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Abstract In this work, we propose an improved weight-

constrained neural network training algorithm, named iWCNN.

The proposed algorithm exploits the numerical efficiency

of the L-BFGS matrices together with a gradient-projection

strategy for handling the bounds on the weights. Addition-

ally, an attractive property of iWCNN is that it utilizes a new

scaling factor for defining the initial Hessian approximation

used in the L-BFGS formula. Since the L-BFGS Hessian

approximation is defined utilizing a small number of correc-

tion vector pairs our motivation is to further exploit them in

order to increase the efficiency of the training algorithm and

the convergence rate of the minimization process. The pre-

liminary numerical experiments provide empirical evidence

that the proposed training algorithm accelerates the training

process.

Keywords Artificial neural networks · constrained

optimization · L-BFGS · scaling factor.

1 Introduction

Artificial Neural Networks (ANNs) have been established as

state-of-the-art machine learning algorithms due to their ex-

cellent capability of self-learning and self-adapting and their

ability to efficiently extract useful knowledge even from noisy

and incomplete data. During the last decades, they have been

widely utilized in wide spectrum of applications and consti-

tute a vital component of many decision support systems [2,

6,10,13,14,17].
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The problem of training an ANN is considered as sig-

nificantly challenging problem in the area of artificial intel-

ligence. It constitutes the incremental adaptation of connec-

tion weights of the network, in order to globally minimize a

measure of difference between the actual output of the net-

work and the desired output for all examples of the train-

ing set [24]. More mathematically, the training process can

be formulated as an optimization problem in the network’s

weight space, namely as the minimization of an error func-

tion E(w) defined as the batch error measure determined by

the sum square of the differences over all examples of the

training set, as follows

E(w) =
1

2

P

∑
p=1

NL

∑
j=1

(oL
j,p − t j,p)

2, (1)

where P represents the total number of patterns used in the

training set, NL is the number of neurons of the output layer,

oL
j,p is the actual output of the j-th neuron which belongs to

the L-th (output) layer and t j,p is the desired response at the

j-th neuron of the output layer at the input pattern p∈P. No-

tice that the error function E is continuous and differentiable

with respect to the network’s weight vector w. The gradient

of the error function ∇E(w) can be analytically specified and

computed by means of back propagation of errors through

the network layers.

Gradient-based training algorithms probably constitute

the most straightforward and elegant approach proposed in

the literature, for addressing this optimization problem. This

class of algorithms generates a sequence of weights {wk}

utilizing the iterative formula

wk+1 = wk +ηkdk, k = 0,1, . . . ,kmax (2)

where k is the current iteration usually called epoch, kmax

is the maximum number of epochs, w0 ∈ R
n is the initial
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vector of weights, ηk > 0 is the learning rate and dk is a

descent search direction.

The process of developing an ANN model has two sig-

nificant performance considerations to be taken into account:

convergence speed and error minimization. Increasing the

convergence speed allows building prediction models for

dealing with large datasets while reducing errors usually im-

proves model’s generalization ability which constitutes the

most important issue in ANN model development.

During the last decades, a variety of approaches have

been proposed in the literature in order to improve the com-

putational efficiency of the minimization process and pro-

vide good generalization performance while most of these

approaches are based on the well established unconstrained

optimisation theory. L-BFGS (Limited-memory Broyden–

Fletcher–Goldfarb–Shanno) [20,5,15] has been established

as an elegant and robust neural network training algorithm

due to its strong convergence properties and good numerical

performance. This algorithm defines the Hessian approxi-

mation utilizing a small number (say m) of stored correction

vectors by updating a suitable matrix, called basic matrix,

which plays the role of initial Hessian approximation. Addi-

tionally, for a sufficiently small value of m, L-BFGS suffers

on ill-conditioned problems; thus, several approaches have

been proposed in the literature to address this problem while

some of them are based on the selection of the basic matrix

significant affects the computational efficiency of the algo-

rithm (see [1,28] and the references there in).

