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A dropout weight-constrained recurrent neural network model for
forecasting the price of major cryptocurrencies and CCi30 index
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Abstract Cryptocurrency is widely recognized as an alter-
native method for paying and exchanging currency instead
of using classic coins or gold; thus, it has infiltrated almost in
all financial transactions worldwide. Nowadays, cryptocur-
rency trade constitutes one of the most popular and promis-
ing type of profitable investments. Nevertheless, this new
and constantly increasing financial market is characterized
by high volatility and strong fluctuations of prices over time.
As a result, it is considered essential for portfolio optimiza-
tion and management, the development of a forecasting model.
In this work, we propose a new time-series model based
on dropout weight-constrained recurrent neural networks for
forecasting cryptocurrency prices and the value of Crypto-
Currency index 30 (CCi30). The proposed forecasting model
exploits advanced regularization techniques for reducing the
fundamental problem of overfitting. More specifically, it is
characterized by the imposition of box-constraints on the
weights of the network for reducing the likelihood of them
blowing up to unrealistic values. Additionally, the adoption
of dropout technique aims to explore hard-reaching regions
of the weight space and forces the weights to away from
zero. The proposed forecasting model was evaluated against
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state-of-the-art types of neural networks and regression mod-
els for forecasting the price of the four most widely traded
digital currencies and for the prediction of CCi30 index.
Our conducted experimental and detailed statistical analy-
sis demonstrate that although weight-constrained networks
give significant improvements the adoption of dropout tech-
nique in weight-constrained networks provides a boost in
increasing the forecasting performance.

Keywords Weight-constrained neural networks · dropout ·
cryptocurrency · CCi30 index · forecasting.

1 Introduction

After the Global Financial Crisis of 2008-2009, along with
the failure of value-at-risk type models based on the Gaus-
sian distribution used by the Basel Committee of Banking
Supervision, the confidence of the investors in the banking
system and financial organizations diminished. In 2008, a
team under the pseudonymous name of Satoshi Nakamoto
proposed a novel and elegant solution to the double-spending
problem in online payments, via a purely peer-to-peer ver-
sion of electronic cash, which would allow online payments
bypassing the financial institutions. Cryptocurrency is a dig-
ital exchange tool which utilizes cryptographic functions based
on blockchain technology (Narayanan et al., 2016; Norman,
2017; Parker, 2018). Transparency, decentralization and im-
mutability are some of the advantages that the blockchain
framework provides on every crypto-exchange. In our days,
cryptocurrency has infiltrated almost in all global financial
transactions as an alternative method for paying and exchang-
ing currency instead of using classic coins or gold.

The proposed cryptocurrency, named Bitcoin (Nakamoto,
2008), along with others that followed did not attract much
attention initially; but due to the “internet of things” via
the inter-networking of physical devices and network con-
nectivity for collection and exchange of data, a large va-
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riety of over 2000 virtual currencies has surfaced the last
years with a market capitalization of US $270 billion. In
fact, in a recent research, Bovaird (2017) appreciated that
the cryptocurrency market has soared more than 12 times in
2017, revealing the strong and widespread growth of cryp-
tocurrency market. Nevertheless, since the large majority of
these cryptocurrencies are relatively new, there is no suffi-
cient amount of data yet for advanced quantitative modeling
or price forecasting, and they are not highly ranked towards
market capitalization to be considered as market drivers. No-
tice that the first four cryptocurrencies, i.e. Bitcoin (BTC),
Etherium (ETH), Ripple (XRP) and Litecoin (LTC) hold
67%, 8%, 4.5%, and 2% of the global cryptocurrency market
capitalization, respectively, summing up to approximately
81.5%, which can be used as proxies for cryptocurrencies.

As an attempt to construct a cryptocurrency index, due
to a large number of available cryptocurrencies, the Crypto-
Currency index 30 (CCi30) was officially launched on 01-
Jan-2017, with a starting value arbitrarily set at 100 on 01-
Jan-2015. This is a rules-based index designed with the pur-
pose to provide an objective measure of the overall growth,
the daily and long-run movement of the blockchain sector,
via tracking of the 30 largest cryptocurrencies regarding mar-
ket capitalization. Moreover, from the diversification point
of view, CCi30 can be used both as an investment tool for
passive investors and as a possible industry benchmark for
investment managers.

One very common way of investing in cryptocurrency,
is the “buy, hold and sell” strategy, similar to the stock ex-
change and real estate investments. In this way, the investor
is buying cryptocurrency with real money, he holds this cur-
rency until reaching a higher value and then it sells in order
to make a profit. The investor’s personal experience and the
consistent watching of cryptocurrencies exchange prices can
lead to some short-term profits while high amounts of profits
can be achieved with accurate price predictions since the in-
vestor would buy and sell the cryptocurrency the proper time
based on his predictions. However, cryptocurrency prices
have by nature highly nonlinear behavior and strong fluctu-
ations over time, which makes the performing of accurate
predictions a very challenging task. For this purpose, the
use of complicated mathematical formulas and methods for
the development of sophisticated prediction tools can po-
tentially assist investors to make accurate predictions and
gain significant profits. Although cryptocurrency forecast-
ing is a significant step toward portfolio optimization, ex-
isting research studies regarding cryptocurrency price fore-
casting are fairly limited since the market is relatively new,
while most of them focus on the Bitcoin market.

Traditional time-series methods such as ARIMA (Auto-
Re-gressive Integrated Moving Average) and its variations
probably constitute the most famous and widely utilized meth-
ods for cryptocurrency price prediction. However, in order

for these methods to be applicable, they require assump-
tions such as stationarity or distribution and also require data
which can be broken down into noise, seasonal and trend.
Therefore, they cannot depict the nonlinear and stochastic
nature of cryptocurrency time-series and be effective for this
task. To this end, Artificial Neural Networks (ANNs) prob-
ably constitute the most suitable methods to bypass these
problems since they are highly complex non-linear systems
which are specialized to solve non-linear -problems (Boufe-
nar et al., 2018; de Campos Souza et al., 2019; Livieris et al.,
2020a; Malekzadeh et al., 2016; Maren et al., 2014; Petridis
& Kehagias, 2012; Pratama et al., 2017; Salahshour et al.,
2019; Shojaie et al., 2017). Recurrent Neural Networks (RNNs)
constitute a class of neural networks which are characterized
by their capability for recognizing long-term dependencies.
In this type of networks, the output of each layer is stored
in a context layer to be looped back in along with the input
from the next layer. In this sense, the RNNs gain memory
of sorts; thus, they are favored over traditional feed-forward
neural networks, due to the temporal nature of cryptocur-
rency data.

The main objective of this research is to contribute on
the development of a prediction model for the cryptocur-
rency forecasting. Consequently, the purpose of the current
research is fundamentally two-fold: Firstly, we evaluate the
performance of weight-constrained recurrent neural networks
(WCRNNs) for predicting cryptocurrency prices and the value
f the CCi30 index. WCRNNs (Livieris, 2019b) are a new
type of recurrent neural networks which are characterized by
imposing bounds on the weights of the network. Secondly,
we investigate the forecasting performance of this new type
of neural networks along with the dropout technique (Sri-
vastava et al., 2014) in order to provide a boost of the fore-
casting precision.

