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6 Abstract

7 Time-series analysis and forecasting is generally considered as one of the most challenging problems in data mining.

8 During the last decade, powerful deep learning methodologies have been efficiently applied for time-series forecasting;

9 however, they cannot guarantee the development of reliable prediction models. In this work, we introduce a novel

10 framework for supporting deep learning in enhancing accurate, efficient and reliable time-series models. The major novelty

11 of our proposed methodology is that it ensures a time-series to be ‘‘suitable’’ for fitting a deep learning model by

12 performing a series of transformations in order to satisfy the stationarity property. The enforcement of stationarity is

13 performed by the application of Augmented Dickey–Fuller test and transformations based on first differences or returns,

14 without the loss of any embedded information. The reliability of the deep learning model’s predictions is guaranteed by

15 rejecting the hypothesis of autocorrelation in the model’s errors, which is demonstrated by autocorrelation function plots

16 and Ljung–Box Q test. Our numerical experiments were performed utilizing time-series from three real-world application

17 domains (financial market, energy sector, cryptocurrency area), which incorporate most of global research interest. The

18 performance of all forecasting models was compared on both problems of forecasting time-series price (regression) and

19 time-series directional movements (classification). Additionally, the reliability of the models’ forecasts was evaluated by

20 examining the existence of autocorrelation in the errors. Our numerical experiments indicate that our proposed method-

21 ology considerably improves the forecasting performance of a deep learning model, in terms of efficiency, accuracy and

22 reliability.

23

24 Keywords Time-series � Deep learning � Spatiotemporal data � Reliability

25

261 Introduction

27Time-series are encountered in a large variety of real-world

28applications, ranging from finance [10, 18] and commodi-

29ties [8, 20] to healthcare [9, 29] and pollution management

30[4, 14]. Time-series data consist of discrete data points,

31obtained at successive equally spaced points in time. The

32main properties and characteristics of time-series data are

33responsible for distinguishing them from other types of

34data. More specifically, they frequently contain much

35noise, exhibit high volatility as well as extremal directional

36movements and possess a tendency for possible reversing

37these movements in the near-term future. Due to these

38significant characteristics, time-series forecasting is gen-

39erally considered as one of the most challenging problems

40in data mining. As a result, the analysis of time-series data
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41 has been an active subject of research for decades

42 [6, 7, 23, 30].

43 In the literature, the problem of time-series price and

44 movement forecasting has been comprehensively studied

45 for decades and numerous rewarding approaches have been

46 proposed. Traditional time-series methods such as ARIMA

47 (Auto-Regressive Integrated Moving Average) [5, 6] and

48 its variations as well as the more elaborated Machine

49 Learning methods [1, 3] probably constitute the most

50 famous and widely utilized methods for time-series pre-

51 diction. Nevertheless, these methods frequently do not

52 possess the ability to accurately model such complex data

53 and be successfully effective, since they cannot depict the

54 stochastic nature and high volatility of time-series.

55 During the last decade, the rapid advances in artificial

56 intelligence, as well as the vigorous developments in deep

57 learning techniques, attracted wide attention of scientific

58 and industrial communities for the development of efficient

59 and robust time-series forecasting models. Probably the

60 most popular and widely utilized deep learning methodol-

61 ogy is the development of an ANN-type network utilizing

62 convolutional and long short-term memory (LSTM) layers,

63 along with the classical dense layers. The former are uti-

64 lized to filter out the noise of the input data [11], and the

65 latter are tailored to efficiently capture complex temporal

66 dependencies and sequence pattern information by

67 exploiting their special architecture design [2]. Along this

68 line, researchers [18–20, 31] paid special attention to

69 exploit the advantages and benefits of both mentioned deep

70 learning techniques, proposing forecasting models utilizing

71 both convolutional and LSTM layers.

72 Recently, Pintelas at al. [24, 25] evaluated the perfor-

73 mance of several deep learning models for price and

74 movement forecasting of major cryptocurrencies. The

75 major novelty in their work was the application of a series

76 of tests for examining the prediction efficiency but mostly

77 the reliability of the models. In other words, they examined

78 whether the models have properly fitted the time-series

79 data and exploited all the available mined information,

80 during the training process. Based on their experimental

81 analysis, the authors stated that even the powerful deep

82 learning methodologies cannot guarantee the development

83 of reliable forecasting models. Additionally, they con-

84 cluded that new more sophisticated algorithmic methods

85 should be considered for the development of an accurate

86 and reliable prediction model.

87 In this work, we propose a novel framework for the

88 development of efficient and reliable deep learning models

89 which constitutes the main contribution. The novelty of our

90 proposed methodology is that it guarantees considerable

91 improvement in the deep learning model’s forecasting

92 performance in terms of reliability and accuracy, regarding

93 any utilized time-series. More analytically, the proposed

94methodology ensures the ‘‘suitability’’ of a time-series for

95fitting a deep learning model by performing a proper

96transformation, in order to satisfy the stationarity property

97and therefore no autocorrelation in the model’s errors. The

98stationarity is secured by the application of Augmented

99Dickey–Fuller test and transformations based on first dif-

100ferences or returns. It is worth mentioning that an adequate

101deep learning model trained with the transformed series

102presents no autocorrelation in the errors and a big

103improvement of the forecasting performance is expected,

104compared with the same model trained with the original

105non-transformed series. We conducted a detailed and

106comprehensive experimental analysis on time-series from

107three real-world application domains which incorporate

108most of global research interest, that is, financial stock

109market, energy sector and the novel cryptocurrency area.

110All prediction models were evaluated on both problems of

111forecasting time-series price (regression) and also for the

112prediction of time-series directional movements (classifi-

113cation). Furthermore, the reliability of the models’ fore-

114casts was evaluated by examining the existence of

115autocorrelation of the errors using the autocorrelation

116function plot and the Ljung–Box Q test.

117The remainder of this paper is organized as follows:

118Sect. 2 presents a brief review of state-of-the-art deep

119learning-based models for time-series forecasting. Sec-

120tion 3 presents a comprehensive description of the problem

121of reliability introduced in deep learning models for time-

122series forecasting. Section 4 presents our proposed frame-

123work, providing special attention to its theoretical advan-

124tages and benefits. Section 6 presents our experimental

125methodology including the data preparation and prepro-

126cessing as well as the detailed experimental analysis,

127regarding the evaluation of proposed methodology. Sec-

128tion 7 summarizes our findings and discusses the experi-

129mental results. Finally, Sect. 8 presents the conclusions and

130some future directions.

1312 Related work

132Time-series forecasting is generally considered as one of

133the most challenging and significantly complex research

134areas. The complexity of time-series’ internal structure is

135caused by the variety of factors which have a deep influ-

136ence on the series and on the volatility of these factors

137[5, 6, 30]. During the last years, the significant develop-

138ments in computer science as well as rapid advances in

139research lead to the exponential generation of temporal and

140sequential data [13]. Therefore, time-series infiltrated

141almost every task and assignment, requiring a human

142cognitive process. Recently, Fawaz et al. [11] provided an

143excellent review, presenting a comprehensive overview of
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144 the application of deep learning approaches in various

145 time-series domains. More specifically, they presented in

146 detail the process of mining time-series data using deep

147 learning methods for discovering new insights, and how

148 those insights impact the process of decision making. In the

149 rest of our research, we focus on three time-series appli-

150 cation domains which incorporate most of global research

151 interest, that is, financial stock market, energy sector and

152 the novel cryptocurrency area.

