Neural Computing & Applications manuscript No.
(will be inserted by the editor)

An advanced active set L-BFGS algorithm for training weight
constrained neural networks

loannis E. Livieris

the date of receipt and acceptance should be inserted later

Abstract In this work, a new advanced active set limited and the desired output of the network for all examples of
memory BFGS (Broyden—Fletcher—Goldfarb—Shanno) algathe training data [27]. Mathematically, the training prese
rithm is proposed for efficiently training weight-constrad  can be formulated as the minimization of an error function
neural networks, called AA-L-BFGS. The proposed algo-E(w) which depends oneectorw of n weightsof the neural
rithm possesses the significant property of approximatingetwork, namely

the curvature of the error function with high-order accu- . E(w) (1)
racy by utilizing thetheoretically advantagesecant con-  wern

dition. Moreover, the global convergence of the proposed  Gradient-based training algorithms constitute an elegant
algorithm is established provided that the line searctssati chpjce for dealing with the optimization problem (ahd

fies the modified Armijo condition. The presented numericathey produce a sequence of weighisy} using the iterative
experiments illustrate the efficiency of the proposed AA-L-recurrence

BFGS, providing empirical evidence that it significantly ac
celerates the convergence of the training process. Wicr1 = Wi+ Mkdk,  kK=0,1,... Kmax ()

wherek is the current iteration (epochBay is the max-
imum number of iterationsyg € R" is the initial vector of
weights,ny > 0 is a stepsize (learning rate) athds a search
direction. Notice that the gradient which constitutes aiiyn
importance for these algorithms, can be easily obtained by
means of back propagation of errors through the network
layers.

Nevertheless, the training process is a significantly chal-
ging optimization problem since the error functi®w)

s nonconvex and usually high-dimensional. Additionally,
. . o o ) ‘it is characterized by broad flat regions adjoined with nar-
Their universal approximation ability, as well as theirfsel row step ones and a large number of local minima [22—24].

Iearr_1ing and self-adapting _cgpability have establishedith Therefore, several methodologies have been proposed based
as vital components of decision support systems; Ther,eforgn the well-established unconstrained optimization theor

ANNs have been widely applied in an impressive SPECUUM order to efficiently accelerate the convergence of the min

of real-world applications [2’9_’ 1_4’18]' ) ) imization process while situationally, provide good gener
The standard problem ¢faining an ANN is the incre- i, a4ion performance. Karras and Perantonis [15,30] pro-

mental adaptation of connection weights, in order to mm'posed a novel approach based on a Lagrange multiplier for

imize the measure of difference between the actual outpyf,q ontimization of the error function. The advantage of the
LE. Livieris proposed algorithm was the avoidance of zig-zag trajexsori
Department of Computer & Informatics Engineering, Tecogalal N the parameter space since the weights updates in two suc-
Educational Institute of Western Greece, Greece, GR 263-34 cessive iterations are highly aligned. Another interestip-
E-mail: livieris@teiwest.gr proach for increasing the generalization performance of an

Keywords Atrtificial neural networks constrained
optimization- L-BFGS- modified secant equation.

1 Introduction

Artificial Neural Networks (ANNSs) constitute intelligenye
namic system models, which have been characterized as prlgp]
ably the most powerful machine learning algorithms for exs
tracting knowledge from complex and ill-defined problems
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ANN was the incorporation of nonmonotone learning strateof Facchinei et al. [10] for handling the box constraints on
gies which attempt to exploit the accumulated informatiorthe weights. Two attractive properties of AA-L-BFGS are
relative to the most recent values Bfw). More sophisti-  that it approximates the curvature of the error functigm)
cated algorithms exploit second order derivative related i with higher accuracy by utilizing an advanced secant con-
formation in order to accelerate the efficiency of the train-dition and it utilizes line search satisfying an Armijo-g/p
ing process. Along this line, many limited memory quasi-condition. These properties result in considerably reayci
Newton [3,4,11] and conjugate gradient algorithms [5,17the computational cost. Additionally, the global converge
23] have been proposed which possess strong convergenaiethe proposed algorithm is established under mild condi-
properties and are computationally superior to statdief-t tions.The reported experimental results demonstrate empir-
art training algorithms. ical evidence that the proposed algorithm increases the con
Recently, Livieris [21] proposed a novel methodologyvergence of the training process and provides more stable
for improving the generalization ability of ANNs based on and reliable prediction models.
the application of box constraints on the weights. In other The remainder of this paper is organized as follows. In
words, the problem of training an ANN is re-formulated asSection 2, we present the proposed weight-constrained neu-
a constrained optimization problem, i.e. ral network training algorithm. Section 3 presents the glob
convergence analysis of our method. Section 4 presents the

min{E(w)|w € £} 3) numerical experiments utilizing the performance profiles o

with Dolan and More [7]. Finally, Section 5 presents the conclu-
sions and out future research proposals.

Z={weR": | <w<u} (4) Notations Throughout this paper, the gradient of the er-

wherel € R" andu € R" denote the lower and upper bounds " functionE(w) is indicated byg(w) = UE(w). The vec-
torssq = Wi 1 — Wi andyy = OE (w1 1) — OE (W) represent

on the weights, respectively. The rationale for this strate ; . .
g P y s the evolutions of the current point and of the error function

aimed at restricting the weights of the trained network from . . : .
. . .quadlent between two successive iterations, wikeiethe
taking large values in order to develop a more stable predic:

tion model which is less likely to overfit the training data current iteration. _ : . . .
. . L . ; Moreover, a vectow € Z is said to be a stationary point
and less sensitive to minor variations in the inputs.