The contribution of this work is the development of an
intelligent time-series model based on dropout weight-constrai-
ned recurrent neural networks. The novelty of our approach
lies in exploiting the advantages of WCRNNs and dropout
technique to generate good feature representations and re-
duce data overfitting. More analytically, the imposition of
box-constraints on the connection weights reduces the like-
lihood that they could “blow up” to unrealistic values while
the application of dropout explore hard-reaching regions of
the weight space and forces the weights to away from zero.
In this way, a prediction model is efficiently trained with
connection weights with small values which are defined in
a more uniform way. We performed a series of experiments
and compared the performance of the proposed forecasting
model against other state-of-the-art models for the predic-
tion of the daily price of the four most widely traded dig-
ital currencies, i.e. BTC, ETH, XRP and LTC as well as
for the prediction of the daily value of CCi30 index. Our
experimental analysis demonstrates that although weight-
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constrained networks give significant improvements, utiliz-
ing these new ANN-type models along with dropout tech-
nique provide a boost in reducing the generalization error.
To the best of our knowledge, this is the first research de-
voted to the prediction of various cryptocurrencies prices
and the value of CCi30 index.

Finally, it is worth mentioning that this research is fo-
cused on the development of an expert model for forecasting
cryptocurrency and less on the design and implementation
of profitable trading cryptocurrency system.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a brief survey of recent studies, regarding
the application of advanced machine learning techniques in
cryptocurrency forecasting. Section 3 presents the proposed
dropout weight-constrained recurrent neural network model.
Section 4 presents the data utilized in this study and Section
5 presents the numerical experiments. Section 7 concludes
the findings of our research and provides an outline for fu-
ture prospects.

2 Cryptocurrency forecasting: state of the art

During the last years, the increasing growth of information
technology and digital economy has affected and transformed
many sectors, including trade and finance. Nowadays, cryp-
tocurrency trade is becoming an integral part of the global
economy and constitutes a popular type of profitable in-
vestment. As a result, there is a significantly growing inter-
est in studying the nonlinear dynamics of digital currencies,
including their inherent chaoticity and fractality. The pre-
diction of cryptocurrency prices is considered essential and
constitutes a complex and challenging task in time-series
forecasting. Although cryptocurrency forecasting is a signif-
icant factor for portfolio optimization, only a limited num-
ber of works have focused on this issue, especially for the
Bitcoin market, which are briefly presented below.

Radityo et al. (2017) examined a number of ANN mod-
els to forecast the market value of Bitcoin. They studied four
ANN models, namely genetic algorithm neural network, ge-
netic algorithm backpropagation neural network, backprop-
agation neural network and neuro-evolution of augmenting
topologies to predict Bitcoins’ close value in the next day.
All models were evaluated using the training time and the
mean absolute percentage error as measurements. Their ex-
periments showed that the backpropagation neural network
demonstrated the best performance for Bitcoin prediction.

Sin & Wang (2017) studied how the features of Bitcoin
such as cost per transaction, estimated transaction volume,
market price and capitalization and number of transactions
affect the next day’s change in the movement direction of the
Bitcoin price. Additionally, they proposed a new classifica-
tion model called Genetic Algorithm-based Selective Neu-
ral Network Ensemble (GASNNE) which consists of five

multilayer perceptrons, all with different number of nodes in
the hidden layers. Their numerical experiments reported that
GASNNE performed considerably well for this binary clas-
sification task reporting around 58%−63% accuracy. More-
over, the authors claimed that the performance of GASNNE
revealed that the Bitcoin’s features utilized in their research
contain useful information about the behavior of Bitcoin’s
price.

Wu et al. (2018) proposed a new framework for forecast-
ing Bitcoin daily price using two differing Long-Short Term
Memory (LSTM) neural networks models (LSTM with AR(2)
and conventional LSTM). The data used in their research
contained the daily price, volume and transaction historical
data of 7 months (from 01-Jan-2018 to 28-Jun-2018) from
which 66% were utilized for training and the rest for testing.
Both LSTM models were evaluated with optimized topology
and parameter settings. Their detailed experimental analysis
showed the predictive power and efficiency of the LSTM
with AR(2) model over plain LSTM.

Attanasio et al. (2019) investigated the efficiency of the
most established classification and time-series prediction mod-
els in cryptocurrency trading by back-testing model perfor-
mance. For validating each model’s performance they con-
sidered a time period of eight years (from 01-Jan-2018 to
31-Dec-2018) which is characterized by heterogeneous mar-
ket conditions. From their experimental analysis, the authors
concluded that machine learning algorithms can offer signif-
icant insights into the cryptocurrency trading. Nevertheless,
they also stated that there is no single model which can ex-
hibit the best forecasting performance, in all situations.

Valencia et al. (2019) used social media data from Twit-
ter along with market data for forecasting the price move-
ment of four of the most widely traded digital currencies,
namely Bitcoin, Ethereum, Ripple and Litecoin. The ma-
chine learning algorithms utilized in their research were neu-
ral networks, random forest and support vector machines.
Their experimental analysis was performed using a three-
phase procedure: in the first approach, each algorithm is ex-
clusively trained with social data, in the second with market
data and in the third with both social and market data. Based
on their results, the authors claimed that the performance of
all algorithms was increased utilizing both social and market
data for the training process.

Munim et al. (2019) examined and evaluated the per-
formance of Neural Network Auto-Regression (NNAR) and
ARIMA for the prediction of next-day Bitcoin price. For this
purpose, they utilized both with and without re-estimation
of each forecasting model for each step. The authors uti-
lized multiple training and testing samples to illustrate the
consistency of the prediction results which revealed the su-
periority of ARIMA over NNAR as it was also confirmed by
the Diebold-Mariano test.
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Nevertheless, none of the mentioned research studies con-
sidered to develop an efficient prediction model exploiting
advanced regularization techniques for addressing and re-
ducing the fundamental problem of overfitting. Our fore-
casting model is characterized by the imposition of box-
constraints on the weights of the network for reducing the
likelihood that them could “blow up” to unrealistic values.
Additionally, the adoption of dropout technique aims to ex-
plore hard-reaching regions of the weight space and forces
the weights away from zero. Furthermore, unlike the previ-
ous studies, we provide extensive performance evaluation as
well as a detailed statistical analysis including a nonpara-
metric statistical and a post-hoc test to demonstrate the effi-
ciency of our approach.

3 Proposed forecasting model

Artificial Neural Networks (ANNs) are widely character-
ized as one of the most powerful machine learning models,
which have been successfully applied to tackle challenging
real-world problems. A significant drawback of the applica-
tion of ANNs is overfitting, which occurs when the network
aligns too closely with the training set. This implies that al-
though the ANN exhibits excellent performance on the train-
ing set, it performs poorly when applied to new unseen data.
During the last decade, A variety of regularization strategies
and approaches have been proposed in the literature to ad-
dress this problem.

3.1 Dropout

Dropout (Srivastava et al., 2014) is a recently proposed reg-
ularization strategy which attempts to deal with the problem
of data overfitting, without being as computationally inef-
ficient as an ensemble of ANNs. The key idea in dropout
technique is that a thinned ANN is sampled and trained at
each iteration of the training process. The thinned network
is created by temporary removing a random set of neurons
(excluding the output neurons) along with their connection
weights, with a pre-defined probability q (called dropout
rate). Moreover, during testing, the output of each neuron
is multiplied by the probability of being re-trained 1− q.
In this regard, an approximation to the average of the pre-
dictions of all created thinned ANNs is easily and elegantly
performed.

