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Abstract: Speech recognition has various applications such as human to machine interaction,1

sorting of telephone calls by gender categorization, video categorization with tagging and so on.2

Nowadays, machine learning is a popular trend which has been widely utilized on various fields3

and applications, exploiting the recent development in digital technologies and the advantage4

of storage capabilities from electronic media. Recently, research focuses on the combination of5

ensemble learning techniques with the semi-supervised learning framework aiming to build more6

accurate classifiers. In this paper, we focus on gender recognition by voice utilizing a new ensemble7

semi-supervised self-labeled algorithm. Our preliminary numerical experiments demonstrate the8

classification efficiency of the proposed algorithm in terms of accuracy, leading to the development9

of stable and robust predictive models.10

Keywords: Semi-supervised learning; self-labeled methods; ensemble learning; gender recognition;11

classification.12

1. Introduction13

Speech constitutes one of the most popular and significant means for humans to communicate,14

express their emotions, cognitive states, and intentions to each other. The speech is produced by15

humans with a natural biological mechanism in which lungs discharge the air and convert it to speech16

passing through the vocal cords and organs like tongue, teeth, lips etc. [1]. In general, a speech and17

voice recognition system can be used for gender identification. A natural voice recognition system is18

the human ear. Human ear has an excellent mechanism which can efficiently distinguish the gender19

by voice and speech based on attributes like frequency and loudness. In a similar way, a machine can20

be taught to do the same thing by choosing and incorporating the right features from voice data on a21

machine learning algorithm.22

Gender recognition is a technique which is often utilized to determine the gender category of a23

speaker by processing speech signals. Speech signals taken from a recorded speech can be used to24

acquire acoustic attributes such as duration, intensity, frequency and filtering [2]. Some applications25

that gender recognition can be useful are: speech emotion recognition, human to machine interaction,26

sorting of telephone calls by gender categorization, automatic salutations, muting sounds for a gender27

and audio/video categorization with tagging (see [1,3–5] and the references therein).28

As technology is growing in a rapid way, machine learning is a research field which has met29

a major development in our days; thus it has been widely established as a popular trend. Machine30

learning is a subset of artificial intelligence which utilizes algorithms and data to teach computers31
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make decisions on specific problems in various fields like finance, banking, medicine etc. [6–8] Along32

this line, several studies for gender recognition and identification by voice using machine learning33

and data mining techniques have been conducted [1,9–11]. However, the development of an accurate34

prediction model for gender recognition by voice is still considered a rather difficult and challenging35

task. In [12,13] conducted an extensive experimental analysis and pointed out the difficulties of this36

classification problem since speech signals are highly time-varying and have very big randomness.37

This is mainly due to the fact that the progress in the field has been hampered by the lack of available38

labeled data for efficiently training a supervised classifier. Furthermore, in order to train efficiently39

a classifier and be able to make accurate predictions, it often needs a large amount of labeled data.40

Nevertheless, the process of finding sufficient labeled data for training classifiers to make accurate41

predictions is often an expensive and time-consuming task as it requires human efforts, while in42

contrast finding unlabeled data in general is significantly easier. To address the problem of insufficient43

labeled data, Semi- Supervised Learning (SSL) algorithms constitute the appropriate methodology to44

exploit the hidden information found in the unlabeled set aiming to build more accurate classifiers.45

In the literature, several classes of SSL algorithms have been proposed and evaluated, each of them46

based on different methodologies and techniques related to the link between the distribution of47

labeled and unlabeled data (see [14–16] and the references there in). Self-labeled algorithms probably48

constitute the most popular and widely utilized class of SSL algorithms. The algorithms of this class49

follow an iterative procedure, augment an initial labeled dataset using their own predictions from a50

large pool of unlabeled dataset. Triguero et al. [14] proposed an in-depth taxonomy of self-labeled51

algorithms based on their main characteristics and made an exhaustive research of their classification52

efficacy on various datasets.53

Ensemble Learning (EL) is another way of obtaining better results for a higher classification54

accuracy, which has been developed in the last decades. The main object of this methodology is the55

combination of several prediction models, in order to build a more accurate model rather than using56

a single one. Furthermore, the development of algorithms which hybridize SSL and EL approaches57

is another recent methodology which can be beneficial to each other and can build more robust58

classification algorithms, leading to even better classification results [17,18].59

