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Abstract In this work, a new advanced active set limited
memory BFGS (Broyden–Fletcher–Goldfarb–Shanno)algo-
rithm is proposed for efficiently training weight-constrained
neural networks, called AA-L-BFGS. The proposed algo-
rithm possesses the significant property of approximating
the curvature of the error function with high-order accu-
racy by utilizing thetheoretically advantagedsecant con-
dition. Moreover, the global convergence of the proposed
algorithm is established provided that the line search satis-
fies the modified Armijo condition. The presented numerical
experiments illustrate the efficiency of the proposed AA-L-
BFGS, providing empirical evidence that it significantly ac-
celerates the convergence of the training process.

Keywords Artificial neural networks· constrained
optimization· L-BFGS · modified secant equation.

1 Introduction

Artificial Neural Networks (ANNs) constitute intelligent dy-
namic system models, which have been characterized as prob-
ably the most powerful machine learning algorithms for ex-
tracting knowledge from complex and ill-defined problems.
Their universal approximation ability, as well as their self-
learning and self-adapting capability have established them
as vital components of decision support systems; Therefore,
ANNs have been widely applied in an impressive spectrum
of real-world applications [2,9,14,18].

The standard problem oftraining an ANN is the incre-
mental adaptation of connection weights, in order to min-
imize the measure of difference between the actual output
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and the desired output of the network for all examples of
the training data [27]. Mathematically, the training process
can be formulated as the minimization of an error function
E(w) which depends on avectorw of n weightsof the neural
network, namely

min
w∈Rn

E(w) (1)

Gradient-based training algorithms constitute an elegant
choice for dealing with the optimization problem (1)and
theyproduce a sequence of weights{wk} using the iterative
recurrence

wk+1 = wk+ηkdk, k= 0,1, . . . ,kmax (2)

wherek is the current iteration (epoch),kmax is the max-
imum number of iterations,w0 ∈ R

n is the initial vector of
weights,ηk > 0 is a stepsize (learning rate) anddk is a search
direction. Notice that the gradient which constitutes primary
importance for these algorithms, can be easily obtained by
means of back propagation of errors through the network
layers.

Nevertheless, the training process is a significantly chal-
lenging optimization problem since the error functionE(w)
is nonconvex and usually high-dimensional. Additionally,
it is characterized by broad flat regions adjoined with nar-
row step ones and a large number of local minima [22–24].
Therefore, several methodologies have been proposed based
on the well-established unconstrained optimization theory
in order to efficiently accelerate the convergence of the min-
imization process while situationally, provide good gener-
alization performance. Karras and Perantonis [15,30] pro-
posed a novel approach based on a Lagrange multiplier for
the optimization of the error function. The advantage of the
proposed algorithm was the avoidance of zig-zag trajectories
in the parameter space since the weights updates in two suc-
cessive iterations are highly aligned. Another interesting ap-
proach for increasing the generalization performance of an
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ANN was the incorporation of nonmonotone learning strate-
gies which attempt to exploit the accumulated information
relative to the most recent values ofE(w). More sophisti-
cated algorithms exploit second order derivative related in-
formation in order to accelerate the efficiency of the train-
ing process. Along this line, many limited memory quasi-
Newton [3,4,11] and conjugate gradient algorithms [5,17,
23] have been proposed which possess strong convergence
properties and are computationally superior to state-of-the-
art training algorithms.

Recently, Livieris [21] proposed a novel methodology
for improving the generalization ability of ANNs based on
the application of box constraints on the weights. In other
words, the problem of training an ANN is re-formulated as
a constrained optimization problem, i.e.

min{E(w) |w∈ B} (3)

with

B = {w∈ R
n : l ≤ w≤ u} (4)

wherel ∈R
n andu∈R

n denote the lower and upper bounds
on the weights, respectively. The rationale for this strategy
aimed at restricting the weights of the trained network from
taking large values in order to develop a more stable predic-
tion model which is less likely to overfit the training data
and less sensitive to minor variations in the inputs.

Additionally, for evaluating the efficiency of this new
type of ANNs, Livieris [21] proposed a new Weight-Constrained
Neural Network algorithm (WCNN) which handles the box
constraints on the weights utilizing a gradient-projectionstrat-
egy and exploits the computational efficiency of the L-BFGS
(Limited-memory Broyden–Fletcher–Goldfarb–Shanno) ma-
trices. It is worth noticing that this new training methodol-
ogy has been also evaluated in a variety of real-world prob-
lems, providing some interesting and promising results [22].
Additionally, in [26] an improved version of algorithm WCNN
(iWCNN) was proposed, which exploits a new scaling fac-
tor for defining the initial Hessian approximation utilizedin
the L-BFGS formula.

Along this line, Livieris and Pintelas [25] presented an
Adaptive nonmonotoneActive set -weight constrained- Neu-
ral Network (AANN) training algorithm based on a con-
jugate gradient philosophy which consists of two distinct
phases. In the first phase, AANN ensures a significant re-
duction in the error function (3) by efficiently exploiting a
property of an active-set estimate, while in the second phase
the superlinear convergent CG-DESCENT algorithm is uti-
lized in a lower-dimensional space composed by the weights
estimated as non-active ones.

Motivated by the previous research, we propose a new
advanced active set limited memory BFGS neural network
training algorithm, named AA-L-BFGS.The proposed algo-
rithm exploits the efficient active set identification technique

of Facchinei et al. [10] for handling the box constraints on
the weights. Two attractive properties of AA-L-BFGS are
that it approximates the curvature of the error functionE(w)
with higher accuracy by utilizing an advanced secant con-
dition and it utilizes line search satisfying an Armijo-type
condition. These properties result in considerably reducing
the computational cost. Additionally, the global convergence
of the proposed algorithm is established under mild condi-
tions.The reported experimental results demonstrate empir-
ical evidence that the proposed algorithm increases the con-
vergence of the training process and provides more stable
and reliable prediction models.

The remainder of this paper is organized as follows. In
Section 2, we present the proposed weight-constrained neu-
ral network training algorithm. Section 3 presents the global
convergence analysis of our method. Section 4 presents the
numerical experiments utilizing the performance profiles of
Dolan and Morè [7]. Finally, Section 5 presents the conclu-
sions and out future research proposals.