Since at each new iteration, a randomly selected set of
neurons is “dropped”, the ANN is trained with fewer neu-
rons; thus, requiring more iterations to converge. Regard-
ing the dropout rate q, several researchers provided empir-
ical evidence that the optimum dropout rate falls anywhere
within the interval [0,1] since it is heavily depended on the

dataset and the network’s topology (Baldi & Sadowski, 2013;
Srivastava et al., 2014).

The significant advantage of the dropout strategy is that
it prevents each neuron from co-adapting too much to the in-
stances of the training set and provides a way of efficiently
combining an exponential number of ANNs with different
architectures. Moreover, it has the potential to reduce over-
fitting and provide significant improvements over other reg-
ularization strategies such as soft-weight sharing and L-regu-
larization (Srivastava et al., 2014).

3.2 Weight-constrained neural networks

Recently, a novel approach was proposed to reduce over-
fitting and improve the generalization efficiency of ANNs.
More specifically, Livieris (2019a,b) considered to imposi-
tion of the connection weights of the network to take cer-
tain values within pre-defined intervals; therefore, imposing
box-constraints on the weights, during the training process.
As a result, from a mathematical point of view, the prob-
lem of training a weight-constrained network can be formu-
lated as a constrained optimization problem of an error func-
tion E(w) which depends on the weights w of the network,
namely

min{E(w) |w ∈B} (1)

with

B = {w ∈ Rn : l ≤ w≤ u} (2)

where l = [l1, l2, . . . , ln] ∈ Rn and u = [u1,u2, . . . ,un] ∈ Rn

denote the vectors with the lower and upper bounds on the
weights, respectively. A graphical overview of a typical WCNN
with two inputs and one hidden layer is demonstrated in Fig-
ure 1.

Fig. 1 A typical weight-constrained neural network with two inputs
and one hidden layer

Empirical evidence in a variety of real-world benchmarks
revealed that weight-constrained neural networks (WCNNs)
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considerably outperform classical ANNs, in terms of gen-
eralization performance (Livieris, 2019a,b; Livieris et al.,
2019a).

The motivation behind WCNNs is based on the fact that
a trained ANN with some weights having large values is a
sign that it has a very high variance and has overfitted the
training data, which implies that the network is highly unsta-
ble. This instability, concerning the inputs, results in devel-
oping an unreliable prediction model since minor variations
or uncertainties on the expected inputs may be greatly mag-
nified and lead to significantly poor prediction performance
on new unseen data. In contrast, a trained ANN with small
weights suggests a more stable prediction model which is
less likely to overfit the training data since it is less sensitive
to statistical fluctuations in the inputs.

3.3 Dropout weight-constrained recurrent neural networks

The goal of this research is the development of an intelli-
gent time-series model for forecasting cryptocurrency data.
On the basis of this idea, we hybridized the previous two ap-
proaches presented by Livieris (2019b) and Srivastava et al.
(2014) into a new forecasting model, called Dropout Weight-
Constrained Recurrent Neural Network (DWCRNN). The
proposed model aims on improving the efficiency of WCRNNs
by adopting the dropout technique. In other words, it at-
tempts to prevent and reduce data overfitting and provide
a way of approximately combining an exponential number
of different WCRNNs architectures.

Notice that WCRNNs differ from the classical feed-forward
WCNN by the fact that each previous state is fed-back into
the network. Therefore, the application of standard dropout
to WCRNNs may tend in limiting their valuable ability of
retaining memory and recognizing long-term dependencies.
To address this issue, we adopt the technique proposed by
Pham et al. (2014) in which the dropout is applied only to
the feed-forward connections of the WCRNNs in order to
improve the generalization performance. The rationale be-
hind this technique is that by not utilizing dropout on the
recurrent connections of the WCRNN, the network has a po-
tential to benefit from dropout regularization, without sacri-
ficing its memorization ability.

DWCRNN can be efficiently trained in a manner sim-
ilar to classical WCRNNs by utilizing a classical weight-
constrained training algorithm (Livieris, 2019b; Livieris &
Pintelas, 2019). The principle difference is that at each train-
ing iteration, a thinned WCRNN is sampled by temporally
dropping out feed-forward connections. For completeness,
the training algorithm is presented in Algorithm 1 which
is based on the improved training algorithm proposed by
Livieris & Pintelas (2019). In addition, a graphical overview
of the proposed training algorithm in the form of a flowchart
is presented in Figure 2.

Initially, at each iteration the training algorithm tempo-
rary drops a randomly selected set of feed-forward connec-
tions, with pre-defined probability q (Step 4). Then, the al-
gorithm calculates the Hessian approximation Bk of the er-
ror function E(w) utilizing the advanced scaling factor pro-
posed by Livieris & Pintelas (2019) (Steps 5-6). The effi-
ciency of the algorithm heavily depends on the selection of
Bk which is used to define and calculate the quadratic model
mk(w) (Step 7). It worths noticing that the Hessian approxi-
mation Bk is computed utilizing the limited memory BFGS
(L-BFGS) formula (Nocedal & Wright, 2006), which stores
only a (relative) small number m̂ of correction pair of vectors
{sk,yk}. Thus, this moderate requirement of memory makes
the proposed algorithm well suitable for training neural net-
works with especially a large number of weights.

Subsequently, the training algorithm conducts a mini-
mization process of the approximation model mk(w), sub-
ject to the feasible domain D = {w ∈Rn | l ≤ w≤ u}, which
consists of three stages in order to compute the new vec-
tor of weights. In Stage I, a gradient projection algorithm
(Morales & Nocedal, 2011) is used to compute the gen-
eralized Cauchy point wC and calculate the set of active
weights A (wC) (Steps 8-9). More analytically, the gener-
alized Cauchy point wC is defined as a local minimum of
quadratic approximation of E(w), starting from the current
iteration wk, on the path defined by the projection of the
steepest descent direction on the feasible domain D; while
the active set A (wC) is defined by the variables whose value
at wC is at lower or upper bound. In Stage II, a minimiza-
tion of the approximation model mk(w) is performed on the
weights characterized as non-active (i.e. w 6∈ A (wC)) uti-
lizing a direct primal algorithm (Morales & Nocedal, 2011)
(Step 10). For addressing this optimization problem, a direct
primal method (Morales & Nocedal, 2011) is utilized to find
the minimizer wk+1. In Stage III, the weights of the network
are updated by performing a line search procedure along the
search direction dk = wk+1−wk, which satisfies the strong
Wolfe conditions (Steps 11-13). Finally, the algorithm up-
dates the set of stored correction pairs used for the calcu-
lation of the Hessian approximation. For more information
about the theoretical advantages of the scaling factor and
the L-BFGS matrices as well as the minimization process,
we refer the reader to Livieris (2019b); Livieris & Pintelas
(2019); Nocedal & Wright (2006).

After the training process is complete, following the dropout
technique, then the feed-forward output of each neuron is
multiplied by 1−q (Step 17) which provides an elegant ap-
proach for approximating the average predictions of all cre-
ated thinned WCRNNs.
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Algorithm 1
Input: w0 − Initial weights.