Recently, Livieris [21] presented a novel approach for

the improvement of the generalization ability of ANN which

applied bound constraints on the weights, during the training

process; therefore, re-formulating the problem of training an

ANN as a constrained optimization problem, namely

min
w∈Rn

E(w), s.t. l ≤ w ≤ u, (3)

where the vectors l and u denote the lower and upper bounds

on the weights, respectively. The motivation behind this ap-

proach focused on restricting the network’s weights from

taking large values. Thus, the weights in the trained network

are defined in more uniform way in order to efficiently ex-

plore all network’s inputs and neurons. Based on this idea,

Livieris [21] also proposed a Weight-Constrained Neural Net-

work (WCNN) algorithm reporting some promising results

[22]. It is worth noticing that the proposed algorithm ex-

ploits the numerical efficiency of the L-BFGS matrices to-

gether with a gradient-projection strategy for handling the

bounds on the weights.

Motivated by the previous research, we propose an im-

proved weight-constrained neural network training algorithm.

The proposed algorithm utilizes a new scaling factor for

defining the initial Hessian approximation used in the L-

BFGS update formula. Since the stored correction vectors

contain information about the curvature of the function, our

aim is to further exploit them in order to improve the ini-

tial Hessian approximation and accelerate the convergence

of the minimization process. Besides the mathematical for-

mulation and proof of the proposed scaling factor and seeing

it from a semantic or conceptual point of view, we can claim

that the proposed scaling factor considerably increases the

computational efficiency of the weight-constrained neural

network training algorithm by securing the increase of the

convergence speed which constitutes the main contribution

and extension level of this work. Our preliminary numerical

experiments provide empirical evidence which support this.

The remainder of this paper is organized as follows. Sec-

tion 2 presents the proposed improved weight-constrained

neural network training algorithm. Section 3 presents the

numerical experiments utilizing the performance profiles of

Dolan and Morè [8]. Finally, Section 4 presents our conclud-

ing remarks and our proposals for future research.

Notations. Throughout this paper, the vectors sk =wk+1−
wk and yk =∇E(wk+1)−∇E(wk) represent the evolutions of

the current point and of the error function gradient between

two successive iterations.

2 Improved weight-constrained neural network

training algorithm

In this section, we present the proposed improved Weight-

Constrained Neural Network (iWCNN) algorithm for effi-

ciently training neural networks.

2.1 Hessian approximation based on the L-BFGS update

Firstly, we recall that for quasi-Newton methods, an approx-

imation matrix Bk−1 to the Hessian ∇2 fk−1 is updated so that

a new matrix Bk satisfies the secant condition

Bksk = yk. (4)

The classical BFGS method [28] requires the storage

and manipulation of a n × n matrix to define the Hessian

approximation Bk at each iteration. In contrast, the limited

memory BFGS (L-BFGS) attempts to alleviate this handi-

cap by storing only a (usually) small number of m curvature

pairs and computes Bk by updating a basic matrix B
(k)
0 ,

m̂ = min{k,m− 1} (5)

times in terms of the correction vector pairs

{si,yi}
k−m̂
i=k−1 (6)

satisfying sT
i yi > 0, which are stored during the previous m̂

iterations. More analytically, the limited memory matrix Bk

is obtained from m̂ updates to the basic matrix

B
(k)
0 =

1

θk

I (7)
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and it is defined by

Bk =
1

θk

I −WkM−1
k Wk, (8)

where

Wk =

[

Yk

1

θk

Sk

]

,

Mk =





−Dk LT
k

Lk

1

θk

ST
k Sk



 ,

(9)

θk > 0 is the scaling factor, Sk and Yk are the correction ma-

trices defined by

Sk = [sk−m̂, . . . ,sk−1] and Yk = [yk−m̂, . . . ,yk−1]. (10)

and Dk and Lk are the matrices

Dk = diag
[

sT
k−m̂yk−m̂, . . . ,s

T
k−1yk−1

]

. (11)

and

(Lk)i j =

{

(sk−m̂−1+i)
T (yk−m̂−1+ j), if i > j;

0, otherwise.
(12)

It is worth noticing that the computation of Bk is performed

via a computationally efficient recursive technique presented

by Zhu et al. [34] with O(m̂2n) complexity, which requires

only vector inner products.

