
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illustrating better classification performance. WvEnSL3 exhibits the best performance, reporting303

the highest F1-score and accuracy, relative to all classification benchmarks and labeled ratio,304

followed by WvEnSL2. In more detail, WvEnSL3 demonstrates 82.53%-83.49%, 69.79%-71.73% and305

69%-77% classification accuracy for Pneumonia dataset, Tuberculosis dataset and CT Medical dataset,306

respectively; while WvEnSL2 reports 81.89%-83.17%, 69.79%-71.55% and 67%–77%, in the same307

situations.308

Table 2. Parameter specification for all the base learners and self-labeled methods used in the

experimentation

Algorithm Parameters

SMO Supervised base learner C = 1.0,
Tolerance parameter = 0.001,
Pearson VII function-based kernel,

Epsilon = 1.0 × 10−12,
Fit logistic models = true.

C4.5 Supervised base learner Confidence level: c = 0.25,
Minimum number of item-sets per leaf: i = 2,
Prune after the tree building.

kNN Supervised base learner Number of neighbors = 3,
Euclidean distance.

Self-training Self-labeled (single classifier) MaxIter = 40,
c = 95%.

Co-training Self-labeled (multiple classifier) MaxIter = 40,
Initial unlabeled pool = 75

Tri-training Self-labeled (multiple classifier) No parameters specified.

Co-Bagging Self-labeled (multiple classifier) Committee members = 3,
Ensemble learning = Bagging.

Democratic-Co Self-labeled (multiple classifier) Classifiers = kNN, C4.5, NB.

CST-Voting Ensemble of self-labeled No parameters specified.

DTCo Ensemble of self-labeled No parameters specified.

EnSL Ensemble of self-labeled No parameters specified.

Table 3. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Pneumonia

dataset

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%
F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 83.08% 75.32% 83.26% 75.64% 83.39% 75.80% 83.39% 75.80%
WvEnSL1 (SMO) 83.39% 75.80% 83.48% 75.96% 83.76% 76.44% 83.85% 76.60%

CST-Voting (C4.5) 85.52% 79.97% 85.85% 80.45% 86.68% 81.73% 86.58% 81.57%
WvEnSL1 (C4.5) 85.65% 80.13% 86.08% 80.77% 86.78% 81.89% 86.92% 82.05%

CST-Voting (kNN) 82.91% 75.48% 83.09% 75.80% 83.15% 75.96% 83.73% 76.76%
WvEnSL1 (kNN) 83.63% 76.60% 83.73% 76.76% 83.95% 77.08% 84.23% 77.56%

DTCo 86.79% 81.41% 87.21% 82.05% 87.21% 82.05% 87.74% 82.85%
WvEnSL2 87.12% 81.89% 87.44% 82.37% 87.54% 82.53% 87.97% 83.17%

EnSL 87.19% 82.05% 86.92% 81.57% 87.34% 82.21% 87.61% 82.69%
WvEnSL3 87.51% 82.53% 87.70% 82.69% 88.23% 83.49% 88.17% 83.49%
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Table 4. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Tuberculosis

dataset

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%
F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 69.27% 69.43% 68.65% 68.37% 69.50% 69.61% 70.42% 70.32%
WvEnSL1 (SMO) 69.73% 69.79% 69.73% 69.79% 70.32% 70.32% 71.00% 70.85%

CST-Voting (C4.5) 66.67% 67.31% 68.19% 68.02% 67.51% 68.20% 69.52% 69.79%
WvEnSL1 (C4.5) 67.86% 68.20% 69.26% 69.26% 69.63% 69.79% 69.98% 70.14%

CST-Voting (kNN) 65.71% 66.08% 66.43% 66.96% 68.21% 68.55% 68.93% 69.26%
WvEnSL1 (kNN) 65.83% 66.25% 67.14% 67.49% 68.57% 68.90% 69.40% 69.61%

DTCo 69.73% 69.79% 69.96% 69.96% 71.45% 71.20% 71.80% 71.55%
WvEnSL2 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 71.80% 71.55%

EnSL 69.73% 69.79% 69.96% 69.96% 71.00% 70.85% 71.58% 71.38%
WvEnSL3 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 72.03% 71.73%

Table 5. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for CT Medical

dataset

Algorithm Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%
F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 66.67% 66.00% 70.00% 70.00% 73.08% 72.00% 75.00% 74.00%
WvEnSL1 (SMO) 68.00% 68.00% 71.29% 71.00% 73.79% 73.00% 75.73% 75.00%