Notations. Throughout this paper, the gradient of the er-
ror functionE(w) is indicated byg(w) = ∇E(w). The vec-
torssk = wk+1−wk andyk =∇E(wk+1)−∇E(wk) represent
the evolutions of the current point and of the error function
gradient between two successive iterations, wherek is the
current iteration.

Moreover, a vectorw∈B is said to be a stationary point
of problem (3) if it satisfies





l i = wi ⇒ ∇Ei(w)≥ 0;

l i < wi < ui ⇒ ∇Ei(w) = 0;

ui = wi ⇒ ∇Ei(w)≤ 0,

(5)

where∇Ei(w) is the i-th component of the gradient vector
atw.

2 An advanced active L-BFGS neural network training
algorithm (AA-L-BFGS)

In this section, we present the proposed advanced active set
L-BFGS algorithm for efficiently training weight-constrained
neural networks.

2.1 Advanced L-BFGS update

The process of training a weight-constrained network con-
sists a rather challenging optimization problem since the sur-
face of the error functionE(w) is characterized by high com-
plexity and by a number of unhelpful features. More specif-
ically, its dimensionality is often high and the correspond-
ing nonconvex multimodal objective function possess broad
flat regions adjoined with narrow step ones and has multi-
tudes of local minima [21,25]. In order to increase the con-
vergence rate of the minimization process, we modify the
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L-BFGS updates by approximating with high-accuracy the
curvature of the error function through the utilization of a
theoretically advanced secant equation.

Firstly, we recall that for quasi-Newton methods, an ap-
proximation matrixHk to the inverse of the Hessian of the
nonlinear error functionE is updated so that a new matrix
Hk+1 satisfies the following secant condition

Hk+1yk = sk. (6)

Livieris and Pintelas [23] expanded condition (6) and pro-
posed a new class of modified secant condition

Hk+1ỹk = sk. (7)

where




ỹk = yk+ δk

max{θk,0}
sT
k u

u,

θk = 2(Ek−Ek+1)+ (gk+1+gk)
Tsk.

(8)

whereEk = E(wk), u is any vector satisfyingsT
k u 6= 0 and

parameterδk ∈ {0,1}. Notice that parameterδk is utilized to
adaptively switch between the standard secant equation (6)
and the modified secant equation (7), by settingδk = 1 if
‖sk‖ ≤ 1 and settingδk = 0, otherwise.

It is worth noticing that if‖sk‖ is sufficiently small then

sT
k (∇

2E(wk+1)sk− yk) = O(‖sk‖
3), (9)

sT
k (∇

2E(wk+1)sk− ỹk) = O(‖sk‖
4). (10)

Clearly, the above equations imply that the modified secant
equation (7) is superior to the classical one (6) in the sense
thatỹk better approximates∇2E(wk+1)sk thanyk (see [23]).

Motivated by the theoretical advantages of the new se-
cant equation (7), we propose a modification of the L-BFGS
direction as follows. Let ˆm= min{k,m−1}, then given the
set of correction vector pairs(si ,yi) for i = k− m̂, . . . ,k−1,
the L-BFGS direction is defined by

dk =−H̃kgk, (11)

where

H̃k+1 = (ṼT
k . . .VT

k−m̂)H̃(0)
k (Vk−m̂. . .Vk)

+ ρ̃k−m̂(ṼT
k . . .VT

k−m̂+1)sk−m̂sT
k−m̂(Vk−m̂+1 . . .Vk)

+ ρ̃k−m̂+1(ṼT
k . . .VT

k−m̂+2)sk−m̂+1sT
k−m̂+1 (Vk−m̂+2 . . .Vk)

+ · · ·+

+ ρ̃ksksT
k .

(12)

where

ρ̃k =
1

ỹT
k sk

and Vk = I − ρ̃kỹks
T
k . (13)

Notice that, in order to maintain the positive definiteness of
theadvancedL-BFGS matrix, the correction pair(sk, ỹk) is
discarded in case the curvaturesT

k ỹk < 0 is not satisfied.
Conclusively, we point out that the rationale for utilizing

the theoretically advanced secant equation (7) is to approx-
imate with high-accuracy the curvature of the error func-
tion. Therefore, increasing the computational efficiency of
the training algorithm and the convergence rate of the mini-
mization process.

2.2 Search direction

In the sequel, we give a brief description of the active set
identification technique which was originally proposed by
Facchinei et al. [10] and it is utilized to define the search
directiondk at each iteration.

Let w∈ B be a stationary point of the constrained opti-
mization problem (3). Moreover, let us consider the associ-
ated active constrained set

L = {i : wi = l i} and U = {i : wi = ui} (14)

and the index set of free (non-active) variables

F = {1,2, . . . ,n}\(L∪U). (15)

By utilizing this notation, the condition (5) can be rewritten
as




∇Ei(w)≥ 0, ∀i ∈ L,

∇Ei(w) = 0, ∀i ∈ F ,

∇Ei(w)≤ 0, ∀i ∈U .

(16)

It is worth mentioning that strict complementarity is said to
hold at a stationary pointw, if ∇Ei(w)> 0 and∇Ei(w) < 0
in the first and third implication of (16), respectively.

Next, we define the following approximationsL(w),U(w)
andF(w) to L, U andF, respectively:

L(w) = {i : wi ≤ l i +ai(w)∇Ei(w)};

U(w) = {i : wi ≥ ui +bi(w)∇Ei(w)};

F(w) = {1,2, . . . ,n}\(L(w)∪U(w)),

(17)

whereai(w) andbi(w) be nonnegativecontinuous and bounded
functions defined onB, such that ifwi = l i or wi = ui then
ai(w)> 0 orbi(w)> 0, respectively. The following theorem
is very useful for presenting thatL(w), U(w) andF(w) are
”good” estimates ofL, U andF, respectively.