2.2 New scaling factor

Clearly, in case θk = 1 in (7), the L-BFGS matrix (8) starts

updating the B
(k)
0 = I in terms of the oldest pair of sequence

of the stored correction vectors (6).

Shanno and Phua [30] proposed a technique to scale the

identity matrix in order to accelerate convergence and intro-

duced the following choice for the scaling factor, namely

θ (1)
k

=
sT

k−m̂+1yk−m̂+1

yT
k−m̂+1yk−m̂+1

. (13)

Barzilai and Borwein [3] proposed the probably most

popular choices, that is

θ (2a)
k =

yT
k sk

sT
k sk

(14)

and

θ (2b)
k =

yT
k yk

sT
k yk

. (15)

The above choices minimize the quantities ‖θksk − yk‖ and

‖sk−θ−1
k yk‖, respectively proving a scalar approximation to

each of the secant equations Bksk = yk and B−1
k yk = sk un-

derlying quasi-Newton methods. Obviously, both θ (2a)
k and

θ (2b)
k lie between the minimum and the maximum eigen-

value of the average Hessian
∫ 1

0 ∇2E(wk + θksk)dθ which

implies that they contain second order information without

estimating the Hessian matrix [23].

Liu and Nocedal [20] attempted to incorporate more up-

to-date information and utilized the scaling factor θ (2b)
k to

define the basic matrix in the L-BFGS formula. Notice that

in contrast to the approach of Shanno and Phua, their choice

for the scaling factor depends only on the most recently

stored correction pair.

Zhou et al. [33] studied further the Barzilai and Borwein

approach and based on a trust-region-like strategy, proposed

a dynamic and efficient adaptive scheme to choose between

the two scaling factors in (14) and (15), namely

θ (3)
k =







θ (2b)
k , if θ (2a)

k /θ (2b)
k > κ ;

θ (2a)
k , otherwise.

(16)

where κ ∈ (0,1) is a parameter which determines the trade-

off between θ (2a)
k and θ (2b)

k .

Nevertheless, the scaling factors θ (2a)
k , θ (2b)

k and θ (3)
k

do not scale the identity matrix in the sense of self-scaling

methods [29] since they are not related to the information

required to perform the initial update of the L-BFGS matrix.

In contrast, many researchers [5,11,15,33] provided empir-

ical evidence that these choices are usually found to be nu-

merically superior compared to that in (13); thus they are

generally more eligible.

To this end, we adapt the modified scaling technique

proposed by Al-Baali [1] and consider scaling the “compu-

tationally preferable” basic matrix θ (3)
k I before updating it,

that is

θk = max

(

sT
k−m̂+1yk−m̂+1

yT
k−m̂+1(θ

(3)
k I)yk−m̂+1

,1

)

= max

(

θ (1)
k

θ (3)
k

,1

)

.

(17)

Hence, we update θk(θ
(3)
k I), i.e.

θ (4)
k = max{θ (1)

k ,θ (3)
k }. (18)

Obviously, the proposed scaling factor (18) depends on

both the most recent and the oldest pairs of the sequence (6).

2.3 Training algorithm

At this point, we present a high level description of the pro-

posed improved Weight-Constrained Neural Network (iWCNN)

training algorithm.
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Algorithm 1: iWCNN

Input: w0 − Initial weights.

σ1 − Hyper-parameter of strong Wolfe line search.

σ2 − Hyper-parameter of strong Wolfe line search.

l − Vector with lower bounds on the weights.

u − Vector with lower bounds on the weights.

m − Number of correction vector pairs.

EG − Error goal.

Output: wk − Weights of the trained ANN.

Step 1. Set k = 0.
Step 2. repeat
Step 3. Calculate the error function value Ek and its

gradient gk at wk.
Step 4. Calculate the Hessian approximation Bk de-

fined in (8) using the scaling factor (18).
Step 5. Set the quadratic model mk(w) at wk

mk(w) = Ek + gT
k (w−wk)+

1

2
(w−wk)

T Bk(w−wk) (19)

/* STAGE I: Cauchy point computation */
Step 6. Calculate the generalized Cauchy point wC.
Step 7. Define the active set A (wC).