CST-Voting (C4.5) 67.96% 67.00% 71.84% 71.00% 73.79% 73.00% 73.79% 73.00%
WvEnSL1 (C4.5) 69.90% 69.00% 73.79% 73.00% 75.00% 74.00% 75.73% 75.00%

CST-Voting (kNN) 66.00% 66.00% 69.90% 69.00% 73.79% 73.00% 73.27% 73.00%
WvEnSL1 (kNN) 66.67% 67.00% 70.59% 70.00% 72.00% 72.00% 74.75% 75.00%

DTCo 66.02% 65.00% 69.90% 69.00% 72.55% 72.00% 74.29% 73.00%
WvEnSL2 67.33% 67.00% 71.29% 71.00% 72.55% 72.00% 76.92% 76.00%

EnSL 64.08% 63.00% 71.84% 71.00% 74.29% 73.00% 74.29% 73.00%
WvEnSL3 69.90% 69.00% 75.73% 75.00% 76.47% 76.00% 77.67% 77.00%

The statistical comparison of several classification algorithms over multiple datasets is309

fundamental in the area of machine learning and it is usually performed by means of a statistical test310

[2,7–9]. Since our motivation stems from the fact that we are interested in evaluating the rejection311

of the hypothesis that all the algorithms perform equally well for a given level based on their312

classification accuracy and highlighting the existence of significant differences between our proposed313

algorithm and the classical self-labeled algorithms, we utilized the non-parametric Friedman Aligned314

Ranking (FAR) [37] test.315

Let r
j
i be the rank of the j-th of k learning algorithms on the i-th of M problems. Under the

null-hypothesis H0, which states that all the algorithms are equivalent, the Friedman aligned ranks

test statistic is defined by:

FAR =

(k − 1)

[

k

∑
j=1

R̂2
j − (kM2/4)(kM + 1)2

]

kM(kM + 1)(2kM + 1)

6
−

1

k

M

∑
i=1

R̂2
i

where R̂i is equal to the rank total of the i-th dataset and R̂j is the rank total of the j-th algorithm.316

The test statistic FAR is compared with the χ
2 distribution with (k − 1) degrees of freedom. It is317
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worth noticing that, FAR test does not require the commensurability of the measures across different318

datasets, since it is non-parametric, neither assumes the normality of the sample means, and thus, it319

is robust to outliers.320

Additionally, in order to identify which algorithms report significant differences, the Finner test

[38] with a significance level α = 0.05, is applied as a post-hoc procedure. More analytically, the

Finner procedure adjusts the value of α in a step-down manner. Let p1, p2, . . . , pk−1 be the ordered

p-values with p1 ≤ p2 ≤ · · · ≤ pk−1 and H1, H2, . . . , Hk−1 be the corresponding hypothesis. The

Finner procedure rejects H1–Hi−1 if i is the smallest integer such that pi > 1 − (1 − α)(k−1)/i, while

the adjusted Finner p-value is defined by:

pF = min
{

1, max
{

1 − (1 − pj)
(k−1)/j

}}

,

where pj is the p-value obtained for the j-th hypothesis and 1 ≤ j ≤ i. It is worth mentioning that the321

test rejects the hypothesis of equality when the pF is less than α.322

The control algorithm for the post-hoc test is determined by the best (lowest) ranking obtained323

in each FAR test. Moreover, the adjusted p-value with Finner’s test (pF) was presented based on324

the corresponding control algorithm at the α level of significance while the post-hoc test rejects the325

hypothesis of equality when the value of pF is less than the value of a. It is worth mentioning that326

the FAR test and the Finner post-hoc test were performed based on the classification accuracy of each327

algorithm over all datasets and labeled ratio.328

Table 6 presents the information of the statistical analysis performed by nonparametric multiple329

comparison procedures for all ensemble self-labeled algorithms. The interpretation of Table 6330

demostrates that WvEnSL3 reports the highest probability-based ranking by statistically presenting331

better results, followed by WvEnSL2 and WvEnSL1 (C4.5). Moreover, it is worth mentioning that all332

weighted voting ensemble outperformed the corresponding ensemble which utilize classical voting333

schemes. Finally, based on the statistical analysis, we can easily conclude that the new weighted334

voting scheme had a significant impact on the performance of all ensemble of self-labeled algorithms.335