153 Liu et al. [18] developed a CNN–LSTM framework for

154 modeling and analyzing stock markets’ quantitative

155 selection and timing strategy. The convolutional-based

156 framework is used for determining the selection of the

157 quantitative stock strategy and subsequently, the LSTM-

158 based framework is utilized for performing the quantitative

159 timing strategy in order to improve the amounts of profits.

160 The stock time-series data used in their research range from

161 January 1, 2007, to December 31, 2017. Their experiments

162 demonstrated that their proposed CNN–LSTM framework

163 could be efficiently applied for defining a quantitative

164 strategy and achieving better profits than the classical

165 Benchmark index.

166 Fischer and Krauss [12] focused on developing an effi-

167 cient forecasting model based on deep learning techniques

168 and unveil the sources of stock profitability. More specif-

169 ically, the utilized LSTM networks for predicting the

170 directional movements for Standard & Poor’s 500

171 (S&P500) constituent stocks. The utilized data contained

172 prices of S&P500 constituents from Thomson Reuters from

173 December 1989 to September 2015. The experiments

174 reported that LSTM exhibited a Sharpe Ratio of 5.8 prior to

175 transaction costs and daily returns of 46% per day. Addi-

176 tionally, LSTM networks outperformed computationally

177 efficient classification methods such as deep neural net-

178 work, random forest and logistic regression. Finally, the

179 authors developed a rule-based decision support making

180 system which focused on selecting winning and losing

181 stocks, exploiting the LSTM predictions.

182 Zhao et al. [32] proposed a deep learning ensemble

183 forecasting model to address the problem of forecasting oil

184 prices. Their proposed model is based on Bootstrapping

185 aggregation (Bagging) ensemble strategy which exploits

186 the predictions of advanced deep learning base models,

187 called Stacked Denoising Auto-Encoders (SDAE). The

188 data utilized in their study contained monthly prices cov-

189 ering a period from January 1986 to May 2016, concerning

190 198 exogenous factors such as cost of crude oil imports,

191 refiner values of crude oil products, information on rigs and

192 development wells drilled, oil product consumption, crude

193 oil production as well as macroeconomic and financial

194 indicators. Their experimental analysis showed the fore-

195 casting superiority of the proposed model, which was sta-

196 tistically proved by three nonparametric tests.

197Cen and Wang [8] aimed at forecasting the volatility

198behaviors of crude oil prices for increasing the prediction

199accuracy of oil market price. The authors considered a

200methodology based on a transfer learning approach in order

201to extend the size of training set. Their research contained

202daily data of West Texas Intermediate covering a time

203period from January 31, 2005, to December 5, 2016, and

204daily data of Brent oil covering a range from January 31,

2052006, to October 17, 2017, concerning oil factors such as

206opening price, closing price, lowest price and highest price.

207Their proposed methodology was evaluated by comparing

208the performance of a classical LSTM model trained with

209the initial data and with the data transfer approach. Their

210experiments showed that their methodology improved the

211performance of the LSTM model, and thus, the authors

212stated that the prediction was able to catch most fluctua-

213tions of crude oil prices.

214Nakano et al. [21] considered improving the traditional

215‘‘buy-and-hold’’ strategy presenting a new methodology

216which exploits the predictions of advanced machine

217learning models on Bitcoin’s high-frequency technical

218trading. More specifically, they designed ANN-based

219models to extract the useful trading signals from technical

220indicators calculated from the time-series return data at

221time intervals of 15 min. The utilized data in this research

222concerned historical returns and technical indicators,

223ranging from December 2017 to January 2018, during

224which Bitcoin suffers from substantial volatility and a

225significant number of negative returns. Their preliminary

226experimental results reported that the utilization of various

227technical indicators could prevent over-fitting and consid-

228erably enhance trading performance.

229Ji et al. [16] studied the prediction performance on

230Bitcoin price of various deep learning forecasting models

231such as deep neural networks, convolutional neural net-

232works, LSTM networks, deep residual networks and their

233combinations. In their study, they utilized Bitcoin data

234from 2590 days (from November 29, 2011, to December

23531, 2018), containing 29 features. The authors performed a

236comprehensive experimental procedure, considering the

237problems of predicting the next’s day Bitcoin price, and

238whether or not the next day price will increase or decrease.

239Their numerical experiments demonstrated that deep neural

240networks reported the best performance for price move-

241ment, while the LSTM models exhibited the best perfor-

242mance for forecasting Bitcoins’ price, slightly

243outperforming the rest prediction models.

244Pintelas et al. [24, 25] performed a comprehensive

245research, evaluating advanced deep learning models for

246forecasting the prices and directional movements of major

247cryptocurrencies. Furthermore, the authors conducted a

248detailed discussion, concerning if deep learning models can

249be trusted as reliable predictors and if the cryptocurrencies
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250 prices follow a random walk process. Their experimental

251 analysis presented that even the state-of-the-art deep

252 learning models were unable to create reliable forecasting

253 models. Moreover, the authors stated that a few hidden

254 patterns in cryptocurrency prices may probably exist,

255 although these prices seem to follow almost a random walk

256 process.

257 Summarizing, most approaches proposed in the litera-

258 ture attempt to exploit deep learning techniques for

259 extracting useful knowledge from time-series data, aiming

260 at obtaining better performance compared to the already

261 existing proposed models. In this research, we propose a

262 different approach and introduce a novel framework for the

263 development of efficient and reliable deep learning models.

264 The novelty of the proposed methodology is that it guar-

265 antees the forecasting reliability of the model’s predictions,

266 independent of the time-series data and selected deep

267 learning model. It is worth noticing that none of the

268 mentioned research approaches considered to improve both

269 the accuracy and reliability of a deep learning model by

270 exploiting the information provided by the characteristics

271 of the time-series as well as the error of prediction model.

272 3 Reliability evaluation on times-series
273 forecasting

274 3.1 Significance of autocorrelation in model’s
275 forecasting reliability

276 Let y1; y2; . . .; yn be the observations of a time-series. A

277 nonlinear regression model of order m is defined by

yt ¼ f ðxt; hÞ þ �t; ð1Þ

279279 where xt ¼ ðyt�1; yt�2; . . .; yt�mÞ 2 R
m consists of m values

280 of yt, h is the parameter vector and �t is the white noise

281 residual. After the model structure has been defined,

282 function f ð�Þ can be determined by sophisticated machine

283 learning or deep learning methods.

284 After a prediction model has been successfully fit, it is

285 significant to evaluate and assess how well the model is

286 able to capture patterns. The most commonly utilized

287 metrics for evaluating the regression performance of a

288 forecasting model are mean absolute error (MAE) and root

289 mean square error (RMSE).

290 Nevertheless, both regression evaluation metrics help

291 determine how close the predicted values are to the actual

292 ones, they do not evaluate whether the model properly fits

293 the time-series data, while the residuals are usually dedi-

294 cated to evaluate this. In other words, provided that func-

295 tion f is appropriately estimated, the prediction model’s

296 residuals

�̂t ¼ yt � ŷt; ð2Þ

298298are identically distributed and asymptotically independent,

299where ŷt is the predicted value.