/* STAGE II: Subspace minimization */
Step 8. Minimize the quadratic model mk(w)

wk+1 = arg min
w∈DS

mk(w)

where

DS =
{

w ∈R | li ≤ wki
≤ ui, ∀i 6∈ A (wC)

}

.

/* STAGE III: Line search */
Step 9. Set dk = wk+1 −wk.
Step 10. Compute the learning rate ηk satisfying the

strong Wolfe line search conditions

Ek+1 ≤ Ek + c1ηk∇ET
k dk,

|∇ET
k+1dk| ≤ c2|∇ET

k dk|.

with 0 ≤ c1 ≤ c2 < 1.
Step 11. Update the weights wk+1 = wk +ηkdk.
Step 12. Set k = k+ 1.
Step 13. until (Ek < EG and l ≤ wk ≤ u).

At the beginning of each iteration, the error function

value Ek, the gradient gk and a positive definite limited mem-

ory approximation Bk are calculated (Steps 3-4). Then, the

iWCNN algorithm approximates the error function E(w) by

a quadratic model mk(w) defined in (19) (Step 5). In the se-

quel, iWCNN algorithm computes the new vector of weights

by performing a minimization procedure of the approxima-

tion model (19) which is constituted by three distinct stages:

In Stage I, the generalized Cauchy point wC is computed

by approximately minimizing the quadratic model (19) sub-

ject to the feasible domain B = {w ∈ R
n : l ≤ w ≤ u} by

utilizing the gradient projection method (Step 6). As a result,

the algorithm calculates the indices of weights whose values

at wC are at the lower or upper bound (Step 7). These indices

constitute the active set A (wC). In Stage II, a direct primal

method [25] is applied in order to calculate wk+1 by the min-

imization of the approximation model mk(w) with respect to

the non-active variables (Step 8). Notice that the minimiza-

tion is performed at a subspace of the feasibility domain

B by considering as free variables, the variables which are

not fixed on limits while the rest variables are fixed on their

boundary value obtained during the previous stage. In Stage

III, after the minimizer wk+1 is obtained, the next vector of

weights wk+1 is calculated by performing a line search pro-

cedure, along the search direction dk = wk+1 −wk, which

satisfies the strong Wolfe line search conditions (Steps 8-

10).

3 Experimental results

In this section, we report some numerical experiments in or-

der to evaluate the performance of the proposed training al-

gorithm iWCNN in four famous benchmarks from the UCI

Repository of Machine Learning Databases [9]: the Wiscon-

sin diagnosis breast cancer problem, the Escherichia coli

problem, the Pima Indians diabetes problem and the Yeast

problem as in [21]. It is worth noticing that we have se-

lected to evaluate the algorithm iWCNN against the algo-

rithm WCNN which constitutes the only weight constrained

training algorithm proposed in the literature. In the follow-

ing subsections we briefly describe each problem and the

performance comparison between:

– “WCNN1” stands for weight-constrained neural network

training algorithm in which the basic matrix is calculated

using the scaling factor (13) [30].

– “WCNN2” stands for weight-constrained neural network

training algorithm in which the basic matrix is calculated

using the scaling factor (15) [20].

– “iWCNN” stands for Algorithm iWCNN which utilizes

the proposed scaling factor (18).