In this work, we propose a new ensemble-based self-labeled algorithm, called iCST-Voting, for60

gender recognition by voice. This algorithm combines the individual predictions of three of the most61

popular and efficient self-labeled methods i.e. Self-training, Co-training and Tri-training utilizing an62

ensemble as base learner. Our experimental results reveal the efficiency of this algorithm compared63

against state-of-the-art self-labeled algorithms.64

The remainder of this paper is organized as follows: Section 2 presents a synopsis of related work65

on gender recognition by voice. Section 3 presents a brief description of the self-labeled algorithms.66

Section 4 presents the proposed classification algorithm. Section 5 presents the datasets and our67

experimental results. Finally, Section 6 presents our concluding remarks and some directions for68

future research.69

2. Related work70

During the last decades, machine learning models and data mining techniques have been widely71

utilized for gender recognition by voice. These prediction models can identify the gender of a person72

by utilizing various features such as length of the vocal folds, gait and speech. More specifically, the73

acoustic properties acquired from voice and speech signals like duration, intensity and frequency can74

be used as features to recognize the gender of speaker. A number of studies have been carried out in75

recent years; some useful outcomes of them are briefly presented below.76

Maka et al. [10] used 630 speakers, 438 males and 192 females in their experiments for the gender77

identification problem in different acoustical environments (indoor and outdoor auditory scenes). In78

addition, for the evaluation stage each sentence has been mixed with several types of background79
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noise. In their results, they found out that non-linear smoothing increases the classification accuracy80

by 2% and the recognition accuracy obtained was 99.4%.81

Bisio et al. [4] developed an Android SPEech proCessing plaTform as smaRtphone Application82

(SPECTRA) for gender, speaker and language recognition by utilizing multiple unsupervised support83

vector machine classifiers. An interesting and innovative point in this work is the dynamic training84

with the features extracted from every user, having SPECTRA installed on his personal android85

smartphone. This can lead on building more robust classifiers with higher classification accuracy,86

resulting in better recognition performances.87

Pahwa et al. [1], proposed a recognition system to determine the gender using speech samples88

of 46 speakers. In particular, they extracted one of the most dominant and most researched speech89

feature, Mel coefficients and its first and second order derivatives. Their proposed model consists90

of a support vector machine and neural network classifier using a stacking methodology. The91

classification accuracy obtained from their numerical experiments was 93.48%.92

Pribil et al. [19], proposed a two level GMM algorithm to recognize age and gender. Their93

proposed classifier was first verified for detection of four age categories (child, young, adult, senior)94

and for recognizing the gender for all but children’s voices in Czech and Slovak languages. The95

prediction accuracy on gender identification was above 90%. In a similar work, Pribil et al. [20]96

developed a two level GMM classifier to detect age and gender. The classification accuracy achieved97

on gender recognition was 97.5%. Furthermore, the obtained gender and age classification accuracy98

results were compared with the results achieved by the conventional listening test which is an99

evaluation method of the quality of the synthetic speech [21].100

Buyukyilmaz et al. [9], utilized a multilayer perceptron deep learning model using the acoustic101

properties of the voices and speech to identify the voice gender. The dataset they utilized for their102

experiments consisted of 3168 recorded samples of human voices. Their classification model managed103

to achieve 96.74% accuracy. Additionally, they have designed a web page to detect the gender of voice104

by utilizing the obtained model.105

Zvarevashe et al. [11], proposed a gender voice recognition technique utilizing feature selection106

through the Random Forest recursive feature elimination with Gradient Boosting Machines (GBMs)107

algorithm for gender classification. Acoustic features were collected from a public gender voice108

dataset including 1584 males and 1584 females. The GBMs algorithm had obtained an accuracy of109