σ1 − Hyper-parameter of strong Wolfe line search.
σ2 − Hyper-parameter of strong Wolfe line search.
l − Vector with lower bounds on the weights.
u − Vector with upper bounds on the weights.
m − Number of stored correction vector pairs.
κ − Hyper-parameter of the scaling factor.
q − Dropout rate (in percentage).

Output: wk −Weights of the WCRNN.

Step 1. Set k = 0.
Step 2. repeat
Step 3. Set m̂ = min{k,m−1}.

Step 4. Drop a random set of feed-forward connections,
with pre-defined probability q.

Step 5. Calculate the scaling parameter θk

θk = max
{

θ
(1)
k ,θ

(2)
k

}
where

θ
(1)
k =

sT
k−m̂+1yk−m̂+1

yT
k−m̂+1yk−m̂+1

θ
(2)
k =


‖yk‖2

sT
k yk

, if 〈sk,yk〉2 > κ;

yT
k sk

‖sk‖2 , otherwise.

〈·, ·〉 stands for the inner product, sk = wk−wk−1
and yk = ∇E(wk)−∇E(wk−1).

Step 6. Calculate the Hessian approximation Bk

Bk =
1
θk

I−
[
Yk

1
θk

Sk

]−Dk LT
k

Lk
1
θk

ST
k Sk

−1 [
Yk

1
θk

Sk

]T

,

where the matrices Sk, Yk, Dk and Lk are
respectively defined by

Sk = [sk−m̂, . . . ,sk−1]
Yk = [yk−m̂, . . . ,yk−1]
Dk = diag

[
sT

k−m̂yk−m̂, . . . ,sT
k−1yk−1

]
(Lk)i j =

{
(sk−m̂−1+i)

T (yk−m̂−1+ j), if i > j;

0, otherwise.

Step 7. Set the quadratic model mk(w) at wk

mk(w) = E(wk)+(w−wk)
T

∇E(wk)+
1
2
(w−wk)

T Bk(w−wk)

/* STAGE I */
Step 8. Calculate the generalized Cauchy point wC .
Step 9. Define the active set A (wC).

/* STAGE II */
Step 10. Minimize the quadratic model mk(w)

wk+1 = arg min
w∈DS

mk(w)

where DS =
{

w ∈ R | li ≤ wki ≤ ui, ∀i 6∈A (wC)
}

.

/* STAGE III */
Step 11. Set the search direction dk = wk+1−wk.
Step 12. Compute the learning rate ηk satisfying the strong

Wolfe line search conditions

Ek+1 ≤ Ek + c1ηkdT
k ∇E(wk),

|dT
k ∇E(wk+1)| ≤ c2|dT

k ∇E(wk)|,

using initial step size η = 1.
Step 13. Update the weights wk+1 = wk +ηkdk.
Step 14. Update the stored set of correction pairs {si,yi}k−m̂

i=k−1
satisfying sT

i yi > 0.
Step 15. Set k = k+1.
Step 16. until (stopping criterion).
Step 17. Multiply the feed-forward connections of each neuron

by 1−q.

4 Data

For the purpose of this research, we utilized data from 01-
Jan-2017 to 30-Jun-2019, concerning the daily prices of the
BTC, ETH, XRP and LTC in USD and the daily values of
the CCi30 index. These cryptocurrencies were selected be-
cause at the time, they had the highest market capitalization.
Moreover, the data for all cryptocurrencies were collected
from https://coinmarketcap.com while for the CCi30
index from https://cci30.com.

A critical issue when dealing with the modeling of vir-
tual currencies is the time span under consideration. Average
prices across exchanges appear from Apr-2013 for BTC and
LTC, Aug-2013 for XRP, Aug-2015 for ETH and Jan-2017
for the CCi30 index. Under these conditions, the starting
date of our sample will be 01-Jan-2017, where the signifi-
cant price increase for most of the cryptocurrencies began, to
30-Jun-2019 as the last value of the sample. Figure 3 demon-
strates the daily price of the cryptocurrencies BTC, ETH,
XRP and LTC and the daily value of the CCi30 index. Addi-
tionally, Table 1 presents the descriptive statistics including
Mean, Median, Maximum, Minimum, Standard Deviation
(Std. Dev.), Skewness and Kurtosis for each cryptocurrency
and CCi30 index.

Statistic BTC ETH XRP LTC CCi30

Mean 5743.6 318.37 0.4174 76.703 4534.2
Median 5623.5 251.76 0.3212 57.180 3718.0
Maximum 19497.0 1396.4 3.3800 358.34 20796.0
Minimum 777.76 8.17 0.0054 3.7100 276.35
Std. Dev. 3546.0 263.0 0.4025 63.597 3605.9
Skewness 0.9408 1.3628 3.2079 1.4950 1.6354
Kurtosis 4.1814 4.6885 18.313 5.3415 6.0347

Table 1 Descriptive statistics for BTC, ETH, XRP and LTC cryptocur-
rencies and CCi30 index

https://coinmarketcap.com
https://cci30.com
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θk = {θ
(1)
k ,θ

(2)
k }
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Define the active set
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model mk(w)
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Stage III

Fig. 2 Flow-chart
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(e) CCi30 index

Fig. 3 Daily price of cryptocurrency BTC, ETH, XRP and LTC in USD and of CCi30 index from January 2017 to June 2019

The data were divided into training set which consists
of data from 01-Jan-2017 to 31-Mar-2019 (27 months) and
testing set from 01-Apr-2019 to 30-Jun-2019 (3 months). It
is worth noticing that 27 months of daily values for training
cover a wide range of long and short-term trends and en-
sures a substantial amount of data for training while the rest
3 months of daily values ensure that we evaluate the com-
pared forecasting models on unseen “out-of-sample” data.
Finally, in order to overcome the problems which usually
arise when a series is a stochastic Brownian motion (ran-
dom walk with a drift), we applied the novel methodology
proposed by Livieris et al. (2020c) and the data were trans-
formed via the first differences of the series to ensure sta-
tionarity.

The interpretation of Figure 2, presents that Etherium
and Ripple do not have large variability as Bitcoin and Lite-
coin. However, since Etherium and Ripple are ranked #2 and

#4 in market capitalization, respectively they are tradition-
ally included in most research attempts in the crypto mar-
ket. Moreover, Ripple is a different crypto, from the point
of view that it is not mineable, it is pre-mined, and it has
small variability. The CCi30 index as a weighted average of
all cryptocurrencies has a reasonably high variability, which
is mostly affected by Bitcoin.

5 Numerical experiments

In this section, we conducted an extensive experimental anal-
ysis to explore and examine the performance of DWCRNNs
in forecasting cryptocurrency prices and also evaluate them
against other state-of-the-art regression models.

The performance of each model was measured by Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE)
as in Aha (2013); Attanasio et al. (2019); Baldi & Sadowski
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(2013); Bovaird (2017); Chai & Draxler (2014); Debelee
et al. (2020), which are respectively defined by

MAE =
1
n

n

∑
i=1
|pi−ai| and RMSE =

√
1
n

n

∑
i=1

(pi−ai)2

where n is the number of test instances, ai is the actual value
for i-instance and pi is the predicted value for i-instance. It
is worth mentioning that these measures were selected since
they probably are the most appropriate metrics for evaluat-
ing regression models (Chai & Draxler, 2014; Livieris et al.,
2019b).