At this point, it is worth mentioning that the difference be-

tween iWCNN and both versions of WCNN1 and WCNN2

is that iWCNN utilizes the new scaling factor presented in

(18). Moreover, the weight-constrained training algorithms

were evaluated using two different bounds for the weights

i.e. [−1,1] and [−2,2]. In our previous research [21,22]

we observed that the classification efficiency increases as

the bounds of the weights get tighter; however this is not

a general case. More specifically, the generalization ability

of WCNN using the bounds [−1,1] and [−2,2] is signifi-

cantly better, compared to that using [−5,5]. Nevertheless,

in some experiments WCNN with [−1,1] performs slightly

worse than WCNN with [−2,2].
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The implementation code was written in Matlab 7.6 and

the simulations have been carried out on a PC (2.66GHz

Quad-Core processor, 4Gbyte RAM) running Linux oper-

ating system while the results have been averaged over 100

simulations. All neural networks received the same sequence

of input patterns and the initial weights were initiated us-

ing the Nguyen-Widrow method [27] while the classifica-

tion performance was evaluated utilizing the standard pro-

cedure called stratified 10-fold cross-validation. All training

algorithms were implemented with the same line search pro-

cedure proposed by Moré and Thuente [26] with c1 = 10−4

and c2 = 0.9, which employs various polynomial interpola-

tion schemes and safeguards in satisfying the strong Wolfe

line search conditions. In iWCNN, the value of parameter κ
was set to 0.5 as in [33]. Finally, the number of correction

pairs used in all evaluated training algorithms is m = 7 [21,

22] and in order to maintain the positive definiteness of the

limited memory BFGS matrix, we discard a correction pair

{sk,yk} if the curvature condition

sT
k yk > 10−8‖yk‖

2 (20)

is not satisfied [20].

The cumulative total for a performance metric over all

simulations does not seem to be too informative, since a

small number of simulations tend to dominate these results.

For this reason, we utilize the performance profiles of Dolan

and Morè [8] relative to the performance metric: CPU time.

to present perhaps the most complete information in terms

of robustness, efficiency and solution quality. The use of per-

formance profiles eliminates the influence of a small number

of simulations on the benchmarking process and the sensi-

tivity of results associated with the ranking of solvers [8].

The performance profile plots, for every τ ≥ 1, the propor-

tion P(τ) of simulations for which any training algorithm

has a performance within a factor τ of the best algorithm.

3.1 Wisconsin diagnosis breast cancer classification

problem

This benchmark concerns the diagnosis of breast cancer ma-

lignancy. The data were collected at the University of Wis-

consin Hospital for the diagnosis and prognosis of breast

tumors solely based on FNA test. This test involves fluid

extraction from a breast mass using a small gauge needle

and then visual inspection of the fluid under a microscope.

The dataset contains 569 instances (357 benign - 212 malig-

nant), where each instance has 32 attributes regarding FNA

test measurements. For this classification benchmarks, we

utilized neural networks with 2 hidden layers of 4 and 2 neu-

rons, respectively [21]. The error minimization EG was set

to 0.02 within the limit of 50 epochs and classification per-

formance was measured using 10-fold cross validation [21].
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Fig. 1 Log10 scaled performance profiles for the Wisconsin diagnosis

breast cancer classification problem

Figures 1 presents the performance profiles for the breast

cancer classification problem. Firstly, it is worth noticing

that the proposed algorithm iWCNN outperformed WCNN,

presenting the highest probability of being the optimal train-

ing algorithm. The iWCNN reported 70% and 54% of sim-

ulations with the least CPU time for weight bounds [−1,1]
and [−2,2], respectively; while WCNN1 presented 18% and

24% of simulations and WCNN2 reported 35% and 27% of

simulations, in the same situations. Therefore, the interpre-

tation of Figure 1 demonstrates that the application of the

new scaling factor significantly improved the performance

of the weight-constrained training algorithm.

3.2 Escherichia coli classification problem

This problem is based on an imbalanced data set of 336

patterns and concerns the classification of the E. coli pro-

tein localization patterns into eight localization sites. E. coli,

being a prokaryotic gram-negative bacterium, is an impor-



6 Ioannis E. Livieris, Panagiotis Pintelas

tant component of the biosphere. Three major and distinc-

tive types of proteins are characterized in E. coli: enzymes,

transporters and egulators. The largest number of genes en-

codes enzymes (34%) (this should include all the cytoplasm

proteins) followed by the genes for transport functions and

the genes for regulatory process (11.5%) [19]. We utilized

a neural network with 1 hidden layer of 16 neurons and an

output layer of 8 neurons while the error goal EG was set to

0.01 within the limit of 1000 epochs and all networks were

tested using 4-fold cross-validation [21].
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Fig. 2 Log10 scaled performance profiles for the Escherichia coli clas-