97.58% without feature selection while by applying feature selection it almost achieved 100%.110

3. On semi-supervised self-labeled classification algorithms111

In this section, we present a short description of the most popular self-labeled classification112

algorithms proposed in the literature.113

Suppose that {(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))} is a set of instances, where each example114

x ∈ R
n is a n-dimensional vector of n features belonging to a class y and (x(i), y(i)) is the i-th instance115

of m total instances. Then, let assume that a training set L ∪ U is composed of a labeled set L of NL116

instances where y is known and of an unlabeled set U of NU instances where y is unknown with117

NU >> NL and also a test set T that consists of NT unseen instances where y is unknown. In general,118

the basic objective of self-labeled algorithms if to classify unlabeled data based on the most confident119

predictions in order to augment the initial training set.120

The self-labeled methods are divided into two main categories, Self-training [22] and Co-training121

[23]. In Self-training, one classifier is initially trained on a labeled training set and it is used to make122

predictions for the examples of an unlabeled set, where the most confident predictions are added to123

the labeled training set. Next, the classifier is re-trained on the new enlarged labeled set and this124

procedure is repeated until some stopping criteria are met, such as having no unlabeled example125

left. The advantage of self-training algorithm is its simplicity, being at the same time one of the126

most efficient self-labeled algorithms. However, one disadvantage is the possible incorporation of127

noise examples into the labeled training set. Co-training is a multi-view algorithm meaning that the128
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feature space is divided in two conditionally independent views. Two classifiers are initially trained129

separately on each view using the labeled set and then following an iterative procedure each classifier130

adds the most confident predictions to the training set of the other. Most self-labeled methods are131

influenced by these two algorithms while some of them are also based on ensemble techniques.132

Democratic-Co learning, SETRED, Tri-training, Co-Forest and Co-Bagging are some other efficient133

self-labeled algorithms proposed in the literature.134

Democratic-Co learning [24] is a single view algorithm utilizing multiple classifiers for predicting135

the values of unlabeled examples incorporating a majority voting strategy and a mean confidence136

measurement for the majority and the minority of classifiers which disagree. SETRED is a self-labeled137

algorithm [25] which incorporates data editing in the self-training framework in order to learn138

actively from the self-labeled examples. More analytically, data editing is a method which improves139

the quality of the training set by identifying and eliminating the mislabeled examples acquired from a140

self-training procedure with the help of some local information in a neighborhood graph. Tri-training141

algorithm [26] constitutes a single view algorithm which utilizes three classifiers for teaching each142

other based on a majority voting strategy avoiding by this way the confidence measuring of the143

labeling of the classifiers since this process is sometimes time-consuming and quite complicated. In144

particular, three classifiers are trained on data subsets generated through bootstrap sampling from the145

initial training set, which are then used to label the instances of the unlabeled set. If two classifiers146

agree on predicting a value for an unlabeled example, then this is labeled for the third too. Motivated147

by the previous works, Li & Zhou [27] proposed Co-Forest algorithm. This algorithm utilizes Random148

trees, which are trained on bootstrap data from the dataset assigning a few unlabeled examples to149

each Random tree. The final decision is made by a majority voting. Two advantages comparing with150

the rest self-labeled algorithms are that no physical connection between the attributes is required151

because of the random selection of features from the basic feature vector and the reduced ripples of152

its performance in the case of small number of labeled examples provided. Co-Bagging algorithm153

[28] utilizes several base classifiers trained on bootstrap data created by random resampling with154

replacement from the training set. Each sample contains around 2/3 of the training set. One155

advantage is that this algorithm works well for unstable learning algorithms where a small change in156

the input training data can cause a significant big change in the output hypothesis.157