From a forecasting aspect, the forecasting horizon F is
crucial for the prediction accuracy of an intelligent model.
The forecasting horizon is the number of values (days) which
are taken into consideration by the model for predicting the
next value. In this study, we utilized three different values
for the forecasting horizon, i.e., 7, 14 and 21 days, which
corresponds to 1, 2 and 3 weeks, respectively. For example,
a forecasting horizon equal to 7 means that the data are be-
ing taken for 7 days and results are predicted for the 8th day.

The experimental analysis was performed following a
three-phase procedure: In the first phase, we explored the
sensitivity of DWCRNN to the value of the dropout parame-
ter; in the second phase, we evaluated the performance of
DWCRNN against two state-of-the-art RNN architectures
used in the field of deep learning, LSTM and BiLSTM and
against the novel CNN networks; in the third phase, we com-
pared the prediction performance of the WCNNs against the
other widely utilized regression algorithms. Notice that in
the following tables, the best performance for each perfor-
mance metric and value of parameter F is illustrated in bold.

The utilized networks consist of 1 hidden layer with 12
neurons using logistic activation function, which provided
us the best forecasting performance. The hyper-parameters
of Algorithm 1 were set to σ1 = 10−4, σ2 = 0.9, m = 7 and
κ = 0.5 (Livieris & Pintelas, 2019) and the implementation
code was written in Matlab 7.6.

5.1 Sensitivity of DWCRNN to the value of dropout rate

In the sequel, we focus our interest on the experimental anal-
ysis for studying the sensitivity of DWCRNNs to the value
of the dropout rate q. To this end, we tested values of q rang-
ing from 10 to 40 in steps of 10, using two different bounds
for the weights, i.e., [−1,1] and [−2,2] as in (Livieris, 2019b;
Livieris & Pintelas, 2019). The abbreviations in the follow-
ing tables have the following meaning

– “WCRNN” stands for Algorithm 1 with q= 0 (no dropout)
(Livieris, 2019b).

– “DWCRNN (10%)” stands for Algorithm 1 with dropout
rate q = 10%.

– “DWCRNN (20%)” stands for Algorithm 1 with dropout
rate q = 20%.

– “DWCRNN (30%)” stands for Algorithm 1 with dropout
rate q = 30%.

– “DWCRNN (40%)” stands for Algorithm 1 with dropout
rate q = 40%.

For rejecting the hypothesis that all versions of Algo-
rithm 1 performed equally well for a given level, based on
their performance, we utilized the non-parametric Friedman
Aligned Ranking (FAR) (Hodges & Lehmann, 1962) test.
Additionally, for examining if the differences in the perfor-
mance of the versions of Algorithm 1 are statistically sig-
nificant, we applied the post-hoc Finner test (Finner, 1993)
with significance level α = 5%.

Table 2 presents the detailed performance of all versions
of Algorithm 1 with bounds [−1,1] on the connection weights,
regarding the MAE and RMSE performance metrics. More-
over, Table 3 reports the statistical analysis, performed by
nonparametric multiple comparison. Firstly, it is worth notic-
ing that the dropout technique considerably improved the
performance of weight-constrained networks, as confirmed
statistically by the FAR and Finner tests. Clearly, DWCRNN
(10%) and DWCRNN (20%) reported the best performance,
relative to all datasets and forecasting horizons. In more de-
tail, DWCRNN (10%) and DWCRNN (20%) scored the best
MAE and RMSE in 11 and 5 out of 15 cases, respectively.
Moreover, the interpretation of Tables 2 and 3 suggests that
for forecasting horizons 7 and 14, DWCRNN (10%) reported
the lowest MAE and RMSE score; while for forecasting
horizon 21, DWCRNN (20%) reported comparable and some-
times superior to that of DWCRNN (10%). This implies that
for small weight-constrained networks, Algorithm 1 performs
better with dropout rate q = 10%; while as the size of the
network increases, Algorithm 1 exhibits the better perfor-
mance with dropout rate q = 20%.

Table 4 and 5 report the MAE and RMSE performance
and the statistical analysis of all versions of Algorithm 1
with bounds [−2,2] on the weights, regarding all datasets
and each value of forecasting horizon. Similar observations
can be made with the previous analysis. DWCRNN (20%)
exhibited the best overall forecasting performance, as it is
confirmed by the statistical analysis, followed by DWCRNN
(10%). More specifically, DWCRNN (20%) and DWCRNN
(10%) presented the lowest MAE and RMSE in 12 and 3 out
of 15 cases, respectively. Nevertheless, WCRNN consider-
ably outperformed both DWCRNN (30%) and DWCRNN
(40%) in most cases, relative to both metrics. The above
analysis implies that for small values of the dropout rate q
(i.e. 10% and 20%), dropout improved the performance of
weight-constrained networks; in contrast, for bigger values
(i.e. 30% and 40%), dropout degrades the performance of
DWCRNN.
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Data F MAE RMSE
WCRNN DWCRNN DWCRNN DWCRNN DWCRNN WCRNN DWCRNN DWCRNN DWCRNN DWCRNN

(10%) (20%) (30%) (40%) (10%) (20%) (30%) (40%)

BTC 7 178.631 147.891 150.205 151.138 170.161 267.87 213.305 215.193 224.601 239.348
14 174.133 145.512 157.894 161.352 175.012 247.58 202.841 227.946 219.991 245.151
21 130.261 108.951 109.733 116.281 114.041 176.82 151.180 154.538 161.856 161.694

ETH 7 6.553 5.086 5.262 6.031 5.783 8.525 6.873 7.021 7.788 8.056
14 6.142 5.348 5.735 5.491 6.036 8.211 7.276 7.601 7.421 8.064
21 5.765 5.064 4.894 5.028 5.390 7.660 6.608 6.206 6.524 7.092

XRP 7 0.009 0.006 0.007 0.008 0.009 0.012 0.010 0.011 0.011 0.011
14 0.007 0.006 0.006 0.006 0.007 0.010 0.009 0.007 0.009 0.010
21 0.010 0.004 0.004 0.008 0.009 0.012 0.006 0.007 0.011 0.011

LTC 7 2.473 1.936 2.278 2.408 2.874 2.976 2.490 3.050 3.193 3.687
14 5.179 3.456 3.215 3.467 3.698 6.303 4.499 4.196 4.468 4.741
21 3.744 2.523 2.308 2.619 3.294 4.748 3.285 2.993 3.412 4.269

cci30 7 59.550 50.208 68.763 67.226 78.931 81.551 67.421 95.422 91.731 107.482
14 61.053 51.394 54.715 80.475 44.646 79.760 67.872 71.441 97.551 59.212
21 76.798 58.211 60.439 66.037 70.738 100.863 73.777 90.556 87.191 92.258

Table 2 Performance comparison based on MAE and RMSE of dropout weight-constrained recurrent neural networks with bounds [−1,1] on the
weights

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCRNN (10%) 18.866 - -
DWCRNN (20%) 26.2 0.356801 accepted
DWCRNN (30%) 38.766 0.016499 rejected
DWCRNN (40%) 49.2 0.000276 rejected
WCRNN 56.966 0.000007 rejected

Based on MAE metric

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCRNN (10%) 8.2 - -
DWCRNN (20%) 8.133 0.211963 accepted
DWCRNN (30%) 7.2 0.022556 rejected
DWCRNN (40%) 1.2 0.000067 rejected
WRCNN 5.266 0.000013 rejected

Based on RMSE metric

Table 3 FAR test and Finner post-hoc test comparing DWCRNN with [−1,1] bounds on the weights

Conclusively, it is worth noticing that an optimum dropout
rate q is really difficult (or even impossible) to be determined
for all datasets. Nevertheless, we can easily observe that its
selection is not only depended on the dataset but also on
the pre-defined bounds on the weights. Additionally, from
the interpretation of Tables 2-5, we conclude that as the size
of the network increases, the gain from dropout usually in-
creases up to a point and then it stabilizes or declines. This
suggests that when the value of the dropout rate is around
10%−20%, there is a “turning point” in the forecasting per-
formance of Algorithm 1.