Theorem 1 [10].For any feasible w, L(x)∩U(x)= /0. More-
over, if w is a stationary point of problem(3) where strict
complementarity holds, then there exists a neighborhoodN(w)
of w such that

L(x) = L, U(x) =U , F(x) = F , ∀w∈ N(w). (18)



4 Ioannis E. Livieris

For the sake of simplicity, we abbreviateL(wk), U(wk)

andF(wk) to Lk, Uk andFk, respectively. Next, we recall the
active set identification technique and briefly describe how
to determine a search direction. Let us consider the subspace
directiondFk

k at wk ∈ B defined as the search direction for
the inactive variables. LetZk be the matrix whose columns
are{ei : i ∈ Fk}, whereei is the i-th column of the identity
matrix andH̃k be an approximation of the full space inverse
Hessian matrix. Moreover, letHk be an approximation of the
Hessian matrix in the subspace, thenHk = ZT

k H̃kZk. Then,

the search directiondk = (dLk
k ,dUk

k ,dFk
k ) is defined by

dki =





l i −wki , ∀i ∈ Lk;

ui −wki , ∀i ∈Uk;

−η∗
k

(
Hkg

Fk
k

)
i
, ∀i ∈ Fk,

(19)

wheredki andwki are thei-th components ofdk andwk, re-
spectively andη∗

k is a positive scalar defined by

η∗
k =max

{
η :

η ≤ 1, l i −wki ≤−η
(

Hkg
Fk
k

)
i
≤ ui −wki ,

with i ∈ F(wk)

}

(20)

Hence, by the previous relation, it is not difficult to conclude
that

wk+dk ∈ B. (21)

2.3 Training algorithm

At this point, we present a high level description of the pro-
posed Advanced Active set L-BFGS (AA-L-BFGS) neural
network training algorithm.

Algorithm 1: Advanced Active set L-BFGS (AA-L-BFGS)

Input: w0 − Initial weights.
σ ∈ (0,1) − Hyper-parameter of modified
Armijo line search.
µ ∈ [0,∞) − Hyper-parameter of modified
Armijo line search.
β ∈ (0,1) − Hyper-parameter of modified
Armijo line search.
Lmin − Lower bound on the estimation of
Lipschitz constant.
Lmax − Upper bound on the estimation of
Lipschitz constant.
H0 − Initial approximation of the Hessian matrix.
m− Number of correction vector pairs.
EG − Error goal.

Output: wk − Weights of the trained ANN.

[1] Setk= 0.

[2] repeat

[3] Calculate the error function valueEk and its

gradientgk.

[4] DetermineLk, Uk andFk using (17).

[5] Determine the search directiondk using (19).

[6] Calculate the safe-guarded approximation of

Lipschitz constant

Lk = max

(
Lmin,min

(
sT
k ỹk

‖sk‖2 ,Lmax

))
. (22)

[7] Setαk =−
dT

k gk

Lk‖dk‖2 and choose the learning rate

ηk to be the largest one in{αk,αkβ ,αkβ 2, . . .}

satisfying the modified Armijo condition

E(wk+ηkdk)−Ek ≤ σηk

[
gT

k dk−
1
2

ηkµLk‖dk‖
2
]

(23)

[8] Update the weightswk+1 = wk+ηkdk.

[9] Update the correction pairs(si , ỹi), with

i = k, . . . ,k− m̂+1.

[10] UpdateH̃k using (12).

[11] Setk= k+1.

[11] until (Ek ≤ EG andl ≤ wk ≤ u).

Let wk be the current vector of weights. At the each it-
erationk, the algorithm calculated the error function value
Ek and the gradientgk at pointwk (Step 3). Then, the AA-L-
BFGS algorithm determines the index setsLk andUk of ac-
tive weights and the index setFk of non-active weights (Step
4). In the sequel, AA-L-BFGS algorithm utilizing (19), de-
termines the search directiondk (Step 5). Notice that each
component of the search directiondki with i ∈ Lk∪Uk, rel-
ative to the active weights, can be easily computed bydki =

l i − wki and dki = ui − wki for i ∈ Lk and i ∈ Uk, respec-
tively. The rest components of the search directiondki with
i ∈Fk can be calculated using the advanced L-BFGS Hessian
approximation of the subspace defined by the non-active
weights. Next, the algorithm calculates the safe-guarded ap-
proximation of the Lipschitz constant and performs a line
search procedure satisfying the modified Armijo condition
(23) to determine the new connection weightswk+1 of the
network (Steps 6-8). Finally, AA-L-BFGS updates the cor-
rection pairs and the Hessian approximation utilizing the ad-
vanced L-BFGS update (12) (Steps 9-10).

It is worth noticing that the proposed algorithm AA-L-
BFGS hasO(m2n) complexity.
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3 Global convergence analysis

In order to establish the global convergence result for Algo-
rithm 1, we will impose the following assumptions.

Assumption 1 The level setΩ = {w∈R
n : E(w)≤E(w0)}∩

B is compact.

Assumption 2 In some neighborhoodN ∈ Ω , E is differ-
entiable and its gradientg is Lipschitz continuous, namely,
there exists a constantL > 0 such that

‖g(w)−g(w̃)‖ ≤ L ‖w− w̃‖, ∀w, w̃∈ N . (24)

Assumption 3 There exist positive scalarsc1 andc2 such
that any matrixHk satisfies

c1‖z‖2 ≤ zTHkz≤ c2‖z‖2, ∀z∈R
|Fk|, z 6= 0 (25)

Notice that since the error functionE is bounded below
in Rn by zero, it is differentiable and its gradient is Lipschitz
continuous [12], Assumptions 1 and 2 always hold.

In the sequel, we will present some Lemmas which are
significant for the establishment of global convergence of
algorithm AA-L-BFGS.

Lemma 1 [10].Suppose that the sequences{wk} and{dk}
are generated by Algorithm AA-L-BFGS, then there exists a
positive constantγ such that

gT
k dk ≤−γ ‖dk‖

2. (26)

Lemma 2 [10].Suppose that the sequences{wk} and{dk}
are generated by Algorithm AA-L-BFGS. Then, dk = 0 iff wk

is a stationary point of problem(3).

Lemma 3 [10].Suppose that the sequences{wk} and{dk}

are generated by Algorithm AA-L-BFGS. Furthermore, sup-
pose that the subsequences{wk}K → w and{dk}K → 0 as
k→ ∞. Then,w is a stationary point of(3).