4. iCST-Voting158

During the last decade, research focused on incorporating ensemble learning techniques in the159

self-labeled framework in order to build powerful classifiers. Recently, Livieris et al. [29] utilized160

an ensemble of classifiers as base learners to increase the efficiency of semi-supervised self-labeled161

methods. In another study, Livieris et al. [17] proposed the CST-Voting algorithm which exploits162

the individual predictions of the three of the most efficient self-labeled algorithms, i.e Co-training,163

Self-training and Tri-training utilizing a simple majority voting.164

Motivated by the previous works, we attempt to go a step further by hybridizing these165

approaches and improving the classification efficiency of CST-Voting by incorporating an ensemble166

of classifiers as a base learner in all its component self-labeled algorithms. This is the main novelty of167

the present work over CST-Voting [17], resulting in increased prediction accuracy of iCST-Voting over168

CST-Voting. A high-level description of this framework is presented in Table 1 which is composed of169

two phases: Training and Voting phase.170

In the Training phase, the self-labeled algorithms which constitute iCST-Voting are trained171

utilizing an ensemble of supervised classifiers E as base learner and the same labeled L and unlabeled172

U datasets (Steps 1-3). Subsequently, the trained classifiers CCo, CSelf and CTri are constructed using173

Co-training, Self-training and Tri-training algorithms, respectively.174

Next, in the Voting phase, each trained self-labeled classifier is applied on each unlabeled175

example x of the test set T. Let yC, yS and yT be the hypothesis of the classifiers CCo, CSelf and CTri176

on x, respectively (Steps 6-8). The final hypothesis y∗ on x is defined by combining the individual177
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predictions yC, yS and yT utilizing a majority voting methodology (Step 9).178

179

Table 1. iCST-Voting framework

Input: L − Set of labeled instances (Training labeled set).
U − Set of unlabeled instances (Training unlabeled set).
T − Set of unlabeled test instances (Testing set).
E − Ensemble of supervised base learners.

Output: T∗ − Set of labeled instances of the testing set.

/* Phase I: Training */

[1]: CCo ← Co-training(L, U, E). (Trained classifier using Co-training)
[2]: CSelf ← Self-training(L, U, E). (Trained classifier using Self-training)
[3]: CTri ← Tri-training(L, U, E). (Trained classifier using Tri-training)

/* Phase II: Voting */

[4]: Set T∗ = ∅.
[5]: for each x ∈ T do
[6]: yC ← CCo(x). (Apply classifier CCo on instance x)
[7]: yS ← CSelf(x). (Apply classifier CSelf on instance x)
[8]: yT ← CTri(x). (Apply classifier CTri on instance x)
[9]: y∗ ← MajorityVoting{yC, yS, yT}.
[10]: Insert pair (x, y∗) in T∗.
[11]: end for

5. Numerical experiments180

In this section, we present a series of experiments in order to evaluate the performance of the181

proposed algorithm iCST-Voting for gender classification from voice. The implementation codes were182

written in Java, using the WEKA 3.9 Machine Learning Toolkit [30].183

Our numerical experiments took place in two distinct phases: In the first phase (Section 5.2)184

we evaluate the performance of the iCST-Voting, against its component self-labeled algorithms:185

Self-training, Co-training and Tri-training and the state-of-the-art self-labeled algorithms: SETRED,186

Co-Bagging, Democratic-Co learning and Co-Forest; while in the second phase (Section 5.3), we187

compare the performance of the proposed algorithm iCST-Voting against classical supervised188

algorithms. Table 2 reports the configuration parameters of all evaluated self-labeled algorithms.189

In our original experiments, we have utilized several choices of parameter values, nevertheless190

the classification performance was usually worse and only in few cases there was a negligible and191

marginal improvement. The performance of the classification algorithms was evaluated using the192

performance metrics F-measure (F1) and Accuracy (Acc).193

194

(continued).

Algorithm Type Parameters

Co-Bagging Self-labeled - Multiple classifier MaxIter = 40.

pool U = 100.