300It is worth noticing that in case the assumption of no-

301autocorrelation in the residuals is violated in a forecasting

302model, implies that its predictions may be inefficient, since

303the model has not exploited all the available mined infor-

304mation during the training process. In other words, the

305dependence between the residuals indicates that the model

306has not properly fitted the time-series data and there exists

307significant information left over which should be taken into

308account.

309Two significant tools for testing the existence autocor-

310relation of the residuals are the auto-correlation function

311(ACF) plot and the Ljung–Box Q test for residual auto-

312correlation [6]. More analytically, ACF is obtained from

313the linear correlation of each residual �̂t to the others in

314different lags, �̂t�1; �̂t�2; . . . and illustrates the intensity of

315the temporal autocorrelation, while Ljung–Box Q test is a

316‘‘portmanteau’’ test which assesses the null hypothesis H0

317that ‘‘a series of residuals exhibits no autocorrelation for a

318fixed number of lags L, against the alternative H1 that

319‘‘some autocorrelation coefficient is nonzero.’’ More

320specifically, the Ljung–Box Q test statistic is defined by

Q ¼ nðnþ 2Þ
X

L

k¼1

q2k
n� k

; ð3Þ

322322where qk are autocorrelation coefficients at lag-k, defined

323by

qk ¼

Pn�k
i¼1 ðyi � yÞðyiþk � yÞ
Pn

i¼1ðyi � yÞ2
; ð4Þ

325325with y ¼ 1
n

Pn
i¼1 yi. Under H0 the statistic Q asymptotically

326follows a v2ðLÞ distribution. The null hypothesis H0 is

327rejected and state that the model exhibits autocorrelation if

Q[ v21�a;L ð5Þ

329329where the critical value of the Chi-square distribution is

330defined for significance level a, or critical level p ¼ 1� a,

331known as p value.

3323.2 Strict stationarity and weak stationarity

333Time-series exhibit a variety of properties which appear so

334often that are called stylized facts which include autocor-

335relation, long memory, fractal and multi-fractal properties.

336The major drawback when dealing with prices or values

337(levels) of such series is, from the stochastic processes

338point of view, that they follow a random walk process. The

339autocorrelation coefficients qk, with k[ 1 are statistically
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340 significant for a large number of lags L and the first-order

341 autocorrelation coefficient q1 is equal to one [27]. Such

342 series are also named unit root time-series or integrated of

343 order one and are denoted by I(1).

344 Under these conditions, modeling the levels of such

345 series is inefficient because the residuals of the models

346 display autocorrelation setting the whole structure of sta-

347 tistical significance under question. In order to study effi-

348 ciently these series, they have to be stationary, which is a

349 highly significant for ensuring the development of a reli-

350 able prediction model.

351 Suppose that Fyðyt1þs; . . .; ytnþsÞ is the cumulative dis-

352 tribution function of the unconditional joint distribution of

353 fytg at times t1þs; . . .; tnþs, then the stochastic process fytg

354 is strictly stationary if

Fyðyt1þs; . . .; ytnþsÞ ¼ Fyðyt1 ; . . .; ytnÞ; ð6Þ

356356 for all s; t1; . . .; tn 2 R and n 2 N. Nevertheless, in time-

357 series the strong form of stationarity is relaxed leading to

358 the weak-stationarity or covariance stationarity [6].

359 Therefore, a stochastic process is covariance stationary if

360 the mean is constant, the second moment is finite, and the

361 covariance function depends only on the difference

362 between t1 and t2 and needs to be indexed by only one

363 variable, i.e.,

covyyðt1; t2Þ ¼ covyyðt1 � t2; 0Þ: ð7Þ

365365 where covyy is the auto-covariance of series yt. Summa-

366 rizing, stationarity means that the statistical properties of a

367 stochastic process which generates a time-series are con-

368 stant over time. Stationary processes are easier to analyze,

369 model, and investigate, and it has been a common

370 assumption of many practices involving statistical infer-

371 ence, modeling and forecasting.

372 Having identified the problem, a solution for stationarity

373 comes from the partial autocorrelation function, where the

374 lag-k coefficient /k;k is given by the following formula

/k;k ¼
qk �

Xk�1

j¼1
/k�1;j qk�j

1�
Xk�1

j¼1
/k�1;j qk�j

;

/k;j ¼ /k�1;j � /k;k /k�1;k�j;

8

>

>

>

<

>

>

>

:

ð8Þ

376376 for k[ 1 and /1;1 ¼ q1 [26]. Clearly, in case the series

377 exhibits a unit root, that is q1 ¼ 1, it immediate follows

378 that the first-order partial autocorrelation coefficient /1;1

379 will be one. The significance of the partial autocorrelation

380 function is that if only the first coefficient is statistically

381 significant and the rest are not, which is the usual case in

382 most time-series of scientific interest, then this is a guide

383 that the initial series should be differenced by using the first

384 differences of the series, namely

Dt ¼ yt � yt�1: ð9Þ

386386Therefore, taking the first difference of the levels of the

387series results in stationarity and these series are named

388integrated of order zero and are denoted by I(0).

389However, when dealing with time-series there might be

390an overlapping of a variety of non-stationarities, including

391unit-roots, structural breaks, level shifts, seasonal cycles, or

392a changing variance. Notice that the typical transformation

393when the series is I(1) (non-stationary) is to take the first

394differences of the series and transform it to a series I(0)

395(stationary), while if the series incorporate structural breaks

396or a changing variance, i.e., due to crises, a nonlinear Box-

397Cox transformation [22] is the appropriate available option.

398A Box-Cox transformation is a way to transform non-

399normal dependent variables into a normal shape, since

400normality is a critical assumption for many statistical

401techniques. The one-parameter Box-Cox transformation is

402defined as

yt ¼
ykt � 1

k
; if k 6¼ 0;

ln yt; if k ¼ 0:

8

<

:

ð10Þ

404404where common nonzero Box-Cox transformations are for

405k ¼ �3;�2;�0:5; 0; 0:5; 1 and 2. The large majority of

406time-series follow the rule k ¼ 0; therefore, the stationarity

407of these series is achieved via the returns that is the first

408logarithmic differences,

rt ¼ ln yt � ln yt�1 �
yt � yt�1

yt�1

; ð11Þ

410410the last expression being the percentage change or returns.

4114 Research methodology and proposed
412framework

413In this section, we introduce our proposed methodology for

414considerably improving the performance of a deep learning

415model for time-series forecasting in terms of accuracy and

416reliability. based on the well-established econometric the-

417ory and time-series analysis with respect to stationarity and

418non-stationarity properties.

419

420Revisiting the problem, when applying a machine

421learning or a deep learning model to time-series for fore-

422casting, the levels of the series are not-stationary, meaning

423that they possess unit roots and some order of integration1.

1FL011 Non-stationary time-series which can be transformed in this way

1FL02are called series integrated of order d. Usually, the order of integration

1FL03is either I(0) or I(1); it’s extremely rare to see values for d that are 2 or

1FL04more in real-world applications [7]. Additionally, all series in this

1FL05research are I(1).
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424 Notice that the identification of a unit root in a time-series

425 can be easily performed via the Augmented Dickey–Fuller

426 (ADF) test [6, 23]. The testing procedure is applied to the

427 model,

Dyt ¼ aþ bt þ cyt�1 þ
X

k�1

i¼1

diDyt�i þ �t; ð12Þ

429429 where a is a constant, b is the coefficient of time trend, and

430 c ¼ ðq1 � 1Þ where q1 denotes the first-order autocorrela-

431 tion coefficient. It is worth mentioning that k is the lag

432 order of the autoregressive process chosen so that no serial

433 correlation exists in the residuals �t, ensuring that the test is

434 efficient and reliable. If a ¼ 0 and b ¼ 0, then we have a

435 random walk stochastic process, while if a 6¼ 0 and b ¼ 0,

436 we have a random walk stochastic process with drift. The

437 unit root test is carried out testing the statistical signifi-

438 cance under the null hypothesis H0 : fc ¼ 0that isq ¼ 1g

439 against the alternative hypothesis H1 : fc\0that isq\1g.