Next, making use of Lemmas 1, 2 and 3 we can establish
the global convergence theorem for Algorithm AA-L-BFGS
whose proof is similar to that of Theorem 2.1 in [10], how-
ever we present it here for completeness.

Theorem 2 Suppose that Assumptions 1 and 3 hold. If the
sequence{wk} is generated by Algorithm AA-L-BFGS, then
every limit point of this sequence is a stationary point of the
problem(3).

Proof. From relations (21) and (23) and Lemma 1 we have
that the sequence of weights{wk} are generated by Algo-
rithm AA-L-BFGS are contained in the compact setΩ . Thus,
it immediately follows from Assumption 1 that there exists
at least a limit point of this sequence.

If the sequence{wk} is finite with last pointw then by
Lemma 2 we obtain thatw is a stationary point of (3). Next,
we assume that the sequence is infinite. Let

K1 = {k|ηk = αk} and K2 = {k|ηk < αk}. (27)

In the sequel, we consider the following cases:
Case I: If k∈K1, then by Lemma 1 and the modified Armijo
line search (23), we have

E(wk+ηkdk)−Ek ≤ σηk

[
gT

k dk−
1
2

ηkµLk‖dk‖
2
]

(28)

= −σ
(

gT
k dk

‖dk‖2

)(
2+ µ
2Lmax

)
gT

k dk (29)

≤ −σγ2
(

2+ µ
2Lmax

)
‖dk‖

2. (30)

Case II: If k∈ K2, thenηk < αk, henceηk/β ≤ αk. Let η =
ηkβ−1, then by the modified Armijo line search (23), we
obtain

E(wk+ηkdk)−Ek > ση
[
gT

k dk−
1
2

ηµLk‖dk‖
2
]
. (31)

Using the mean value theorem on the left-hand side of the
above inequality, we have that there existsθk ∈ [0,1] such
that

ηg(wk+θkηdk)
Tdk > ση

[
gT

k dk−
1
2

ηµLk‖dk‖
2
]
. (32)

Therefore,(g(wk+θkηdk)−g(wk))
T dk > (σ − 1) gT

k dk −
1
2σηµLk‖dk‖

2, which together with Assumption 2 and the
Cauchy–Schwartz inequality, we obtain
(

L +
1
2

σ µLk

)
η‖dk‖

2 > (σ −1)gT
k dk. (33)

By re-arranging the previous relation, we have

ηk >
2β (σ −1)

2L +σ µLk

gT
k dk

‖dk‖2 . (34)

Utilizing (22), (26) and (34), we can easily obtain

ηk >
2β (1−σ)γ

2L +σ µLmax
. (35)

Next, by the modified Armijo line search (23) and Lemma 1,
we get

E(wk+ηkdk)−Ek ≤ σηk

[
gT

k dk−
1
2

ηkµLk‖dk‖
2
]

(36)

≤
2β σ(σ −1)γ2

2L +σ µLmax
‖dk‖

2. (37)

Since{Ek} is decreasing and bounded from below, it im-
mediately follows from (30) and (37) that{dk} → 0 which
together with Lemma 3 completes the proof. �



6 Ioannis E. Livieris

4 Experimental results

In this section, we conduct a series of experiments for eval-
uating the performance of the proposed training algorithm
AA-L-BFGS against AANN and iWCNN. These algorithms
were selected since they constitute the only weight-constrained
training algorithms proposed in the literature.

All training algorithms were implemented in Matlab 7.6
and evaluated on a laptop (2.4GHz Quad-Core processor,
4GB RAM). The initial weights of all weight-constrained
neural networks were defined using the Nguyen-Widrow me-
thod [28]. The line search parameters of AA-L-BFGS were
set asσ = 10−2, µ = 0.01 andβ = 0.5 for all experiments
[24]. We let ai(w) = bi(w) = 10−6 and H0 = I as in [35]
while the boundaries for the approximation of Lipschitz con-
stant were set asLmin = 10−3 and Lmax = 108 as in [24,
32]. The number of correction pairs used in AA-L-BFGS
is m= 7 and in order to maintain the positive definiteness of
theadvancedlimited memory BFGS matrix (7), a correction
pair{sk,yk} is discarded if the curvature condition

sT
k yk > 10−8‖ỹk‖

2, (38)

is not satisfied [21,20]. Finally, the algorithms AANN and
iWCNN were implemented with their default optimized pa-
rameter settings [26,25].

For conducting the performance evaluation of the train-
ing algorithms, we selected three well-known problems ac-
quired from the UCI Repository [8]: the Escherichia coli
problem, the Splice-junction gene sequences problem and
the Yeast problem. It is worth mentioning that for reasons
of more objective comparison, we decided that all classifi-
cation problems were adjusted using their original “set-ups”
introduced in [1,31,16].

For each benchmark, we performed 100 simulations for
all training algorithms utilizing the same initial weightsand
presented the descriptive statistics including Minimum (min),
Mean (mean), Maximum (max) and Standard Deviation (st.d)
of CPU time in seconds. Nevertheless, since a small number
of simulations tends to dominate the numerical results, the
cumulative total for CPU time over all simulations does not
seem to be too informative; thus, we also evaluated the per-
formance of each training algorithm using the performance
profiles of Dolan and Morè [7].The utilization of perfor-
mance profiles demonstrate perhaps the most complete in-
formation in terms of efficiency and solution quality and
eliminates the influence of a small number of simulations
on the evaluation process [7]. The curves in the following
figures have the following meaning:

– “AA-L-BFGS” stands for the proposed Advanced Ac-
tive set L-BFGS algorithm.

– “AANN” stands for Adaptive nonmonotone Active set
-weight constrained- Neural Network training algorithm
[25].

– “iWCNN” stands for improved Weight-Constrained Neu-
ral Network training algorithm [26].

Additionally, in order to investigate the sensitivity of the
proposed algorithm AA-L-BFGS to the selection of bounds
of the weights, we have selected three different bounds for
the weights, namely[−1,1], [−2,2] and [−5,5] as in [21,
22].