Committee members = 3.

Ensemble learning = Bagging.

Democratic-Co Self-labeled - Multiple classifier Classifiers = kNN, C4.5, NB.

Co-Forest Self-labeled - Multiple classifier Number of Random Forest classifiers = 6.

Threshold = 0.75.

195
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Table 2. Parameter specification for all compared self-labeled algorithm used in the experimentation

Algorithm Type Parameters

Self-training Self-labeled - Single classifier MaxIter = 40.
c = 0.95.

Co-training Self-labeled - Multiple classifier MaxIter = 40.
Initial unlabeled pool = 75.

Tri-training Self-labeled - Multiple classifier No parameters specified.

SETRED Self-labeled - Single classifier MaxIter = 40.
Threshold = 0.1.

5.1. Dataset196

The efficiency of the all self-labeled algorithms was evaluated using the Voice gender dataset197

and the Deterding dataset [31].198

• Voice gender dataset1. This database was created to identify a voice as male or female, based upon199

acoustic properties of the voice and speech. It consists of 3168 recorded voice samples, collected200

from male and female speakers. The voice samples were collected from201

– The Harvard-Haskins Database of Regularly-Timed Speech.202

– Telecommunications & Signal Processing Laboratory Speech Database at McGill203

University.204

– VoxForge Speech Corpus.205

– Festvox CMU-ARCTIC Speech Database at Carnegie Mellon University.206

Each voice sample is stored as a .WAV file, which is then pre-processed by acoustic analysis207

in software R using the seewave and tuneR packages, with an analyzed frequency range of208

0hz-280hz (human vocal range).209

• Deterding dataset2. This dataset consists of the steady-state portion of 11 vowels in British210

English, spoken in the context of h*d. The recorded speech samples were low-pass filtered at211

4.7KHz before being digitised at 10KHz with a 12-bit resolution and the steady-state portion of212

the vowel in each utterance was partitioned into six 512 Hamming windowed segments. Next,213

linear predictive analysis was performed and the linear prediction reflection coefficients were214

calculated and used to generate 10 log area parameters. These parameters were recorded and215

constituted a 10-dimensional input space. Totally, the dataset consists of 990 recorded voice216

samples, collected from 528 male and 462 female speakers.217

All algorithms were evaluated using the stratified 10-fold cross-validation and in order to study the218

influence of the amount of labeled data, five different ratios (R) of the training data were used, i.e.,219

10%, 20%, 30%, 40% and 50%.220

5.2. Performance evaluation of iCST-Voting against state-of-the-art self-labeled algorithms221

Next, we focus our interest on the experimental analysis for evaluating the classification222

performance of iCST-Voting against the most efficient and frequently utilized self-labeled algorithms.223

The proposed algorithm iCST-Voting utilizes an ensemble classifier as base learner which combines224

the individual predictions of Sequential Minimum Optimization (SMO) algorithm [32], kNN225

algorithm [33] and C4.5 decision tree algorithm [34] utilizing a majority voting. These supervised226

1 https://www.kaggle.com/primaryobjects/voicegender/home
2 https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data)

https://www.kaggle.com/primaryobjects/voicegender/home
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Vowel+Recognition+-+Deterding+Data)
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classifiers probably constitute the most effective and popular machine learning algorithms for227

classification problems [35]. Additionally, in order to present a complete performance evaluation228

of iCST-Voting, similar to [29], Self-training, Co-training and Tri-training utilized as base learner, the229

ensemble classifier used by iCST-Voting. The configuration parameters for all supervised classifiers230

were set as in [14] which are also reported in Table 3 for completeness. It worth noticing that SMO was231

implemented using Pearson VII function-based universal kernel instead of the classical polynomial232

kernel, which significantly improved its performance.233

Table 3. Parameter specification for all the base learners used in the experimentation

Algorithm Parameters

SMO C = 1.0,

Epsilon = 1.0× 10−12,
Tolerance parameter = 0.001,
Kernel type = Pearson VII function-based universal kernel,
Fit logistic models = true.