sification problem

Figure 2 presents the performance profiles for WCNN1,

WCNN2 and iWCNN, regarding the Escherichia coli clas-

sification problem. For weights bounds [−1,1], iWCNN ex-

hibited 56% of simulations with the least CPU time, while

WCNN1 and WCNN2 exhibited 21% and 31% simulations,

respectively. For weights bounds [−2,2], iWCNN reported

58% of simulations with the least CPU time, while WCNN1

and WCNN2 reported 18% and 31% simulations, respec-

tively. Summarizing, we are able to conclude that the appli-

cation of the new scaling factor significantly improved the

performance of the weight-constrained training algorithm.

3.3 Pima Indian diabetes classification problem

The aim of this real-world classification task is to decide

when a Pima Indian female is diabetes positive or not. The

data of this benchmark consists of 768 different patterns

each of them having 8 features of real continuous values and

a class label (diabetic positive or not). We used a neural net-

work with 2 hidden layers of 16 and 8 neurons, respectively

each and an output layer of 2 neurons [16]. The error min-

imization EG was set to 0.14 within the limit of 500 and

the classification performance was measured using 10-fold

cross validation [32].
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Fig. 3 Log10 scaled performance profiles for the Pima Indians diabetes

classification problem

Figures 3 reports the performance profiles for the breast

cancer classification problem, regarding all training algo-

rithms. iWCNN presented 79% and 56% of simulations with
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the least CPU time for weight bounds [−1,1] and [−2,2],

respectively; while WCNN1 presented 3% and 12% of sim-

ulations and WCNN2 presented 22% and 42% of simula-

tions, in the same situations. Therefore, the interpretation of

Figure 1 demonstrates that iWCNN presented the highest

probability of being the optimal training algorithm since its

curves lie on the top, regarding both selected weight bounds.

3.4 Yeast classification problem

This classification problem is based on an imbalanced dataset

and concerns the determination of the cellular localization of

the yeast proteins into ten localization sites. Saccharomyces

cerevisiae (yeast) is the simplest Eukaryotic organism. For

this classification problem, we utilized a neural network with

1 hidden layer 16 neurons and an output layer of 2 neurons.

while the error minimization EG was set to 0.05 within the

limit of 1000 and all networks were tested using 10-fold

cross validation [12].
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Fig. 4 Log10 scaled performance profiles for the Yeast classification

problem

Figure 4 presents the performance profiles for WCNN1,

WCNN2 and iWCNN regarding Yeast problem. Similar, con-

clusions can be made with the previous classification bench-

marks. It is worth noticing that iWCNN presented the high-

est probability of being the optimal training algorithm since

its curves lie on the top, regarding both selected weight bounds.

More specifically, iWCNN exhibited 52% of simulations with

the least CPU time, while WCNN1 and WCNN2 exhibited

24% and 29% of simulations, respectively for weight bounds

[−1,1]. For weights bounds [−2,2], iWCNN reported 57%

of simulations with the least CPU time, while WCNN1 and

WCNN2 reported 24% and 20% of simulations, respectively

for weight bounds [−2,2]. Summarizing, we conclude that

the application of the new scaling factor significantly im-

proved the performance of the weight-constrained training

algorithm.

3.5 Generalization performance

Tables 1 and 2 using the following four performance met-

rics: Sensitivity (Sen), Specicicity (Spe), F1-score (F1) and

Accuracy (Acc). Notice that the highest performance for

each benchmark and performance metric is highlighted in

bold.

The aggregated results presented that the proposed iWCNN

was the most efficient training algorithm, regarding all bench-

marks and both selections on the weight bounds. More specif-

ically, iWCNN exhibited the highest performance for the

Wisconsin diagnosis breast cancer problem, the Escherichia

coli problem and the Yeast problem, with weight bounds

[−1,1] while WCNN2 reported the best performance for the

Pima Indians diabetes problem, relative to all performance

metrics. For weight bounds [−2,2], the proposed algorithm

iWCNN presented the best overall performance, regarding

all classification benchmarks and performance metrics.