Table 6. Friedman Aligned Ranking (FAR) test and Finner post-hoc test

Algorithm FAR Finner Post-Hoc Test

pF-value Null Hypothesis

WvEnSL3 15.667 - -
WvEnSL2 34.958 0.174312 accepted
WvEnSL1 (C4.5) 44.208 0.049863 rejected
EnSL 47.958 0.029437 rejected
DTCo 51.125 0.018734 rejected
CST-Voting (C4.5) 64.042 0.001184 rejected
WvEnSL1 (SMO) 71.417 0.000194 rejected
CST-Voting (SMO) 88.292 0.000001 rejected
WvEnSL1 (kNN) 89.083 0.000001 rejected
CST-Voting (kNN) 98.250 0.000001 rejected

4.3. Performance evaluation of WvEnSL against classical supervised algorithms336

Next, we compare the classification performance of the proposed algorithm against the classical337

supervised classification algorithms: SMO, C4.5 and kNN. Moreover, we compare the performance338

of iCST-Voting against the ensemble of classifiers (Voting) which combines the individual predictions339

of the supervised classifiers utilizing a simple majority voting strategy. It is worth noticing that340

• we selected WvEnSL3 from all versions of the proposed algorithm since it presented the best341

overall performance.342

• all supervised algorithms were trained using with 100% of the training set while WvEnSL3 was343

trained using R = 40% of the training set.344
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Table 7 presents the performance of the proposed algorithm WvEnSL3 against the supervised345

algorithms SMO, C4.5, kNN and Voting on Pneumonia dataset, Tuberculosis dataset and CT Medical346

dataset. As above mentioned, the highest classification performance for each labeled ratio and347

performance metric is highlighted in bold. The aggregated results show that WvEnSL3 is the most348

efficient algorithm since it illustrates the best overall classification performance. More specifically,349

WvEnSL3 exhibits the highest F1-score and classification accuracy on Pneumonia and Tuberculosis350

datasets while for CT Medical dataset, WvEnSL3 reports the second best performance, considerably351

outperformed by C4.5.352

Table 7. Performance evaluation WvEnSL3 against state-of-the-art supervised algorithms on

Pneumonia dataset, Tuberculosis dataset and CT Medical dataset

Algorithm Pneumonia Tuberculosis CT Medical
F1 Acc F1 Acc F1 Acc

SMO 74.03% 76.76% 71.41% 71.37% 74.91% 75.00%
C4.5 72.41% 74.83% 62.32% 62.36% 79.82% 80.00%
3NN 72.32% 74.51% 67.51% 67.49% 67.08% 67.00%
Voting 73.34% 76.12% 71.00% 71.02% 74.07% 74.00%

WvEnSL3 88.17% 83.49% 72.03% 71.73% 77.67% 77.00%

5. Conclusions353

In this work, we proposed a new weighted voting ensemble self-labeled algorithm for the354

detection of lung abnormalities from X-rays, entitled WvEnSL. The proposed algorithm combines355

the individual predictions of self-labeled algorithms utilizing a new weighted voting methodology.356

The significant advantage of WvEnSL is that weights assigned on each component classifier of the357

ensemble are based on its accuracy on each class of the dataset.358

For testing purposes, the algorithm was extensively evaluated using the chest X-rays359

(Pneumonia) dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images360

dataset. Our numerical experiments indicated better classification accuracy of the WvEnSL and361

demonstrated the efficiency of the new weighted voting scheme, as statistically confirmed by the362

Friedman Aligned Ranks nonparametric test as well as the Finner post hoc test. Therefore, we363

can conclude that the new weighted voting strategy had a significant impact on the performance364

of all ensembles of self-labeled algorithms, exploiting the individual predictions of each component365

classifier more efficiently than the simple voting schemes. Finally, it is worth mentioning that efficient366

and powerful classification models could be developed by the adaptation of ensemble methodologies367

in the SSL framework.368

In our future work, we intend to pursue extensive empirical experiments to compare the369

proposed WvEnSL with other algorithms, belonging to different SSL classes and evaluate its370

performance using various component self-labeled algorithms and base learners. Furthermore,371

since our preliminary numerical experiments are quite encouraging, our next step is to explore the372

performance of the proposed algorithm on imbalanced datasets [39,40] and incorporate our proposed373

methodology for multi-target problems [41–43]. Additionally, another interesting aspect is the use374

of other component classifiers in the ensemble and enhance our proposed framework with more375

sophisticated and theoretically sound criteria for the development of an advanced weighted voting376

strategy. Finally, we intent to investigate and evaluate different strategies for the selection of the377

evaluation set.378
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