C4.5 Confidence level: c = 0.25,
Mininum number of item-sets per leaf: i = 2,
Prune after the tree building.

kNN Number of neighbors = 3,
Euclidean distance.

Table 4 presents the performance evaluation of the iCST-Voting against the state-of-the-art234

self-labeled algorithms Self-training, Co-training, Tri-training, SETRED, Co-Bagging, Democratic-Co235

learning, Co-Forest on Voice gender dataset. Notice that the highest classification performance236

for each labeled ratio and performance metric is highlighted in bold. It is worth mentioning237

that the aggregated results demonstrate that iCST-Voting is the most efficient and robust method,238

independent of the utilized ratio of labeled instances in the training set.239

Table 4. Performance evaluation iCST-Voting against state-of-the-art self-labeled algorithms on Voice

gender dataset

Algorithm R = 10% R = 20% R = 30% R = 40% R = 50%
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Self-training 97.29% 97.29% 97.35% 97.35% 97.73% 97.73% 97.76% 97.76% 97.76% 97.76%
Co-training 97.01% 97.00% 97.04% 97.03% 97.16% 97.16% 97.19% 97.19% 97.29% 97.29%
Tri-training 97.55% 97.54% 97.64% 97.63% 97.83% 97.82% 97.86% 97.85% 97.95% 97.95%

SETRED 94.94% 94.92% 95.18% 95.17% 95.64% 95.61% 95.73% 95.71% 95.73% 95.71%
Co-Bagging 97.41% 97.41% 97.41% 97.41% 97.47% 97.47% 97.47% 97.47% 97.57% 97.57%
Democratic Co 94.86% 94.92% 95.69% 95.74% 96.22% 96.24% 96.59% 96.62% 97.23% 97.19%
Co-Forest 97.17% 97.16% 97.20% 97.19% 97.30% 97.29% 97.36% 97.35% 97.48% 97.47%

iCST-Voting 97.92% 97.92% 97.98% 97.98% 98.14% 98.14% 98.24% 98.23% 98.43% 98.42%

Table 5 reports the performance of Self-training, Co-training, Tri-training, SETRED, Co-Bagging,240

Democratic-Co learning, Co-Forest and iCST-Voting on Deterding dataset. As above mentioned, the241

accuracy measure of the best performing algorithm is highlighted in bold. Similar observations can242

be made with the previous benchmark. Clearly, iCST-Voting was by far the most efficient and robust243

method, demonstrating 1.21%-5.66% better classification accuracy, independent of the utilized ratio244

of labeled instances in the training set.245
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Table 5. Performance evaluation iCST-Voting against state-of-the-art self-labeled algorithms on

Deterding dataset

Algorithm R = 10% R = 20% R = 30% R = 40% R = 50%
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Self-training 91.50% 90.81% 91.89% 91.21% 92.18% 91.52% 92.16% 91.52% 92.38% 91.72%
Co-training 90.57% 89.90% 90.65% 90.00% 91.06% 90.40% 89.93% 89.09% 90.98% 90.30%
Tri-training 91.43% 90.71% 91.79% 91.11% 91.99% 91.31% 92.08% 91.41% 92.26% 91.62%

SETRED 91.14% 90.30% 91.65% 90.91% 91.65% 90.91% 92.18% 91.52% 92.72% 92.12%
Co-Bagging 89.47% 88.69% 90.16% 89.39% 90.16% 89.39% 90.70% 90.00% 91.10% 90.40%
Democratic-Co 90.45% 89.39% 90.45% 89.39% 91.04% 90.10% 91.76% 90.91% 92.10% 91.31%
Co-Forest 88.47% 87.58% 88.83% 87.98% 88.93% 88.08% 89.01% 88.18% 89.10% 88.28%

iCST-Voting 93.02% 92.42% 93.32% 92.73% 93.32% 92.73% 93.61% 93.03% 94.45% 93.94%