440 The solution depending on the nature of the time-series

441 is to iteratively take the first differences (9) or the returns

442 (11) until the series is made stationary, implying that the

443 first-order autocorrelation coefficient q1 is less than one. It

444 is worth noticing that the series transformation based on

445 first differences or returns implies that the autocorrelation

446 in the residuals of the model is removed. This indicates that

447 the prediction model is able to explain the data much

448 better, since it captures all possible nonlinearities, ensuring

449 the efficiency and effectiveness of the model.

450 Table 1 presents the pseudo-code of our proposed

451 framework. Initially, the time-series data are imported

452 (Step 1). Then, the ADF test is applied to examine whether

453 the levels of the series are non-stationary, meaning that

454 they possess a unit root (Step 2). In case the series is non-

455 stationary the transformation based on first differences or

456 returns is iteratively applied on the training data until the

457 new transformed series is stationary (Steps 4–7). Subse-

458 quently, the new transformed time-series data are used for

459 training the prediction model (Step 8).

460 In contrast, in case the series is stationary, then the

461 levels of time-series are used for training the prediction

462 model (Step 10). Subsequently, the prediction model’s

463 errors on the training data are used for further examination

464 and testing. Notice that a model trained with a series which

465 does not possess a unit root and has not been differenced,

466 may exhibit autocorrelation in the training errors. In other

467 words, although for any reasonable model the predicted

468 values will be close to the real values, the existence of large

469 autocorrelation coefficients characterizes the model as

470 inefficient [28]. Therefore, the residuals of the training data

471 are examined for autocorrelation by simply performing

472 ACF plots and/or Ljung–Box Q test (Step 11). In case the

473 residuals possess autocorrelation, the proposed

474transformation is applied on the training data and the model

475is re-trained using the new transformed series (Steps

47613–14). Notice that if the levels of the series are stationary

477and the residuals on the training set exhibit no autocorre-

478lation, then there is no need to transform the series, since

479this will lead to the dangerous phenomenon of over-dif-

480ferencing the series. In other words, over-differencing leads

481the whole process to be ‘‘non-invertible’’ and lacks an

482infinite-order autoregressive representation. Figure 1 pre-

483sents an overview of the proposed architecture in the form

484of a flowchart.

485Finally, it is worth mentioning that in case the model is

486trained with a transformed series based on first differences

487or returns, the reverse transformation is used in the pre-

488dictions of the model to obtain the prediction for the levels

489of the original time-series.

4905 Data

491In our research, we utilized three benchmark datasets from

492the popular real-world application domains: finance, com-

493modity and cryptocurrency, in order to demonstrate the

494efficiency of our proposed methodology.

495From finance domain, we utilized data from January 1,

4962013, to December 31, 2019, of Standard & Poor’s 500

497(S&P500) prices in USD from http://finance.yahoo.com

498Web site. The data were divided into training set consisting

499of daily Brent prices from January 1, 2015, to December

50031, 2018 (4 years), and a testing set consisting of daily

501prices from January 1, 2018, to December 31, 2019 (1

502year).

503From commodity domain, we utilized daily data from

504January 1, 2013, to December 31, 2019, of Brent prices in

505USD from https://www.eia.gov/ Web site. The data were

506divided into training set consisting of daily Brent prices

507from January 1, 2015, to December 31, 2018 (4 years), and

508a testing set consisting of daily prices from January 1,

5092018, to December 31, 2019 (1 year).

510From cryptocurrency domain, we utilized daily data

511from January 1, 2015, to December 31, 2019, of Bitcoin

512(BTC) cryptocurrency in USD from https://coinmarketcap.

513com Web site. The data were divided into training set

514consisting of daily BTC prices from January 1, 2015, to

515June 30, 2018 (3.5 years), and a testing set consisting of

516daily prices from July 1, 2018, to December 31, 2019 (1/2

517year).

518All time-series data contained no missing values, while

519the outlier prices were not removed in order not to destroy

520the dynamics of each series, even if these prices are the

521result of exceptional events.

522Table 2 summarizes the descriptive statistics for the

523training and testing set of each dataset, including the
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524 measures: Minimum, Maximum, Mean, Standard Devia-

525 tion (Std. Dev.), Median, Skewness and Kurtosis, for pre-

526 senting the nature of the distribution. Additionally, Table 3

527 presents the increase and decrease cases and the corre-

528 sponding percentages in S&P500, Brent and BTC datasets.

529 6 Experimental analysis

530 In this section, we apply our proposed methodology to the

531 S&P500, Brent and BTC time-series to identify whether or

532 not the training data are stationary, utilizing the ADF unit

533 root test.

534 Table 4 presents the results of the ADF unit root test for

535 the training data of all series under consideration, i.e.,

536 S&P500, Brent and BTC, performed on the level of the

537 original series. By taking into consideration, the t-statistics

538 (t-stat.) and the associated p values, we conclude that the

539 null hypothesis H0: ‘‘the levels possess a unit root and are

540 non-stationary’’ is accepted for S&P500, Brent and BTC

541 series.

542 In the sequel, we perform the ADF test to the trans-

543 formed time-series based on both first differences (first

544 differenced series) and returns (returns series), to examine

545 if the unit root has been removed, according to our pro-

546 posed framework.

547 Table 5 presents the results of the ADF unit root test for

548 the training data of all transformed time-series. Notice that

549 (�) denotes statistical significance at the 5% critical level.

550 Clearly, performing either the first differences or the

551 returns transformation clearly solves the unit root problem,

552 since all p values are practically zero and therefore the null

553hypothesis H0 is rejected and all transformed series are

554indeed stationary.

555Thus, both transformed series are ‘‘suitable’’ for fitting

556a deep learning model which will present no autocorrela-

557tion in the errors, and a big improvement of the forecasting

558performance is expected, compared with the same model

559trained with the original non-transformed series.

5606.1 Numerical experiments

561In the sequel, we present a comprehensive experimental

562analysis, to evaluate the efficiency and reliability of our

563proposed methodology. More specifically, we compare the

564performance of two efficient deep learning forecasting

565models trained with the levels of the time-series (Time-

566series) and with the two transformed series based on first

567differences (first differenced series) and returns (returns

568series).