5.2 Performance evaluation of DWCRNN against LSTM,
BiLSTM and CNN neural networks

In the sequel, the performance of DWCRNN is compared
and evaluated against that of state-of-the-art LSTM, BiL-
STM and CNN, which are briefly described below:

– LSTM (Hochreiter & Schmidhuber, 1997) is an artificial
neural network which is based on recurrent neural net-

work architecture. The main difference between a clas-
sic neural network architecture and a LSTM network is
that LSTM has additional feedback connections and is
very suitable for making predictions on sequential data
problems like time-series.

– BiLSTM (Schuster & Paliwal, 1997) is another type of
RNN which aims to acquire future and past information
by connecting two hidden layers of opposite directions
with the same output. BiLSTM can be very useful for
predicting data points values which are correlated with
future and past values like in handwriting recognition
where the performance for predicting a letter can be im-
proved by gaining information from letters before and
after this specific letter.

– CNN (Rawat & Wang, 2017) is a novel type of neural
networks which are based on convolutional layers and
are characterized by their ability of learning the inter-
nal representation of the time-series data (Livieris et al.,
2020b). Convolutional layers apply convolution opera-
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Data F MAE RMSE
WCRNN DWCRNN DWCRNN DWCRNN DWCRNN WCRNN DWCRNN DWCRNN DWCRNN DWCRNN

(10%) (20%) (30%) (40%) (10%) (20%) (30%) (40%)

BTC 7 147.347 126.775 122.246 150.575 143.132 215.224 194.472 190.762 220.762 215.211
14 157.451 140.214 128.207 146.965 181.723 225.635 198.984 182.463 210.475 261.587
21 137.930 127.131 127.095 126.466 142.026 190.971 169.314 178.682 165.029 195.755

ETH 7 4.856 4.264 3.838 4.209 6.409 6.394 5.525 5.115 5.552 8.203
14 5.242 5.856 4.688 5.775 5.987 7.028 7.637 6.353 7.439 7.975
21 4.757 4.801 4.288 3.870 4.545 7.660 6.608 6.524 5.206 7.092

XRP 7 0.007 0.006 0.006 0.006 0.007 0.010 0.009 0.009 0.009 0.010
14 0.006 0.005 0.004 0.005 0.006 0.008 0.007 0.006 0.007 0.008
21 0.005 0.004 0.004 0.005 0.004 0.007 0.006 0.006 0.007 0.006

LTC 7 2.215 2.000 2.175 2.357 2.527 2.952 2.659 2.888 3.118 3.291
14 2.561 2.401 2.081 3.638 3.537 3.306 3.063 2.674 4.520 4.530
21 2.694 2.009 1.773 2.046 2.157 3.568 2.647 2.325 2.671 2.856

cci30 7 54.861 48.436 45.805 71.598 68.352 67.654 64.960 59.636 86.568 94.186
14 51.712 50.162 46.087 61.992 73.496 67.653 64.964 59.632 86.562 94.184
21 63.345 74.529 54.097 67.124 74.332 81.745 87.569 70.071 94.974 94.746

Table 4 Performance comparison based on MAE and RMSE of dropout weight-constrained recurrent neural networks with bounds [−2,2] on the
weights

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCNN (20%) 18.133 - -
DWCNN (10%) 28.966 0.173427 accepted
WCNN 41.6 0.004252 rejected
DWCNN (30%) 42.9 0.003712 rejected
DWCNN (40%) 58.4 0.000002 rejected

Based on MAE metric

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCNN (20%) 19.066 - -
DWCNN (10%) 26.933 0.322910 accepted
WCNN 41.866 0.005557 rejected
DWCNN (30%) 43.166 0.004912 rejected
DWCNN (40%) 58.966 0.000002 rejected

Based on RMSE metric

Table 5 FAR test and Finner post-hoc test comparing DWCRNN with [−2,2] bounds on the weights

tion between the raw input data and utilize convolution
kernels for producing new feature values. More specif-
ically, a convolution kernel (filter) can be considered as
a tiny window which contains coefficient values into a
matrix form and “slides” all over the input matrix ap-
plying convolution operation on each subregion (patch)
that this specified window “meets” across the input ma-
trix. The convolutional layers are usually followed by a
pooling layer which constitutes a subsampling technique
for extracting certain values from the convolved features
and produces a lower dimension matrix.

Tables 6 and 7 report the performance comparison of
DWCRNN against LSTM, BiLSTM and CNN networks re-
garding MAE and RMSE metrics, respectively, while Ta-
ble 8 reports the statistical analysis performed by nonpara-
metric multiple comparison procedures. Notice that DWCRNN1
stands for Algorithm 1 with q = 10% and bounds [−1,1]
on the connection weights and DWCRNN2 stands for Al-
gorithm 1 with q = 20% and bounds [−2,2] on the con-
nection weights. LSTM and BiLSTM networks consist of

one layer with 50 and 2× 30 units, respectively followed
by a fully-connected layer of 4 neurons and an output layer
of one neuron. CNN networks consist of two convolutional
layers of 16 and 32 filters of size (2,), respectively, followed
by a max pooling layer, an dense layer of 128 neurons and
an output layer of one neuron. All network utilized Recti-
fied Linear activation function (ReLU) in all hidden layers
while ADaptive Moment Estimation (ADAM) (Kingma &
Ba, 2015) was utilized as training algorithm. Additionally,
LSTM, BiLSTM and CNN were evaluated using dropout
technique with q = 10%, q = 10% and q = 50%, which re-
ported the best performance, respectively.