The statistical comparison of several classification algorithms over multiple datasets is246

fundamental in the area of machine learning and it is frequently performed by means of a statistical247

test [17,18]. Since our motivation stems from the fact that we are interested in evaluating the rejection248

of the hypothesis that all the algorithms perform equally well for a given level based on their249

classification accuracy and highlighting the existence of significant differences between our proposed250

algorithm and the classical self-labeled algorithms, we utilized the non-parametric Friedman Aligned251

Ranking (FAR) [36] test. Additionally, in order to identify which algorithms report significant252

differences, the Finner test [37] is applied as a post-hoc procedure. It is worth mentioning that the253

control algorithm for the post-hoc test is determined by the best (lowest) ranking obtained in each254

FAR test. Furthermore, the adjusted p-value with Finner’s test (pF) was presented based on the255

corresponding control algorithm at the α = 0.05 level of significance while the post-hoc test test256

rejects the hypothesis of equality when the value of pF is less than the value of a.257

Table 6 presents the information of the statistical analysis performed by nonparametric multiple258

comparison procedures for Self-training, Co-training, Tri-Training, CST-Voting and iCST-Voting. The259

interpretation of Table 6 illustrates that the proposed iCST-Voting algorithm reports the highest260

probability-based ranking by statistically presenting better results, outperforming the rest self-labeled261

algorithms.262

Table 6. Friedman Aligned Ranking (FAR) test and Finner post-hoc test for Self-training, Co-training,

Tri-training, SETRED, Co-Bagging, Democratic-Co learning, Co-Forest and iCST-Voting

Algorithm FAR Finner Post-Hoc Test

pF-value Null Hypothesis

iCST-Voting 5.7 -
Tri-training 22.8 0.048123 rejected
Self-training 23.85 0.043013 rejected
Co-training 53.7 0.035975 rejected
SETREG 48.6 0.028885 rejected
Co-Bagging 50.05 0.021743 rejected
Democratic-Co 58.6 0.014548 rejected
Co-Forest 60.7 0.007301 rejected

5.3. Performance evaluation of iCST-Voting against classical supervised algorithms263

In the sequel, we evaluate the classification performance of iCST-Voting against the classical264

supervised classification algorithms: SMO, kNN and C4.5. Moreover, we compare the performance265

of iCST-Voting against the ensemble of classifiers (Voting) which combines the individual predictions266

of the supervised classifiers utilizing a majority voting strategy.267
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Tables 7 and 8 report the performance of the supervised algorithms SMO, kNN, C4.5, Voting268

against iCST-Voting on Voice gender dataset and Deterding dataset, respectively, trained with269

different amounts of labeled data. As above mentioned, the highest classification performance for270

each labeled ratio and performance metric is highlighted in bold. The aggregated results show271

that iCST-Voting was by far the most efficient algorithm since it illustrates the highest classification272

performance, independent of the utilized ratio of labeled instances in the training set. More273

specifically, iCST-Voting outperforms all classical supervised algorithms, regarding both performance274

metrics and datasets.275

Table 7. Performance evaluation iCST-Voting against state-of-the-art supervised algorithms on Voice

gender dataset, relative to each labeled ratio

Algorithm R = 10% R = 20% R = 30% R = 40% R = 50%
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

SMO 96.00% 95.92% 96.84% 96.84% 97.40% 97.37% 97.96% 97.95% 97.98% 97.98%
kNN 95.77% 95.57% 96.25% 96.22% 97.08% 97.05% 97.95% 97.95% 97.55% 97.54%
C4.5 94.79% 94.97% 95.64% 95.57% 94.32% 94.32% 95.77% 95.74% 96.19% 96.21%
Voting 96.67% 96.53% 96.55% 96.53% 97.18% 97.16% 97.89% 97.87% 97.61% 97.60%

iCST-Voting 97.92% 97.92% 97.98% 97.98% 98.14% 98.14% 98.24% 98.23% 98.43% 98.42%