569Under exhaustive experimentation (utilizing different

570number of the CNN and LSTM layers, different number of

571units in the LSTM layers, different number of filter in CNN

572layers), the selected models were an LSTM model which

573consist of a LSTM layer of 50 units and an output layer of

574one neuron (Fig. 2) and a CNN–LSTM which consists of

575two convolutional layers of 16 and 32 filters of size (2, )

576with the same padding, followed by a LSTM layer of 50

577units and an output layer of one neuron (Fig. 3). Notice that

578both models were trained with Adaptive Moment Estima-

579tion [17] with a batch size equal to 128, using a mean-

580squared loss function. The implementation code was

581written in Python 3.4 using Keras library [15] on a laptop

582(Intel(R) Core(TM) i7-6700HQ CPU 2.6GHz and 16GB

Table 1 Proposed framework to enhance deep learning in time-series forecasting

AQ2
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Fig. 1 Flowchart
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583 RAM) running Windows 10.0 operating system. Each

584 forecasting model was trained with the traditional time-

585 series, the first differenced series and returns series, uti-

586 lizing four different values of window size m, i.e., m ¼

587 4; 6; 9 and 12. Finally, in order to reduce exponential trend

588 and homogenize the variability and stability of the patterns,

589 the traditional time-series data were transformed utilizing a

590 natural logarithm (ln) and the model’s predicted value is

591 used to predict the price on the following day. Moreover,

592 we recall that in case the models were trained using the first

593 difference or returns transformation to series, the reverse

594 transformation is utilized and to predict the price on the

595 following day.

596 The regression performance was evaluated utilizing the

597 metrics: mean absolute error (MAE) and root mean square

598 error (RMSE), while for the binary classification problem

599 of predicting whether the price would increase or decrease

600 on the following day, four performance metrics were used:

601 Accuracy (Acc), F1-score (F1), Sensitivity (Sen), Speci-

602 ficity (Spe), Positive Predicted Values (PPR) and Negative

603 Predictive Values (NPV) which are defined by

Acc ¼
TP+TN

TP+FP+FN+FP
; ð13Þ

605605 F1 ¼
2TP

2TP + FP + FN
; ð14Þ

607607 Spe ¼
TP

TP+FN
; ð15Þ

609609 Spe ¼
TN

TN+FP
; ð16Þ

611611 PPV ¼
TP

TP+FP
; ð17Þ

613613 NPV ¼
TN

TN+FN
ð18Þ

615615 where TP stands for the number of prices which were

616 correctly identified to be increased, TN stands for the

617 number of prices which were correctly identified to have a

618 decreased, FP (type I error) stands for the number of prices

619 which were misidentified to be increased, and FN (type II

620error) stands for the number of prices which misidentified

621to be decreased.

622Moreover, we included area under curve (AUC) metric

623in our analysis which constitutes one of the most significant

624classification metrics and it is presented using the receiver

Table 2 Descriptive statistics

for S&P500, Brent and BTC

prices

Data Minimum Maximum Mean SD Median Skewness Kurtosis

S&P500

Training set 1457.15 2930.75 2153.78 367.52 2087.90 0.31 - 0.75

Testing set 2447.89 3240.02 2912.09 149.32 2918.65 - 0.26 0.17

Brent

Training set 26.01 118.90 71.46 25.84 63.27 0.43 - 1.28

Testing set 50.57 74.94 64.31 4.44 63.99 0.16 - 0.30

BTC

Training set 178.10 19497.40 3261.48 3675.02 1152.36 1.40 1.84

Testing set 6640.52 13016.23 9221.26 1466.76 9244.97 0.27 - 0.93

Table 3 The number of up and down movements of S&P 500, Brent

and BTC datasets

Data Decrease % Increase %

S&P500

Training set 815 54.01 694 45.99

Testing set 149 59.36 102 40.64

Brent

Training set 738 47.19 826 52.81

Testing set 140 53.64 121 46.36

BTC

Training set 900 55.87 711 44.13

Testing set 102 47.44 113 52.56

Table 5 ADF unit root test of all transformed times-series based on

first differences and returns

Series S&P500 Brent BTC

First differenced series

t stat. - 39.146 - 38.516 - 7.3402

p value 0.0000� 0.0000� 0.0000�

Returns series

t stat. - 39.663 - 38.259 - 39.893

p value 0.0000� 0.0000� 0.0000�

Table 4 ADF unit root test of all series under consideration

Series S&P500 Brent BTC

Time-series

t stat. - 2.8469 - 1.1599 - 2.7497

p value 0.1806 0.9170 0.2166
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625 operating characteristic (ROC) curve. Notice that ROC

626 curve is created by plotting the true positive rate (Sensi-

627 tivity) against the false positive rate (Specificity) at various

628 threshold settings.

629 6.1.1 S&P500

630 Tables 6 and 7 present the performance comparison of

631 both LSTM and CNN–LSTM forecasting models, respec-

632 tively, for S&P500 dataset. The LSTM model improved its

633 average performance, in terms of MAE and RMSE scores

634 by 30.57%-43.88% and 18.73%-37.31%, respectively,

635 when trained with the first differenced series, while the

636 CNN–LSTM model considerably improved its MAE

637 average performance by 11.35%-45.34% and its RMSE

638 average performance by 4.82%-34.59%, in the same situ-

639 ation. Furthermore, the LSTM model reduced its average

640 MAE and RMSE scores by 23.76%-49.40% and 11.51%-

641 45.45% in case it was trained with the returns of S&P500

642 prices, while the CNN–LSTM model reduced its average

643 MAE performance by 21.10%-48.98% and its RMSE

644 average performance by 11.89%-38.96%. Summarizing,

645 we conclude that the regression performance of both

646 LSTM and CNN–LSTM forecasting models was consid-

647 erably improved, utilizing the first differenced and returns

648 series, instead of the traditional S&P500 time-series.

649 Furthermore, the classification performance of both

650 prediction models was also improved utilizing our pro-

651 posed methodology. More specifically, both LSTM and

652 CNN–LSTM models were biased in case they were trained

653 with the traditional time-series. In contrast, the trade-off

654 between sensitivity and specificity as well as between

655positive and negative predictive values of both models was

656considerably increased in case the models were trained

657with the first differenced.

658It is worth noticing that both LSTM and CNN–LSTM

659models exhibited the highest classification performance in

660case they were trained with the first differenced series and

661the best regression performance when they were trained

662with the returns series. Moreover, the LSTM model trained

663with the first differenced time-series reported the best

664classification performance for all values of window size

665m and the best regression performance for m ¼ 6; 9 and 12.

666The CNN–LSTM model trained with the first differenced

667and returns series reported the best performance relative to

668classification and regression accuracy, respectively.

6696.1.2 Brent

670Tables 8 and 9 present the performance comparison for

671Brent forecasting problem of LSTM and CNN–LSTM,

672respectively. The LSTM and CNN–LSTM models

673improved their average MAE score by 6.44–29.66% and

6745.88–17.52%, respectively, in case they were trained with

675the first differenced series, instead of the traditional series.

676Furthermore, their average RMSE score was reduced by

6775.73–25.46% and 2.88–10.33% in the same situation.

678However, the regression performance of both forecasting

679models worsens, in case they were trained using the returns

680series.

681Regarding the classification performance, both LSTM

682and CNN–LSTM models were biased in case they were

683trained with the traditional series. On the other hand,

684LSTM considerably improved its classification perfor-

685mance utilizing either first differenced or returns series as

686training data in terms of trade-off between sensitivity and

687specificity as well as the trade-off between positive and

688negative predicted values. Additionally, the CNN–LSTM

689significantly improved its classification performance using

690first differenced series as training data, in terms of both

691accuracy and trade-off between sensitivity and specificity.
Fig. 2 LSTM forecasting model architecture

Fig. 3 CNN–LSTM forecasting model architecture

Neural Computing and Applications

123
Journal : Large 521 Dispatch : 7-7-2020 Pages : 19

Article No. : 5169
h LE h TYPESET

MS Code : NCAA-D-20-01027R1 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

692 It is also worth mentioning that both LSTM and CNN–

693 LSTM forecasting models improved their F1-score, in case

694 they were trained with the transformed series.