Both DWCRNN1 and DWCRNN2 reported the best over-
all performance, outperforming the state-of-the-art RNNs
and CNNs networks, relative to all datasets and utilized fore-
casting horizons. Moreover, regarding the proposed model,
DWCRNN1 and DWCRNN2 exhibited similar forecasting
performance. DWCRNN1 reported the best performance for
BTC and ETH data while DWCRNN2 reported the best for
LTC and CCi30. These conclusions are also confirmed by
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Data F
LSTM LSTM BiLSTM BiLSTM CNN CNN DWCRNN1 DWCRNN2

+Dropout +Dropout +Dropout

BTC 7 252.842 248.394 246.614 244.893 246.342 246.242 147.891 122.246
14 250.034 249.515 240.884 244.424 246.997 246.582 145.512 128.207
21 247.595 250.974 244.755 245.279 246.105 246.677 108.951 127.095

ETH 7 7.519 7.318 7.214 7.339 7.499 7.594 5.086 3.838
14 7.380 7.329 7.416 7.329 7.728 7.496 5.348 4.688
21 7.329 7.413 7.424 7.407 7.769 7.613 5.064 4.288

XRP 7 0.012 0.012 0.012 0.012 0.033 0.031 0.006 0.006
14 0.012 0.012 0.012 0.012 0.052 0.059 0.006 0.004
21 0.012 0.012 0.012 0.012 0.033 0.030 0.004 0.004

LTC 7 3.889 3.938 3.923 3.869 3.953 3.920 1.936 2.175
14 3.949 3.874 3.850 3.874 4.014 3.986 3.456 2.081
21 3.901 3.862 3.867 3.846 3.996 3.937 2.523 1.773

cci30 7 111.864 112.007 113.157 109.246 112.773 112.763 50.208 45.805
14 115.111 111.543 117.348 112.924 113.000 112.684 51.394 46.087
21 113.425 111.514 113.963 112.246 113.098 112.709 58.211 54.097

Table 6 Performance evaluation of DWCRNNs with state-of-the-art LSTM, BiLSTM and CNN based on MAE

Data F
LSTM LSTM BiLSTM BiLSTM CNN CNN DWCRNN1 DWCRNN2

+Dropout +Dropout +Dropout

BTC 7 404.186 398.866 387.036 391.455 393.866 392.983 213.305 190.762
14 403.286 401.771 390.086 391.642 393.280 392.740 202.841 182.463
21 391.638 392.752 391.277 390.186 392.874 392.980 151.180 178.682

ETH 7 10.919 10.615 10.369 10.610 10.621 10.745 6.873 5.115
14 10.691 10.623 10.683 10.640 10.912 10.705 7.276 6.353
21 10.625 10.696 10.727 10.703 10.881 10.814 6.608 6.524

XRP 7 0.018 0.018 0.018 0.018 0.360 0.035 0.010 0.009
14 0.018 0.018 0.018 0.018 0.057 0.062 0.009 0.006
21 0.018 0.018 0.018 0.018 0.037 0.034 0.006 0.006

LTC 7 5.389 5.457 5.448 5.330 5.418 5.288 2.490 2.888
14 5.494 5.354 5.274 5.420 5.458 5.403 4.499 2.674
21 5.405 5.340 5.355 5.313 5.407 5.307 3.285 2.325

cci30 7 163.877 160.329 163.726 158.859 161.669 161.941 67.42 59.636
14 163.605 161.064 167.441 163.564 161.966 161.829 67.87 59.632
21 163.019 162.166 164.605 162.361 161.889 161.778 73.77 70.071

Table 7 Performance evaluation of DWCRNNs with state-of-the-art LSTM, BiLSTM and CNN based on RMSE

the statistical analysis. More specifically, the interpretation
of Table 8 presents that DWCRNN2 exhibited the highest
probability-based ranking, reporting slightly better perfor-
mance compared to DWCRNN1.

5.3 Performance evaluation of DWCRNN against
state-of-art regression algorithms

Next, we compared the forecasting performance of algo-
rithm DWCRNNs against the state-of-the-art regression al-

gorithms: Support Vector Regression (SVR), k-Nearest Neigh-
bor Regression (kNN), Decision Tree Regressor (DTR) and
Linear Regression (LR) which are briefly described below:

– SVR (Deng et al., 2012) is a machine learning regression
algorithm which is used for forecasting continues output
values, in contrast to SVM which is a classification algo-
rithm for predicting discrete values. The main objective
of SVR is to fit the error within a specified threshold in-
stead of other classical regression algorithms like linear
regression which try to minimize the error rate.
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Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCRNN2 14.466 -
DWCRNN1 16.533 0.870749 accepted
BiLSTM+Dropout 71.966 0.000007 rejected
LSTM+Dropout 73.966 0.000005 rejected
BiLSTM 74.100 0.000005 rejected
LSTM 76.166 0.000003 rejected
CNN+Dropout 77.533 0.000002 rejected
CNN 79.266 0.000002 rejected

Based on MAE metric

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCRNN2 15.233 -
DWCRNN1 17.100 0.883162 accepted
BiLSTM+Dropout 72.767 0.000007 rejected
BiLSTM 74.300 0.000006 rejected
LSTM+Dropout 74.366 0.000006 rejected
CNN+Dropout 75.133 0.000006 rejected
LSTM 76.833 0.000005 rejected
CNN 78.266 0.000005 rejected

Based on RMSE metric

Table 8 FAR test and Finner post-hoc test comparing DWCRNN with state-of-the-art RNNs

– kNN (Aha, 2013) is another machine learning algorithm
which makes use of various distance mathematic formu-
las to compute feature similarity between each new in-
stance point and a predefined number of other instance
points. For classification tasks, the value of each new
instance point is defined by the instance point with the
greatest feature similarity (nearest neighbor) to it while
for regression tasks its value is defined by the average
value of its nearest neighbors.

– DTR (Loh, 2014) is a decision tree regression technique
which constructs a model tree based on splitting criteri-
ons. The last nodes (leafs) of the tree have linear regres-
sion algorithms to predict the output continuous values,
in contrast to the classification decision tree whose leafs
have the output predicted discrete variable.

– LR (Seber & Lee, 2012) constitutes the traditional and
most widely utilized type of predictive analysis. The main
idea behind LR is to determine the relationship between
a dependent variable and one or more explanatory (in-
dependent) variables following the linear mathematical
model.

Table 9 reports the configuration parameters of all state-
of-the-art regression algorithms under consideration.

Algorithm Parameters

SVR C = 1.0,
Tolerance parameter = 0.001,
Kernel type : Radial Basis Function.

kNN Number of neighbors = 10,
Euclidean distance.

DTR Spliting critirion: MSE,
Min. number of samples = 10.

LR No parameters specified.

Table 9 Parameter specification for all state-of-the-art regression al-
gorithms used in the experimentation

Table 10 presented of the proposed forecasting model
DWCRNN against the state-of-the-art regression algorithms
based on MAE and RMSE metrics. Clearly, DWCRNN1 and
DWCRNN2 reported the best overall performance, reporting
the lowest MAE and RMSE, regarding all data and utilized
forecasting horizons.

Table 11 demonstrates the statistical analysis regarding
the forecasting performance of DWCRNN and state-of-the-
art regression models. Both DWCRNN1 and DWCRNN2
exhibited the highest probability-based ranking, outperform-
ing all other regression models.

6 Discussion

In this work, we proposed a new time-series model based
on dropout weight-constrained recurrent neural networks for
forecasting major cryptocurrency prices and predicting the
value of CCi30 index. Our conducted experimental analy-
sis demonstrated that the proposed model reported consid-
erably better performance compared to state-of-the-art types
of ANNs and regression models and the adoption of dropout
technique in weight-constrained networks provides a boost
in increasing the forecasting performance.