Table 8. Performance evaluation iCST-Voting against state-of-the-art supervised algorithms on

Deterding dataset, relative to each labeled ratio

Algorithm R = 10% R = 20% R = 30% R = 40% R = 50%
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

SMO 92.05% 90.89% 92.74% 92.42% 93.16% 92.64% 93.42% 93.01% 93.80% 93.35%
kNN 88.12% 87.78% 92.62% 91.95% 91.77% 90.93% 92.60% 92.18% 93.99% 93.76%
C4.5 79.56% 76.78% 82.37% 80.66% 87.47% 86.49% 87.31% 86.90% 92.24% 91.73%
Voting 86.21% 84.78% 90.33% 89.32% 91.73% 90.92% 92.02% 92.69% 93.92% 93.56%

iCST-Voting 93.02% 92.42% 93.32% 92.73% 93.32% 92.73% 93.61% 93.03% 94.45% 93.94%

Table 9 presents the performance of the supervised algorithms SMO, kNN, C4.5, Voting and276

iCST-Voting, regarding both classification benchmarks. It is worth noticing that all supervised277

classifiers were trained using 100% of the training data while iCST-Voting utilized only 50% of the278

training data. Relative to Voice gender dataset, the proposed algorithm iCST-Voting presents the best279

performance, outperforming all supervised algorithms. Regarding the Deterding dataset, the best280

performance is achieved by kNN while the proposed algorithm iCST-Voting slightly outperforms281

SMO and C4.5.282

Table 9. Performance evaluation iCST-Voting against state-of-the-art supervised algorithms trained

with 100% of training set on Voice gender and Deterding datasets

Algorithm Voice gender dataset Deterding dataset
F1 Acc F1 Acc

SMO 98.38% 98.39% 94.45% 93.93%
kNN 98.12% 98.11% 99.44% 99.39%
C4.5 96.83% 96.84% 94.05% 93.64%
Voting 97.94% 97.95% 97.38% 97.17%

iCST-Voting 98.43% 98.42% 94.45% 93.94%
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6. Conclusions283

In this work, we utilized a semi-supervised algorithm, called iCST-Voting for the gender284

recognition by voice. The proposed algorithm constitutes an ensemble of the most popular285

self-labeled algorithms i.e. Self-training, Co-training and Tri-training utilizing as base learner an286

ensemble of classifiers. The contribution of our approach as compared to other related approaches has287

to do with the fact that we utilize an ensemble of classifiers as base learner instead of single learners288

normally used in self-labeled algorithms. Our preliminary numerical results and the presented289

statistical analysis demonstrate the efficiency of the proposed algorithm for the gender recognition by290

voice compared against state-of-the-art self-labeled. Moreover, it presents competitive and sometimes291

better classification performance than classical supervised algorithms. Therefore, we conclude that292

reliable, stable and robust prediction models could be developed by the adaptation of ensemble293

techniques in the semi-supervised learning framework.294

In order to resolve possible scalability issues we run a set of experiments using two large datasets:295

the Pneumonia dataset [38] and CT Medical dataset [39] and found that in our proposed approach296

there was no degradation in accuracy of prediction. Only an expected small increase in training297

time was noticed. Therefore, we can safely say that our proposed approach performs equally well298

even when input data increases drastically. Moreover, it is worth noticing that we understand the299

limitations imposed on the generalizability of the presented results due to the use of the only two300

freely available data. We certainly intend to investigate this further in the near future.301

Our future work is focused on improving the prediction accuracy of our framework by302

combining self-labeled algorithms with more sophisticated and theoretically motivated ensemble303

learning methodologies. Additionally, another interesting aspect is concentrating on extending304

our framework for handling big data with traditional technique and platforms such as [40,41].305

Finally, since our numerical experiments are quite promising, we intend to focus on expanding306

our experiments and applying further the proposed algorithm to several audio datasets for speaker307

recognition.308
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