4.1 Escherichia coli classification problem

The Escherichia coli (E. coli) classification problem consists
of 336 patterns and concerns the classification of the protein
localization patterns into eight localization sites by employ-
ing some measures about the cell i.e cytoplasm (cp), inner-
membrane (im), periplasm (pp), inner membrane Uncleav-
able signal sequence (imU), outer-membrane (om), outer-
membrane Lipoprotein (omL), inner-membrane Lipoprotein
(imL), inner membrane cleavable signal sequence (imS) [13].
For this imbalanced dataset, we used a neural network with 1
hidden layer of 16 neurons and an output layer of 8 neurons.
The error goalEG was set to 0.01, the maximum number of
epochs was set to 1000 and the classification accuracy was
measured utilizing 4-fold stratified cross-validation [21].

Table 1 presents the descriptive statistics including min,
mean, max and st.d of CPU time in seconds for each weight-
constrained training algorithm. Clearly, AA-L-BFGS exhib-
ited the best overall performance, relative to all bound on
the weights. More specifically, AA-LBFGS reported 1.40,
0.91 and 0.72 mean CPU time for bounds[−1,1], [−2,2]
and[−5,5], respectively. In contrast, AANN reported 1.65,
1.03 and 0.8 while iWCNN reported 1.76, 1.22 and 0.8, in
the same situations. Moreover, it is worth mentioning, that
tighter bounds are most likely for AA-L-BFGS to consid-
erably outperform the rest weight-constrained algorithmsin
terms of CPU time.

AA-L-BFGS AANN iWCNN
Weight
bounds

min 0.56 0.52 1.07

[-1,1]
mean 1.40 1.65 1.76
max 2.62 2.76 2.78
st.d 0.60 0.51 0.39

min 0.61 0.65 0.57

[-2,2]
mean 0.91 1.03 1.22
max 1.35 1.69 2.15
st.d 0.19 0.24 0.36

min 0.49 0.44 0.49

[-5,5]
mean 0.72 0.80 0.80
max 0.92 1.14 1.03
st.d 0.13 0.16 0.14

Table 1 CPU time (seconds) of the weight-constrained training algo-
rithms for the Escherichia coli classification problem
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Figure 1 presents the performance profiles for the Es-
cherichia coli classification problem, based on CPU time.
More specifically, AA-L-BFGS exhibited 55%, 61% and 51%
of simulations with the least CPU time, with bounds[−1,1],
[−2,2] and[−5,5] on all weights, respectively while AANN
exhibited 30%, 17% and 32% of simulations, in the same sit-
uations. iWCNN presented the worst performance exhibit-
ing 15%, 22% and 20% of simulations with the least CPU
time, with bounds[−1,1], [−2,2] and[−5,5] on all weights,
respectively. Therefore, the interpretation of Figure 1 demon-
strates that the proposed algorithm AA-L-BFGS exhibits the
highest probability of being the optimal training algorithm,
regarding all bounds on the weights.

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

)

AA-L-BFGS
AANN
iWCNN

(a) Weight bounds[−1,1]

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

)

AA-L-BFGS
AANN
iWCNN

(b) Weight bounds[−2,2]

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(

)

AA-L-BFGS
AANN
iWCNN

(c) Weight bounds[−5,5]

Fig. 1 Log10 scaled performance profiles for the Escherichia coli clas-
sification problem

4.2 Splice-junction gene sequences classification problem

Splice-junction gene sequences classification problem con-
cerns the identification of exon/intron boundaries (EI), in-
tron/exon boundaries (IE) or neither boundary (N), given a
DNA sequence of 60 nucleotides [29]. For this classification
problem, we used a neural network with 2 hidden layers of 4
and 2 neurons, respectively and an output layer of 3 neurons.
The error goalEG was set to 10−5, the maximum number of
epochs was set to 2000 and the classification accuracy was
measured utilizing 10-fold stratified cross-validation [1].

Table 2 presents the descriptive statistics in terms of CPU
time, regarding all weight-constrained training algorithms.
For weight bounds[−1,1], AA-L-BFGS reported 52.55±
29.7 CPU time while AANN and iWCNN reported 61.03±
26.4 and 67.42±29.19, respectively. For weight bounds[−2,2],
AA-L-BFGS presented 35.88±16.87CPU time while AANN
and iWCNN presented 40.95±31.5 and 40±23.03, respec-
tively. For weight bounds[−5,5], AA-L-BFGS exhibited
27.37±10.67 CPU time while AANN and iWCNN exhib-
ited 39.36±25.76 and 34.91±17.78, respectively. Summa-
rizing, the interpretation of Table 2 highlights that AA-L-
BFGS requires 12.38%-30.47% and 10.3%-22.1% less CPU
time on average, compared to AANN and iWCNN, respec-
tively.

Figure 2 presents the performance profiles for the Splice-
junction gene sequences classification problem Firstly, itis
worth noticing that the proposed algorithm AA-L-BFGS re-
ported the best overall performance, regarding all bounds on
the weights, since its curves lie on the top. More specifically,
AA-L-BFGS trained 62% of simulations with the least CPU
time, with bounds[−1,1] on the weights while AANN and
iWCNN trained only 32% and 30% of simulations, respec-
tively. For weights bounds[−2,2], AA-L-BFGS reported
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52% of simulations with the least CPU time while AANN
and iWCNN reported only 32% and 28% of simulations, re-
spectively. Finally, for weights bounds[−5,5], AA-L-BFGS
exhibited 65% of simulations with the least CPU time while
AANN and iWCNN exhibited only 30% and 10% of simu-
lations, respectively.

AA-L-BFGS AANN iWCNN
Weight
bounds

min 20.00 31.53 27.24

[-1,1]
mean 52.55 61.03 67.42
max 142.77 149.41 148.08
st.d 29.70 26.40 29.19

min 15.27 15.94 15.36

[-2,2]
mean 35.88 40.95 40.00
max 102.81 138.58 136.24
st.d 16.87 31.50 23.03

min 11.33 16.08 17.01

[-5,5]
mean 27.37 39.36 34.91
max 49.09 134.85 88.02
st.d 10.67 25.76 17.78

Table 2 CPU time (seconds) of the weight-constrained training algo-
rithms for the Splice-junction gene sequences classification problem

4.3 Yeast classification problem

This imbalanced classification benchmark concerns the de-
termination of the cellular localization of the yeast proteins
into ten localization sites [13]. The data consists of 1484
instances each of them having 8 features of real continu-
ous values. For this problem, we used a neural network with
1 hidden layer 16 neurons while the error goalEG and the
maximum number of epochs were set to 0.05 and 1000, re-
spectively. The classification accuracy was measured utiliz-
ing 4-fold stratified cross-validation [21].