Furthermore, the interpretation in Tables 1 and 2 illus-

trate that all weight-constrained training algorithms presented

the best generalization performance with bounds [−1,1] for

Wisconsin diagnosis breast cancer, the Escherichia coli and

the Pima Indians diabetes. In contrast, for the Yeast problem

the best average classification accuracy was reported with

bounds [−2,2], regarding all training algorithms. Summa-

rizing, we conclude that the interpretation of Table 1 and

2 reveals that in most cases that the tighter the bounds get,

the higher the chance for good generalisation performance

(i.e., the classification ability of the neural network will he

higher).

4 Conclusions

In this work, we proposed an improved weight-constrained

neural network training algorithm, called iWCNN. An at-
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Table 1 Average classification performance of the weight-constrained training algorithms WCNN1, WCNN2 and iWCNN for weight bounds

[−1,1]

WCNN1 WCNN2 iWCNN

Problem Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

Breast cancer 96.70% 98.60% 97.16% 97.44% 96.70% 98.32% 96.93% 97.39% 97.17% 98.60% 97.40% 98.07%

Escherichia coli 79.97% 84.42% 81.14% 84.42% 80.56% 84.32% 81.74% 85.42% 86.01% 84.04% 85.54% 87.20%

Pima Indians 64.55% 84.22% 67.58% 76.88% 65.67% 84.44% 68.48% 77.44% 65.30% 84.00% 67.96% 77.02%

Yeast 46.39% 87.87% 52.65% 75.88% 45.92% 87.68% 52.12% 75.61% 46.62% 87.96% 52.91% 76.01%

Table 2 Average classification performance of the weight-constrained training algorithms WCNN1, WCNN2 and iWCNN for weight bounds

[−2,2]

WCNN1 WCNN2 iWCNN

Problem Sen Spe F1 Acc Sen Spe F1 Acc Sen Spe F1 Acc

Breast cancer 95.75% 97.76% 95.98% 96.52% 95.75% 98.04% 96.21% 97.19% 96.23% 98.32% 96.68% 97.54%

Escherichia coli 83.54% 85.23% 83.41% 85.63% 79.99% 85.32% 81.31% 85.03% 84.69% 85.14% 84.28% 86.31%

Pima Indians diabetes 66.79% 78.89% 66.05% 74.37% 66.79% 78.22% 65.69% 73.96% 68.28% 79.33% 67.28% 75.21%

Yeast 49.42% 88.34% 55.50% 77.09% 49.65% 88.15% 55.54% 77.02% 49.88% 88.63% 56.09% 77.43%

tractive property of the proposed algorithm is that it uti-

lizes a new scaling factor for defining the initial Hessian

approximation used in the L-BFGS formula. The rationale

behind this approach was to further exploit the information

in the correction vector pairs in order to increase the effi-

ciency of the training algorithm and the convergence rate of

the minimization process. Furthermore, iWCNN exploits a

gradient-projection strategy for handling the bounds on the

weights along with the computational efficiency of the L-

BFGS matrices. The reported experimental results demon-

strate the computational efficiency and robustness of the pro-

posed iWCNN algorithm, providing empirical evidence that

the proposed choice for the scaling factor accelerates the

convergence of the weight-constrained training algorithm.

Our future work is concentrated on evaluating the pro-

posed algorithm to more advanced and complex architec-

tures, together with sophisticated techniques such as dropout

[31]. Moreover, since the question of what should be the val-

ues of the bounds for each benchmark or what constraints

should be applied to the weights of each layer is still under

consideration, our future work is concentrated on develop-

ing a strategy to auto-adjust the bounds, during the training

process. Probably, this research may reveal additional infor-

mation and questions. Finally, another interesting aspect is

the evaluation of the proposed algorithm in specific scien-

tific fields applying real-world imbalanced datasets together

with sophisticated preprocessing such as sensitivity methods

and oversampling SMOTE techniques [4,7,18].
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