695 The performance of the forecasting models, relative to

696 the value of the window size m, both models improved

697 their performance as the value of window size increases.

698 Moreover, it is worth mentioning that the best overall

699 performance was reported by CNN–LSTM trained with the

700 first differenced series with m ¼ 12.

701 6.1.3 Bitcoin

702 Tables 10 and 11 present the performance comparison of

703 LSTM and CNN–LSTM, respectively, relative to BTC

704 dataset. Similar conclusions can be drawn with the previ-

705 ous benchmarks. More specifically, the LSTM model

706 improved its MAE and RMSE average performance by

707 24.29–31.90% and 19.44–23.38%, respectively, when

708 trained with the first differenced series instead of the tra-

709 ditional series, while the CNN–LSTM model improved its

710 MAE average performance by 14.34–38.12% and its

711 RMSE average performance by 6.0–29.1%, in the same

712 situation. Moreover, the MAE and RMSE average perfor-

713 mance of the LSTM model was reduced by 21.14–36.59%

714 and 15.99–27.49% in case it was trained with the returns of

715 Bitcoin’s prices, while the CNN–LSTM model improved

716 its MAE average performance by 8.57–39.57% and its

717 RMSE average performance by 2.56–29.52%, in the same

718 situation. Summarizing, we can easily conclude that the

719 regression performance of both forecasting models was

720 considerably improved, utilizing our proposed methodol-

721 ogy for data preparation.

722 Regarding the classification performance, our proposed

723 methodology increased the accuracy of both prediction

724models. More analytically, the interpretation of Tables 10

725and 11 reveals that LSTM and CNN–LSTM models were

726biased when trained with the traditional time-series. In

727contrast, the trade-off between sensitivity and specificity as

728well as the trade-off between positive and negative pre-

729dictive values of both forecasting models was considerably

730improved, in case they were trained with the first differ-

731enced series or the returns series. Finally, AUC and F1-

732score of both models were improved in case they were

733trained with the transformed series instead of the traditional

734time-series.

735The LSTM model trained with the first differenced

736series exhibited the best classification performance for all

737values of window size m and the best regression perfor-

738mance for m ¼ 6; 9 and 12. Moreover, the CNN–LSTM

739model exhibited the lowest (best) MAE and RMSE scores,

740in case it was trained with the returns series, while it pre-

741sented the best overall classification performance, in case it

742was trained with the first differenced series. Finally, it is

743worth mentioning that both LSTM and CNN–LSTM

744models exhibited the best regression performance when

745they were trained with the returns series and the highest

746classification performance, in case they were trained with

747the first differenced series.

7486.2 Reliability evaluation of the forecasts

749In the sequel, we evaluate the reliability of all forecasting

750models by examining the existence of autocorrelation in

751the residuals utilizing the Auto-Correlation Function (ACF)

752plot and the Ljung–Box Q test for residual autocorrelation

753[6]. In other words, we examine whether each trained

754model has properly fitted the time-series by examining

755whether the residuals are identically distributed and

Table 6 Performance comparison of the LSTM model for S&P500 dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 33.31 42.80 50.42 0.532 0.606 0.595 0.470 0.651 0.405

First differenced series 18.69 26.83 47.87 0.467 0.546 0.530 0.404 0.565 0.410

Returns series 16.85 23.35 46.59 0.435 0.570 0.597 0.274 0.546 0.347

Time-series 6 34.49 42.35 47.79 0.514 0.425 0.324 0.703 0.655 0.415

First differenced series 20.10 29.38 48.11 0.466 0.554 0.545 0.388 0.566 0.417

Returns series 19.31 31.56 49.00 0.460 0.590 0.617 0.304 0.565 0.352

Time-series 9 29.84 39.02 47.39 0.520 0.385 0.277 0.762 0.631 0.409

First differenced series 20.58 29.27 50.36 0.497 0.559 0.531 0.463 0.593 0.451

Returns series 18.94 29.40 50.07 0.486 0.574 0.565 0.406 0.583 0.409

Time-series 12 27.14 38.04 47.59 0.509 0.471 0.385 0.634 0.606 0.413

First differenced series 18.84 25.43 49.40 0.489 0.547 0.514 0.465 0.585 0.435

Returns series 20.69 30.12 47.12 0.466 0.524 0.493 0.439 0.562 0.402
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756 asymptotically independent. We recall that the Ljung–

757 Box Q test is a ‘‘portmanteau’’ test which assesses the null

758 hypothesis H0 that ‘‘a series of residuals exhibits no

759 autocorrelation for a fixed number of lags L,’’ against the

760 alternative hypothesis H1 that ‘‘some autocorrelation

761 coefficient is nonzero.’’

762 Tables 12 and 13 present the information of the sta-

763 tistical analysis performed by Ljung–Box Q test for L ¼ 10

764 of LSTM and CNN–LSTM, respectively. Clearly, the null

765 hypothesis H0 of no autocorrelation in the residuals is

766 accepted, in case the models were trained with the first

767 differenced or returns series, relative to all benchmarks and

768 window sizes. On the other hand, both prediction models

769 reject the H0 in case they were trained with the traditional

770 time-series.

771For completeness, we also present the ACF plots of

772LSTM and CNN–LSTM for S&P500, Brent and BTC

773datasets in order to illustrate the intensity of the temporal

774autocorrelation. In each ACF plot, the confident limits are

775denoted with blue dashed lines and are constructed

776assuming that the residuals follow a Gaussian probability

777distribution. Notice that the ACF plot of each model for

778S&P500, Brent and BTC datasets was calculated for

779m ¼ 9, m ¼ 9 and m ¼ 6, respectively, for which the

780models exhibited the best performance.

781Figures 4, 5 and 6 present the ACF plots of LSTM

782model for S&P500, Brent and BTC datasets, respectively.

783The ACF plots of the forecasting model trained with the

784traditional time-series violate the assumption of no auto-

785correlation in the residuals. More specifically, the signifi-

786cant spikes that occurred in several lags suggest the

Table 7 Performance comparison of the CNN–LSTM model for S&P500 dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 33.40 38.70 48.59 0.501 0.395 0.421 0.581 0.601 0.272

First differenced series 18.26 25.31 50.20 0.478 0.551 0.529 0.426 0.575 0.411

Returns series 17.04 23.62 46.02 0.426 0.568 0.601 0.251 0.540 0.330

Time-series 6 23.40 29.67 51.67 0.535 0.494 0.437 0.634 0.649 0.437

First differenced series 20.75 28.24 51.41 0.516 0.554 0.507 0.525 0.610 0.451

Returns series 18.47 26.14 48.35 0.466 0.557 0.550 0.383 0.566 0.398

Time-series 9 35.46 42.18 46.45 0.509 0.356 0.275 0.743 0.623 0.412

First differenced series 22.78 31.94 53.41 0.458 0.513 0.480 0.436 0.554 0.403

Returns series 20.61 29.82 52.13 0.508 0.561 0.527 0.488 0.601 0.414

Time-series 12 33.96 40.96 45.38 0.489 0.389 0.302 0.677 0.577 0.398

First differenced series 23.97 33.03 52.08 0.459 0.519 0.487 0.465 0.557 0.395

Returns series 23.97 33.03 51.20 0.459 0.519 0.487 0.432 0.557 0.391

Table 8 Performance comparison of the LSTM model for Brent dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 1.40 1.81 53.05 0.543 0.442 0.370 0.717 0.618 0.496