Table 3 presents the descriptive statistics including min,
mean, max and st.d of CPU time in seconds for Yeast clas-
sification problem. AA-L-BFGS exhibited 45.00, 19.87 and
18.62 mean CPU time for bounds[−1,1], [−2,2] and[−5,5],
respectively while AANN exhibited 50.76, 21.42 and 19.18.
Thus, we conclude that AA-L-BFGS requires 2.92%-11.35%
less CPU time on average, compared to AANN. Addition-
ally, iWCNN reported 66.23, 23.93 and 20.25 mean CPU
time for bounds[−1,1], [−2,2] and[−5,5], respectively which
implies that AA-L-BFGS requires 8.03%-32.06% less CPU
time on average, compared to iWCNN. Finally, it is worth
mentioning, that tighter bounds are most likely for AA-L-
BFGS to considerably outperform the classical weight-con-
strained algorithm AANN and iWCNN, in terms of CPU
time.
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Fig. 2 Log10 scaled performance profiles for the Splice-junction gene
sequences classification problem
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AA-L-BFGS AANN iWCNN
Weight
bounds

min 20.04 27.80 30.79

[-1,1]
mean 45.00 50.76 66.23
max 190.95 165.00 125.96
st.d 28.03 23.36 35.34

min 11.82 14.49 16.33

[-2,2]
mean 19.87 21.42 23.93
max 29.05 28.94 33.24
st.d 3.80 2.51 4.13

min 12.63 15.49 13.51

[-5,5]
mean 18.62 19.18 20.25
max 27.36 23.72 27.36
st.d 3.21 2.05 3.98

Table 3 CPU time (seconds) of the weight-constrained training algo-
rithms for the Yeast classification problem

Figure 3 illustrates the performance profiles for the Yeast
classification problem, relative to all bounds on the weights.
Similar, conclusions can be made with the previous classifi-
cation benchmarks. For weight bounds[−1,1], AA-L-BFGS
reported 52% of simulations with the least CPU time, with
bounds[−1,1] on the weights while AANN and iWCNN re-
ported only 35% and 18% of simulations, respectively. For
weight bounds[−2,2], AA-L-BFGS exhibited 54% of sim-
ulations with the least CPU time while AANN and iWCNN
exhibited only 30% and 16% of simulations, respectively.
For weight bounds[−5,5], AA-L-BFGS presented 54% of
simulations with the least CPU time while AANN and iWCNN
exhibited only 26% and 24% of simulations, respectively.
Summarizing, the proposed training algorithm AA-L-BFGS
exhibited the highest probability of being the optimal train-
ing algorithm, regarding all bounds on the weights.
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Fig. 3 Log10 scaled performance profiles for the Yeast classification
problem

4.4 Generalization performance

In the sequel, we evaluate the classification performance of
all weight-constrained training algorithms utilizing theper-
formance metrics:F1-scoreandAccuracy. Additionally, we
compare the confusion matrices of all training algorithms,
for each benchmark and utilized bounds on the weights. No-
tice in each case, all training algorithm were initiated with
the same initial weights. The confusion matrix provides ad-
ditional information about classes which are commonly mis-
labeled one as another, therefore providing a deeper insight
to the classification performance of each training algorithm
Each row of a confusion matrix represents the instances in a
predicted class while each column represents the instances
in an actual class.
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Figure 4 presents the classification performance of AA-
L-BFGS, AANN and iWCNN training algorithms, regard-
ing the Escherichia coli problem. The proposed algorithm
AA-L-BFGS exhibited the highest classification accuracy
andF1-score, relative to all bounds on the weights. Addition-
ally, all training algorithms presented the best performance
with bounds[−1,1], closely followed by[−2,2]. while the
classification performance of all algorithms was consider-
ably decreased, for weight bounds[−5,5].
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Fig. 4 Classification performance of each weight-constrained neural
network training algorithm on Escherichia coli problem

Tables 4, 5 and 6 present the confusion matrices of all
training algorithms with weight bounds[−1,1], [−2,2] and
[−5,5], respectively. AA-L-BFGS presented the best perfor-
mance in 5 classes, namely “cp”, “pp”, “imU”, “om” and
“omL”, regarding the weight bounds[−1,1] and[−2,2] and

the best performance in 4 classes, namely “pp”, “imU”, “om”
and “omL”, for the weight bounds and[−5,5]. Additionally,
notice that all training methods exhibit 0% performance the
classes “imL” and “imS”. It is worth noticing that for the
classes “cp”, “im” and “pp” all training algorithms exhib-
ited similar performance while for the classes “imU”, “om”
and “omL” the proposed algorithm considerably outperform
the classical weight-constrained training algorithms. There-
fore, we concluded that AA-L-BFGS for this imbalanced set
provided more efficient and reliable training.

cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 61 0 11 0 0 0 0

pp 4 1 47 0 0 0 0 0

imU 1 11 0 23 0 0 0 0

om 0 0 3 0 17 0 0 0

omL 0 0 0 0 0 5 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

AA-L-BFGS

cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 62 1 9 0 0 0 0

pp 4 2 46 0 0 0 0 0

imU 1 14 0 20 0 0 0 0

om 0 0 4 0 16 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

AANN

cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 60 1 11 0 0 0 0

pp 4 1 47 0 0 0 0 0

imU 1 14 0 20 0 0 0 0

om 0 0 4 0 16 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

iWCNN

Table 4 Confusion matrices of all training algorithms with bounds
[−1,1] for Escherichia coli problem

cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 60 1 11 0 0 0 0

pp 4 0 48 0 0 0 0 0

imU 2 12 0 21 0 0 0 0

om 0 0 4 0 16 0 0 0

omL 0 0 0 0 0 5 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

AA-L-BFGS
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cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 63 3 6 0 0 0 0