It is worth mentioning that the utilized datasets in this
research are characterized by the presence of large amount
of noise since cryptocurrency prices follow almost a random
walk process (Livieris et al., 2020c). In noisy datasets, a ma-
chine learning model which suffers by the overfitting prob-
lem, such as neural networks, will capture and learn noise
instead of useful and reliable patterns and thus will lead to an
obvious performance degradation. Based on our experimen-
tal results, the incorporation of the dropout technique into
the weight-constrained neural networks has led to a notice-
able performance increase (Tables 2 and 4). Furthermore,
the adoption of the dropout weight-constrained methodol-
ogy into neural networks, managed to drastically increase
the performance and outperform other types of neural net-
works such as LSTM and CNN. This leads to the conclusion
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Data F MAE RMSE
SVR kNN DTR LR DWCRNN1 DWCRNN2 SVR kNN DTR LR DWCRNN1 DWCRNN2

BTC 7 244.166 255.326 321.299 250.681 147.891 122.246 391.170 412.411 471.951 406.459 213.305 190.762
14 244.093 270.470 380.458 248.619 145.512 128.207 391.129 389.805 547.294 406.332 202.841 182.463
21 244.108 259.163 306.993 251.084 108.951 127.095 391.133 364.113 436.137 410.734 151.180 178.682

ETH 7 7.472 8.555 12.695 7.656 5.086 3.838 10.721 12.108 17.758 11.024 6.873 5.115
14 7.475 8.047 11.215 8.243 5.348 4.688 10.724 11.116 14.658 11.416 7.276 6.353
21 7.475 7.797 11.641 8.682 5.064 4.288 10.721 11.088 15.140 12.084 6.608 6.524

XRP 7 0.020 0.013 0.016 0.013 0.006 0.006 0.025 0.019 0.023 0.018 0.010 0.009
14 0.019 0.014 0.017 0.014 0.006 0.004 0.023 0.020 0.024 0.020 0.009 0.006
21 0.025 0.013 0.015 0.015 0.004 0.004 0.030 0.019 0.021 0.021 0.006 0.006

LTC 7 3.867 3.914 6.024 4.055 1.936 2.175 5.354 5.411 7.954 5.483 2.490 2.888
14 3.843 4.042 5.774 4.185 3.456 2.081 5.303 5.440 7.790 5.611 4.499 2.674
21 3.836 3.963 5.282 4.159 2.523 1.773 5.291 5.309 7.528 5.559 3.285 2.325

cci30 7 111.835 122.920 146.032 120.919 50.208 45.805 161.022 168.753 192.402 170.457 67.42 59.636
14 111.795 119.167 171.612 124.309 51.394 46.087 160.975 170.874 230.921 173.098 67.87 59.632
21 111.773 120.102 164.451 126.015 58.211 54.097 160.953 166.720 221.347 178.665 73.77 70.071

Table 10 Performance evaluation of DWCRNNs with state-of-the-art regression algorithms based on MAE and RMSE

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCNN2 16.8 - -
DWCNN1 18.6 0.850335 accepted
SVR 51.333 0.000368 rejected
LR 57.933 0.000038 rejected
kNN 58.066 0.000038 rejected
DTR 70.266 0.0 rejected

Based on MAE metric

Model FAR
Finner post-hoc test

pF -Value Null hypothesis

DWCNN2 14.466 - -
DWCNN1 16.533 0.828485 accepted
SVR 56.6 0.000013 rejected
LR 58.066 0.000008 rejected
kNN 59.666 0.000005 rejected
DTR 67.666 0.0 rejected

Based on RMSE metric

Table 11 FAR test and Finner post-hoc test comparing DWCRNN with state-of-the-art regression algorithms

that the proposed model managed to capture and learn reli-
able patterns, filtering out the noisy ones and thus managed
to constrain and reduce the overfitting effect.

The limitation of this work is that it is still not clear
whether the use of both weight-constraints and dropout at
the same time acts synergistically or makes things more com-
plicated for no net gain. While the imposition of bounds on
the weights of the network is implemented with clearly pre-
defined intervals, dropout cannot be coherently expressed in
a similar way since it requires a random process of tempo-
rary dropping off some units and therefore cannot be ana-
lyzed, other than experimentally. Nevertheless, both regular-
ization methods attempt to avoid the network’s over-reliance
on spurious correlations, which are one of the consequences
of over-training, based on its own philosophy and technique.
Clearly, more research is needed to determine whether and
when they can be efficiently “applied together” or rather
end up “fighting each other”. Based on our preliminary nu-
merical experiments, it seems both weight-constraints and
dropout can be efficiently combined.

Nevertheless, although we provide thoroughly experi-
mental results revealing that our model is superior compar-
ing to other state-of-the-art forecasting models, there are
several reasons why trend prediction efforts, such as the ones
described in this research, might not necessarily translate
into profits. In other words, even though the presented nu-
merical experiments are promising, we have no evidence if
our model can actually assist cryptocurrency investors for
making proper investment decisions based on our model pre-
dictions in order to achieve profitable investment returns,
since cryptocurrency prices are highly affected by time evo-
lution and external changes and therefore an efficient predic-
tion model may be temporally accurate but not in long-term
future. More specifically, the unpredictable cryptocurrency
market changes, as well as the possible entrance of high cap-
italization member such as Facebook and European Central
Bank, could significantly change the behavior and the vari-
ability of cryptocurrencies.

This research is focused on the performance of the pro-
posed model in price forecasting and less on the design and
implementation of profitable trading cryptocurrency system.
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It is worth noticing that the development of such system
would require the control of several aspects such as time
management, transaction costs, liquidity issues and so on in
addition to the implementation of a decision support model.
Therefore, a possible improvement of our prediction frame-
work could be a dynamic modeling approach where our model
will be dynamically re-training on most recent cryptocur-
rency data while old and outdated data values will be dis-
carded. Finally, we may also incorporate trading simulations
in order to identify potential profitable investment returns.

7 Conclusions

At present, cryptocurrency market constitutes one of the most
popular and promising type of profitable investments. The
contribution of this work was to develop an intelligent fore-
casting model for forecasting cryptocurrency-related data.
To this end, we proposed a new time-series model based on
dropout weight-constrained recurrent neural networks. To
the best of our knowledge, this is the first research devoted
to the prediction of cryptocurrencies prices and the value of
CCi30 index. The proposed forecasting model was evalu-
ated against state-of-the-art types of ANNs and regression
models for predicting the price of four of the most widely
traded digital currencies and for the prediction of CCi30
index. Our performed experimental analysis illustrated that
although weight-constrained networks give significant im-
provements, utilizing them along with dropout provide a boost
in increasing the forecasting performance. A possible reason
is that the “noise” which is generated by dropout allows the
minimization process to explore regions of the weight space
which would have been hard to reach.

In our future work, we intend to explore the efficiency
of WCNNs with variants of the dropout technique (Gal &
Ghahramani, 2016; Moon et al., 2015) and enforce our pro-
posed framework with more advanced and complex tech-
niques such as convolutional layers (Debelee et al., 2020;
Rawat & Wang, 2017). Since our experimental results are
quite encouraging, a possible next step could be the applica-
tion of our proposed model for forecasting cryptocurrency
prices using higher-frequency data (hourly, 15-min and 5-
min) and other factors such as opening price, closing price,
lowest price and highest price, volume and transaction along
with the daily price. Finally, another interesting idea is to de-
velop an adaptive strategy to auto-adjust the bounds on the
weights based on the dropout rate.
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