First differenced series 0.99 1.35 48.42 0.485 0.499 0.479 0.490 0.522 0.467

Returns series 1.10 1.92 51.24 0.506 0.506 0.478 0.533 0.541 0.480

Time-series 6 1.33 1.75 53.75 0.545 0.497 0.439 0.652 0.608 0.501

First differenced series 1.25 1.86 50.19 0.504 0.503 0.472 0.537 0.541 0.497

Returns series 1.31 2.18 50.27 0.504 0.509 0.484 0.525 0.541 0.488

Time-series 9 1.62 2.03 52.36 0.530 0.462 0.449 0.610 0.584 0.508

First differenced series 1.37 1.86 51.43 0.514 0.534 0.519 0.508 0.550 0.498

Returns series 1.21 1.84 50.19 0.500 0.528 0.525 0.475 0.535 0.486

Time-series 12 1.68 2.16 53.67 0.536 0.536 0.544 0.528 0.588 0.494

First differenced series 1.45 1.94 51.66 0.515 0.543 0.537 0.493 0.551 0.499

Returns series 1.28 2.03 51.66 0.513 0.552 0.557 0.470 0.550 0.498
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787 model’s predictions may be inefficient. In contrast, all ACF

788 plots of the LSTM trained with the first differences and

789 returns of prices reveal that there is no autocorrelation in

790 the residuals which suggests the reliability of the model

791 and advocates the efficiency of its forecasts.

792 Figures 7, 8 and 9 show the ACF plots of CNN–LSTM

793 model for S&P500, Brent and BTC datasets, respectively.

794 Clearly, all ACF plots of CNN–LSTM model trained with

795 the first differenced and returns series illustrate that there

796 exists no autocorrelation in the residuals. This implies that

797 the model is reliable, with respect to the efficiency of its

798 forecasts. On the other hand, the significant spikes pre-

799 sented in Figs. 7a, 8a and 9a reveal the CNN–LSTM

800 trained with the traditional time-series has not properly

801 fitted the training data and exhibited unreliable predictions.

8027 Discussion

803In this section, we perform a discussion relative to the

804theoretical and experimental contribution of our research.

805We presented a detailed theoretical background

806regarding the problem of time-series forecasting and the

807reliability of the forecasts of a prediction model. Since

808most time-series datasets are extremely noisy and chaotic

809by nature, the development of a reliable deep learning

810prediction models is considered a significantly challenging

811task. Moreover, the achievement of high accuracy or low

812RMSE score cannot be considered as a reliable metric since

813a model may just accidentally perform well on a specific

814time period, while on a new different period, it may exhibit

815a totally different and probably poor prediction

816performance.

Table 9 Performance comparison of the CNN–LSTM model for Brent dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 1.13 1.51 53.01 0.535 0.494 0.464 0.607 0.583 0.500

First differenced series 0.98 1.35 50.77 0.508 0.522 0.502 0.514 0.545 0.491

Returns series 1.17 1.61 49.10 0.468 0.507 0.508 0.428 0.508 0.457

Time-series 6 1.35 1.74 53.17 0.548 0.421 0.330 0.765 0.632 0.496

First differenced series 1.17 1.64 51.47 0.521 0.542 0.509 0.521 0.550 0.505

Returns series 1.67 2.39 52.16 0.510 0.546 0.490 0.558 0.564 0.495

Time-series 9 1.54 1.94 52.97 0.544 0.414 0.353 0.734 0.612 0.500

First differenced series 1.27 1.80 53.74 0.548 0.541 0.521 0.535 0.565 0.511

Returns series 2.07 2.88 51.35 0.506 0.549 0.511 0.517 0.550 0.497

Time-series 12 1.44 1.90 53.82 0.537 0.551 0.558 0.515 0.587 0.500

First differenced series 1.35 1.85 54.57 0.545 0.564 0.549 0.542 0.581 0.515

Returns series 1.87 2.63 54.44 0.538 0.565 0.518 0.575 0.585 0.497

Table 10 Performance comparison of the LSTM model for BTC dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 404.57 551.17 51.17 0.500 0.462 0.693 0.294 0.501 0.524

First differenced series 275.52 428.92 52.54 0.524 0.499 0.501 0.547 0.500 0.549

Returns series 256.53 399.66 51.08 0.514 0.529 0.580 0.448 0.499 0.542

Time-series 6 436.77 576.23 50.85 0.501 0.446 0.653 0.348 0.509 0.521

First differenced series 297.88 459.85 53.66 0.538 0.532 0.558 0.517 0.521 0.565

Returns series 302.62 469.09 50.01 0.491 0.480 0.497 0.484 0.486 0.515

Time-series 9 447.30 617.72 49.48 0.498 0.475 0.703 0.259 0.509 0.526

First differenced series 338.67 497.64 53.15 0.529 0.491 0.488 0.571 0.526 0.555

Returns series 352.73 518.96 50.86 0.510 0.505 0.533 0.487 0.509 0.529

Time-series 12 483.96 672.34 50.19 0.497 0.477 0.702 0.396 0.508 0.510

First differenced series 348.62 515.16 51.08 0.514 0.521 0.569 0.458 0.509 0.541

Returns series 363.98 546.14 50.70 0.510 0.518 0.565 0.455 0.506 0.535
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817 In this research, we demonstrated theoretically whether

818 time-series data are ‘‘suitable’’ for fitting a deep learning

819 model, which constitutes the main contribution of our

820 research. In other words, we introduced a novel framework

821 which can efficiently identify if a time-series is suitable for

822 developing and training a deep learning model, which will

823 perform reliable and stable prediction performances, inde-

824 pendent of the characteristics of the series in any time period.

825 By the term ‘‘suitable,’’ we mean that the time-series

826 data has successfully passed our proposed theoretical cri-

827 teria and it can be used for training a prediction model. In

828 contrast, if the series fails satisfying the requested criteria,

829 then it is considered as ‘‘unsuitable’’ and every attempt for

830 building a reliable prediction model will be probably in

831 vain. Therefore, we provide a ‘‘starting point’’ for any

832 attempt on developing any prediction framework for any

833 time-series forecasting problem. This starting point is

834 indeed the critical point in which every attempt and

835 investment for building a model will result in a stable and

836 reliable predictor or it will be totally wasted out in the case

837that the utilized starting dataset was unsuitable. By iden-

838tifying the suitability of any time-series data, a ‘‘green

839light’’ for the machine learning developer is provided, in

840order to invest computational effort for building a fore-

841casting framework.