pp 4 2 46 0 0 0 0 0

imU 1 16 0 17 1 0 0 0

om 0 0 5 0 15 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

AANN

cp im pp imU om omL imL imS
cp 141 0 2 0 0 0 0 0

im 5 60 1 11 0 0 0 0

pp 4 1 47 0 0 0 0 0

imU 1 12 0 22 0 0 0 0

om 0 0 4 0 16 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

iWCNN

Table 5 Confusion matrices of all training algorithms with bounds
[−2,2] for Escherichia coli problem

cp im pp imU om omL imL imS
cp 139 0 4 0 0 0 0 0

im 5 60 1 11 0 0 0 0

pp 6 0 46 0 0 0 0 0

imU 4 12 0 19 0 0 0 0

om 0 0 5 0 15 0 0 0

omL 0 0 0 0 0 5 0 0

imL 0 0 0 1 0 1 0 0

imS 0 0 1 1 0 0 0 0

AA-L-BFGS

cp im pp imU om omL imL imS
cp 140 0 3 0 0 0 0 0

im 8 60 5 4 0 0 0 0

pp 4 1 47 0 0 0 0 0

imU 1 20 0 13 1 0 0 0

om 0 0 5 0 15 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

AANN

cp im pp imU om omL imL imS
cp 139 0 4 0 0 0 0 0

im 6 61 2 8 0 0 0 0

pp 4 3 45 0 0 0 0 0

imU 1 16 0 17 1 0 0 0

om 0 0 5 0 15 0 0 0

omL 0 0 0 0 1 4 0 0

imL 0 0 0 1 0 1 0 0

imS 0 1 1 0 0 0 0 0

iWCNN

Table 6 Confusion matrices of all training algorithms with bounds
[−5,5] for Escherichia coli problem

Figure 5 presents the classification performance of all
weight-constrained training algorithms, regarding the Splice-
junction gene sequences problem. Clearly, the proposed al-
gorithm AA-L-BFGS reported the highest classification ac-
curacy and the bestF1-score, relative to all bounds on the
weights. AA-L-BFGS presented 0.75%-1.6% and 0.007-0.011
greater generalization accuracy andF1-score, respectively
compared to AANN and iWCNN.
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Fig. 5 Classification performance of each weight-constrained neural
network training algorithm on Splice-junction gene sequences problem

Tables 7, 8 and 9 present the confusion matrices of all
training algorithm with bounds[−1,1], [−2,2] and[−5,5],
respectively. The proposed training algorithm AA-LBFGS
reported the best performance for classes EI and IE, regard-
ing all weight bounds. More specifically, AA-LBFGS pre-
sented 95.44%, 95.44% and 94.26% for class EI for weight
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bounds[−1,1], [−2,2] and[−5,5], respectively while AANN
reported 93.74%, 93.74% and 93.35%, in the same situa-
tions. Moreover, AA-LBFGS exhibited 93.62%, 93.49% and
92.71% for class IE for weight bounds[−1,1], [−2,2] and
[−5,5], respectively while AANN reported 91.15%, 91.15%
and 90.76% in the same situations. In contrast, AA-LBFGS
presented slightly worst for class N, compared to both AANN
and iWCNN.

EI IE N
EI 732 21 14

IE 24 719 25

N 30 57 1568

AA-L-BFGS

EI IE N
EI 719 29 19

IE 30 700 38

N 41 42 1572

AANN

EI IE N
EI 718 30 19

IE 34 692 42

N 40 42 1573

iWCNN

Table 7 Confusion matrix of all training algorithms with bounds
[−1,1] for Genes problem

EI IE N
EI 732 21 14

IE 24 718 26

N 31 59 1565

AA-L-BFGS

EI IE N
EI 719 29 19

IE 30 700 38

N 41 42 1572

AANN

EI IE N
EI 716 32 19

IE 34 692 42

N 41 42 1572

iWCNN

Table 8 Confusion matrix of all training algorithms with bounds
[−2,2] for Genes problem

EI IE N
EI 723 30 14

IE 24 712 32

N 32 63 1560

AA-L-BFGS

EI IE N
EI 716 32 19

IE 30 697 41

N 42 50 1563

AANN

EI IE N
EI 713 35 19

IE 35 688 45

N 41 48 1566

iWCNN

Table 9 Confusion matrix of all training algorithms with bounds
[−5,5] for Genes problem

Figure 4 presents the classification performance of AA-
L-BFGS, AANN and iWCNN training algorithms, regard-
ing the Yeast problem. Firstly, it is worth mentioning that
AA-L-BFGS reported the highest classification accuracy, rel-
ative to all bounds on the weights. Furthermore, all train-
ing algorithms presented the best performance with bounds
[−2,2], while for weight bounds[−1,1] and[−5,5] they ex-
hibited similar classification performance.

Tables 10, 11 and 12 present the confusion matrices,
for weight bounds[−1,1], [−2,2] and[−5,5], respectively.
Clearly, the proposed training algorithm AA-LBFGS reported
the best performance, considerably outperforming AANN
and iWCNN. For weight bounds[−1,1], AA-L-BFGS ex-
hibited the best performance for the classes “mit” and “nuc”,
while for the rest classes, all training methods exhibited the
same performance. For weight bounds[−2,2], AA-L-BFGS
presented the best performance in 6 and 3 out of 10 classes
compared to AANN and iWCNN, respectively. For weight
bounds[−5,5], AA-L-BFGS outperformed AANN and iWCNN
in 6 classes, i.e. “cyt”, “erl”, “me2”, “me3”, “mit”, “nuc”;
while for the rest classes, all training methods exhibited the
same performance.
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Fig. 6 Classification performance of each weight-constrained neural
network training algorithm on Yeast problem

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 320 0 0 1 0 7 36 99 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 22 3 2 0 2 2 0 0
me1 0 0 7 32 4 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 17 0 0 0 2 123 4 17 0 0
mit 54 0 2 2 6 11 146 20 3 0
nuc 138 0 0 0 44 13 26 208 0 0
pox 7 0 0 0 0 0 1 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

AA-L-BFGS
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cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 318 0 0 1 0 8 37 99 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 22 3 2 0 2 2 0 0
me1 0 0 7 32 4 0 1 0 0 0
me2 6 0 4 13 17 5 4 2 0 0
me3 17 0 0 0 2 123 3 18 0 0
mit 60 0 2 2 6 10 140 20 4 0
nuc 139 0 0 0 45 13 28 204 0 0
pox 6 0 0 0 0 0 2 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

AANN

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 320 0 0 1 0 7 33 102 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 22 3 2 0 2 2 0 0
me1 0 0 7 32 4 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 17 0 0 0 2 123 4 17 0 0
mit 56 0 2 2 6 11 143 20 3 0
nuc 140 0 0 0 44 13 26 207 0 0
pox 7 0 0 0 0 0 1 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

iWCNN

Table 10 Confusion matrices of all training algorithms with bounds
[−1,1] for Yeast problem

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 324 0 0 1 0 7 35 96 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 24 1 2 0 2 2 0 0
me1 0 0 6 34 3 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 17 0 0 0 2 125 3 16 0 0
mit 53 0 2 2 6 9 150 19 3 0
nuc 131 0 0 0 43 13 24 218 0 0
pox 6 0 0 0 0 0 2 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

AA-L-BFGS

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 324 0 0 1 0 7 34 97 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 5 0 22 3 2 0 2 2 0 0
me1 0 0 6 33 3 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 22 0 0 0 2 120 3 16 0 0
mit 57 0 3 2 6 9 145 19 3 0
nuc 137 0 0 0 44 13 25 210 0 0
pox 6 0 0 0 0 0 2 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

AANN

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 324 0 0 1 0 7 34 97 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 24 1 2 0 2 2 0 0
me1 0 0 6 34 3 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 22 0 0 0 2 120 3 16 0 0
mit 57 0 3 2 6 9 145 19 3 0
nuc 134 0 0 0 43 13 24 215 0 0
pox 6 0 0 0 0 0 2 1 11 0
vac 11 0 2 0 1 6 2 7 0 1

iWCNN

Table 11 Confusion matrices of all training algorithms with bounds
[−2,2] for Yeast problem

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 319 1 0 0 1 3 38 99 1 0
erl 0 5 0 0 0 0 0 0 0 0
exc 4 0 21 4 2 0 3 1 0 0
me1 0 0 7 34 3 0 1 0 0 0
me2 8 0 4 13 15 5 4 2 0 0
me3 17 0 0 0 2 124 4 16 0 0
mit 58 0 2 2 6 9 145 19 3 0
nuc 182 1 2 0 1 12 25 206 0 0
pox 4 0 1 1 0 0 2 2 10 0
vac 13 0 3 0 2 7 2 3 0 0

AA-L-BFGS

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 318 1 0 0 1 3 39 99 1 0
erl 1 4 0 0 0 0 0 0 0 0
exc 4 0 21 4 2 0 3 1 0 0
me1 0 0 5 34 3 0 1 0 0 0
me2 8 0 4 14 14 5 4 2 0 0
me3 17 0 0 0 2 125 4 17 0 0
mit 60 0 2 2 6 10 138 20 4 0
nuc 184 1 2 0 2 13 27 200 0 0
pox 4 0 1 1 0 0 2 2 10 0
vac 14 0 3 0 2 6 2 3 0 0

AANN

cyt erl exc me1 me2 me3 mit nuc pox vac
cyt 320 0 0 0 0 3 32 106 1 0
erl 0 5 0 0 0 0 0 0 0 0
exc 5 0 20 4 2 0 3 1 0 0
me1 0 0 6 35 3 0 1 0 0 0
me2 8 0 4 14 14 5 4 2 0 0
me3 17 0 0 0 2 120 4 20 0 0
mit 60 0 2 2 6 10 140 20 4 0
nuc 184 1 2 0 2 11 26 203 0 0
pox 4 0 1 1 0 0 2 2 10 0
vac 13 0 3 0 2 7 2 3 0 0

iWCNN

Table 12 Confusion matrices of all training algorithms with bounds
[−5,5] for Yeast problem

Summarizing, the interpretation of Figures 4-6 and Ta-
bles 4-12 demonstrate the generalization ability of the pro-
posed algorithm AA-L-BFGS. Moreover, we are able to con-
clude that the classification efficiency increases as the bounds
of the weights get tighter; nevertheless, this is not a general
case.

5 Conclusions & future research

In this work, we proposed a new advanced active set limited
memory BFGS algorithm for training weight-constrained neu-
ral networks. A significant property of the proposed algo-
rithm AA-L-BFGS is that it approximates the curvature of
the error function with high-order accuracy exploiting the
advanced secant condition proposed in [23]. Moreover, AA-
L-BFGS exploits the efficient active set identification tech-
nique of Facchinei et al. [10] for handling the box constraints
on the weights. Under mild conditions, we established the
global convergence of the proposed algorithm provided that
the line search satisfies the Armijo-type condition.It is worth
noticing that in contrast to most weight-constrained train-
ing algorithms which uses Wolfe line search, the utilization
of the modified Armijo line search, substantially decreases
the number of gradient evaluations, and as a result the CPU
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time of the training process is considerably decreased. The
advantages of AA-L-BFGS are empirically proved by the
reported experimental results which illustrate the classifi-
cation efficiency of the proposed algorithm, presenting em-
pirical evidence that it provides more efficient and reliable
learning.

Since the value of the weight bounds is still under con-
sideration an interesting next step could be the development
of an auto-adjustable strategy based on a validation set to
dynamically determine the bounds, during the training pro-
cess. Another aspect of future research could be to incor-
porate in our proposed framework, more elegant and so-
phisticated preprocessing methods such as sensitivity meth-
ods and oversampling SMOTE techniques [6,19]as well as
to adopt other theoretical techniques which aim on reduc-
ing the size and complexity of network.Finally, we intend
to pursue extensive empirical experiments in order to eval-
uate the performance of AA-L-BFGS on larger and more
complex architectures such as recurrent neural networks and
deep neural networks.
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7. E. Dolan and J.J. Moré. Benchmarking optimization software with
performance profiles.Mathematical Programming, 91:201–213,
2002.

8. D. Dua and E. Karra Taniskidou. UCI machine learning repository,
2017.

9. Y. Erzin and T.O. Gul. The use of neural networks for the predic-
tion of the settlement of one-way footings on cohesionless soils
based on standard penetration test.Neural Computing and Appli-
cations, 24(3-4):891–900, 2014.
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