842Furthermore, we established a novel and complete

843framework which provides a solution for any ‘‘unsuitable’’

844identified time-series by performing a transformation based

845on first differences or returns and transform these series to

846‘‘suitable.’’ Although these two techniques were well

847known as a rule of thumb for transformation and prepro-

848cessing for time-series data, it was not proved why, when

849and how these formulae work and if they actually can be

850successfully applied. Most approaches were relying on a

851‘‘trial and error’’ logic something not appropriate and

852viable especially on cases when costly and time-consuming

853real-world projects aim to build accurate and reliable

854forecasting models. In this work, we proved that these

855formulae actually filtered these ‘‘unsuitable’’ data,

Table 11 Performance comparison of the CNN–LSTM model for BTC dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 315.41 448.46 49.58 0.489 0.512 0.693 0.277 0.488 0.516

First differenced series 270.19 421.57 53.33 0.535 0.533 0.562 0.507 0.527 0.563

Returns series 288.38 436.99 46.81 0.471 0.487 0.534 0.409 0.479 0.493

Time-series 6 366.81 514.74 52.21 0.513 0.476 0.489 0.552 0.518 0.539

First differenced series 269.45 415.27 53.99 0.524 0.511 0.525 0.523 0.519 0.549

Returns series 256.97 398.49 53.94 0.540 0.527 0.544 0.536 0.524 0.566

Time-series 9 399.61 534.20 51.41 0.499 0.531 0.584 0.383 0.500 0.536

First differenced series 258.88 396.16 51.24 0.514 0.515 0.546 0.482 0.507 0.541

Returns series 253.61 393.25 50.00 0.501 0.494 0.517 0.485 0.505 0.527

Time-series 12 417.20 553.32 51.40 0.510 0.510 0.592 0.399 0.511 0.523

First differenced series 258.15 392.60 50.70 0.507 0.488 0.509 0.483 0.505 0.538

Returns series 252.12 389.97 50.52 0.506 0.499 0.520 0.492 0.503 0.531

Table 12 Ljung–Box Q test for

10 lags with significance level

a ¼ 5% (LSTM)

Series Horizon p value H0 p value H0 p value H0

Time-series 4 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.170 Accepted 0.692 Accepted 0.764 Accepted

Returns series 0.071 Accepted 0.370 Accepted 0.228 Accepted

Time-series 6 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.295 Accepted 0.271 Accepted 0.052 Accepted

Returns series 0.486 Accepted 0.733 Accepted 0.383 Accepted

Time-series 9 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.286 Accepted 0.143 Accepted 0.235 Accepted

Returns series 0.244 Accepted 0.113 Accepted 0.110 Accepted

Time-series 12 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.325 Accepted 0.790 Accepted 0.391 Accepted

Returns series 0.423 Accepted 0.172 Accepted 0.400 Accepted
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856 eliminating this costly and time consuming ‘‘trial and

857 error’’ approach.

858 It is worth mentioning that an attractive property of our

859 proposed framework is that it can be easily extended to

860 cover the wider scientific area of time-series forecasting

861 applications without the requirement of any extra modifi-

862 cations or additional constraints. In more detail, the pro-

863 posed framework performs an efficient preprocessing step

864 in order to exploit the internal representation of the times-

865 series, through the utilization of statistic and econometric

866 test. Conclusively, we point out that our experimental

867 analysis indicated that although deep learning models

868 constitute a widely accepted and efficient choice for time-

869 series forecasting, our proposed framework provides a

870 significant boost in increasing the forecasting performance.

871 Nevertheless, an extensive research is under considera-

872 tion to identify which of these two methodologies can be a

873 priori efficiently applied depending on the characteristics

874 of each time-series in order to obtain better prediction

875 results. A possible approach could be the application of a

876 sophisticated preprocessing framework based on the

877 intrinsic time-series specific properties such as stationarity,

878 heteroskedasticity, seasonal cycles and changing variance,

879 for performing that a priori identification and the proper

880 time-series transformation methodology.

881 8 Conclusions and future research

882 Time-series forecasting and analysis is generally consid-

883 ered as one of the most challenging problems in data

884 mining. In the literature, most time-series forecasting

885 approaches attempt to exploit machine learning and deep

886 learning algorithms, aiming at obtaining better perfor-

887 mance compared to the already existing or proposed

888 models. Nevertheless, they cannot guarantee to develop

889 reliable forecasting models.

890In this work, we propose a different approach and

891introduce a novel methodology for the development of

892efficient and reliable deep learning prediction models. The

893major novelty of our proposed framework is that it guar-

894antees the forecasting reliability of the deep learning

895model’s predictions, independent of the used time-series

896data. This is achieved by applying a series of transforma-

897tions, which ensure that a time-series satisfies the station-

898arity property and it is suitable for fitting a deep learning

899model. In addition to the theoretical advantages of the

900proposed framework, we provided empirical evidence

901about its efficiency and robustness. More specifically, we

902performed a series of numerical experiments using time-

903series from three application domains, which attracted most

904of research interest, namely financial stock market, energy

905sector and cryptocurrency area. All compared models

906where evaluated on both forecasting time-series price (re-

907gression) and time-series directional movements (classifi-

908cation) as well as on the reliability of their forecasts by

909examining the existence of autocorrelation of the errors.

910Our comprehensive experimental analysis illustrated that

911our proposed methodology considerably improved the

912forecasting performance of a deep learning model, in terms

913of accuracy and reliability.

914By taking into consideration that our proposed frame-

915work can be easily exploit any deep learning model, a

916prediction model exhibiting even better forecasting ability

917could be developed through the exploitation of deep

918learning techniques together with regularization method-

919ologies or through additional optimized configuration of

920the utilized models.

921It is worth mentioning that the introduced framework

922can be easily extended to cover the wider scientific area of

923time series forecasting applications such as weather fore-

924casting, earthquake prediction, heartbeat rate and so on,

925without the requirement of any extra modifications or

926additional constraints. Furthermore, one issue which we

Table 13 Ljung–Box Q test for

10 lags with significance level

a ¼ 5% (CNN–LSTM)

Series Horizon p value Null H0 p value Null H0 p value Null H0

Time-series 4 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.102 Accepted 0.622 Accepted 0.834 Accepted

Returns series 0.137 Accepted 0.344 Accepted 0.254 Accepted

Time-series 6 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.657 Accepted 0.416 Accepted 0.160 Accepted

Returns series 0.180 Accepted 0.168 Accepted 0.064 Accepted

Time-series 9 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.105 Accepted 0.083 Accepted 0.560 Accepted

Returns series 0.619 Accepted 0.382 Accepted 0.435 Accepted

Time-series 12 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.059 Accepted 0.060 Accepted 0.629 Accepted

Returns series 0.056 Accepted 0.869 Accepted 0.217 Accepted
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(a)

(b)

(c)

Fig. 4 Autocorrelation of residuals for S&P500 dataset of LSTM

model

(a)

(b)

(c)

Fig. 5 Autocorrelation of residuals for Brent dataset of LSTM model
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(a)

(b)

(c)

Fig. 6 Autocorrelation of residuals for BTC dataset of LSTM model

(a)

(b)

(c)

Fig. 7 Autocorrelation of residuals for S&P500 dataset of CNN–

LSTM model
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Fig. 8 Autocorrelation of residuals for Brent dataset of CNN–LSTM

model
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Fig. 9 Autocorrelation of residuals for BTC dataset of CNN–LSTM

model
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927 have not thoroughly investigated is the possibility of some

928 minor information loss due to non-stationarity in the time-

929 series and the imposition of the proposed transformations.

930 This is to be included and fully investigated in our future

931 research. Furthermore, we intend to verify that the pro-

932 posed framework works with any kind of regression

933 algorithm.

934 Another direction for future research is to enhance our

935 experimental framework with new performance metrics

936 based on profits and returns. Finally, an interesting idea is the

937 application of our proposed framework for the prediction of

938 anomaly detection in order to ‘‘catch’’ outliers or other rare

939 signals, which could indicate forecasting instability.
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