Additionally, for evaluating the efficiency of this new of problem (3) if it satisfies
type of ANNSs, Livieris [21] proposed a new Weight-Constedn( |, = w; = 0Ej(W) > 0;

Neural Network algor.ithm (WQNN) which handle_s the box li <Wi < u = O (W) =0; (5)
constraints on the weights utilizing a gradient-projecttat- U — T = DE(W) <0

egy and exploits the computational efficiency of the L-BFGS* '~ =

(Limited-memory Broyden—Fletcher—Goldfarb—Shanno) mathere OE; (W) is thei-th component of the gradient vector

trices. It is worth noticing that this new training methodol atw.
ogy has been also evaluated in a variety of real-world prob-
lems, providing some interesting and promising result$.[22
Additionally, in [26] an improved version of algorithm WCN
(IWCNN) was proposed, which exploits a new scaling fac-
tor for defining the initial Hessian approximation utilized

An advanced active L-BFGS neural network training
algorithm (AA-L-BFGS)

In this section, we present the proposed advanced active set

the L-BFGS-for-muIa.. . . L-BFGS algorithm for efficiently training weight-constnaid
Along this line, Livieris and Pintelas [25] presented an
neural networks.

Adaptive nonmonotone Active set -weight constrained- Neu-

ral Network (AANN) training algorithm based on a con-

jugate gradient philosophy which consists of two distinct2.1 Advanced L-BFGS update

phases. In the first phase, AANN ensures a significant re-

duction in the error function (3) by efficiently exploiting a The process of training a weight-constrained network con-

property of an active-set estimate, while in the secondg@hassists a rather challenging optimization problem since tine s

the superlinear convergent CG-DESCENT algorithm is utiface of the error functiok (w) is characterized by high com-

lized in a lower-dimensional space composed by the weightglexity and by a number of unhelpful features. More specif-

estimated as non-active ones. ically, its dimensionality is often high and the correspond
Motivated by the previous research, we propose a neing nonconvex multimodal objective function possess broad

advanced active set limited memory BFGS neural networklat regions adjoined with narrow step ones and has multi-

training algorithm, named AA-L-BFGS.he proposed algo- tudes of local minima [21,25]. In order to increase the con-

rithm exploits the efficient active set identification tejue  vergence rate of the minimization process, we modify the
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L-BFGS updates by approximating with high-accuracy theNotice that, in order to maintain the positive definitenefss o
curvature of the error function through the utilization of atheadvanced.-BFGS matrix, the correction pais, Vi) is
theoretically advanced secant equation. discarded in case the curvatmq{ef/k < 0is not satisfied.
Firstly, we recall that for quasi-Newton methods, an ap- Conclusively, we point out that the rationale for utilizing
proximation matrixHy to the inverse of the Hessian of the the theoretically advanced secant equation (7) is to approx
nonlinear error functiorE is updated so that a new matrix imate with high-accuracy the curvature of the error func-

Hk. 1 satisfies the following secant condition tion. Therefore, increasing the computational efficienty o
the training algorithm and the convergence rate of the mini-
Hicr 1Yk = S (6)  mization process.

Livieris and Pintelas [23] expanded condition (6) and pro-

posed a new class of modified secant condition 2.2 Search direction
Hicr 1Yk = s (7)  In the sequel, we give a brief description of the active set
identification technique which was originally proposed by
where Facchinei et al. [10] and it is utilized to define the search
- max{ 6,0} directiond at each iteration.
Yk =Yk + @TU, ®) Letw € & be a stationary point of the constrained opti-
B — 2(Ex— Eie1) + (Gr1 + 0T Se mization problem (3). Moreover, let us consider the associ-

ated active constrained set

whereEy = E(w), u is any vector satisfying} u # 0 and

parameted € {0,1}. Notice that parameté, is utilized to

adaptively switch between the standard secant equation (@nhd the index set of free (non-active) variables

and the modified secant equation (7), by setidpg= 1 if  _ o

|s¢]| < 1 and setting), = 0, otherwise. F={12....,nj\(LLU). (15)
It is worth noticing that if||s|| is sufficiently small then

|

={i:wi=0L} and U={i:w=u} (14)

By utilizing this notation, the condition (5) can be rewitt

st (DPE(Wki 1) — Vi) = O([[s[1®), 9 as
St (O2E (Wi 1) — Sk) = O([|sd]|*). (10) OE; (W) >0, Vi e L,
Clearly, the above equations imply that the modified secan{ UEi(W) =0, Vi € F, (16)

equation (7) is superior to the classical one (6) in the sens¢ JE;(w) <0, Vi € U.
thatyi better approximateS2E (W, 1)s¢ thanyy (see [23]). ] o ] o )
Motivated by the theoretical advantages of the new selt is worth mentioning that strict complementarity is saod t

cant equation (7), we propose a modification of the L-BFG§.10Id at.a stationa}ry POW_W’ if. OE (W) >0 andDEi (W) <0
direction as follows. Let= min{k,m— 1}, then given the N the first and third implication of (16), respectively.

set of correction vector paifs, y;) fori = k—m,...,.k—1, Next, we define the following approximatiobéw), U (w)

the L-BFGS direction is defined by andF (w) to L, U andF, respectively:
dk = —Fikgk, (11) Liw) = {i:w <lj+a(w)OE(w)};
U(w) = {i : w > u+bi(w)OE (w)}; a7
where F(w) ={1,2,...,n}\(L(w)UU (w)),
Hor = (V- g ﬁéo) (M- - - Vi) wherea; (w) andb; (w) be nonnegative continuous and bounded
+Pem(Vy - N 1) S S (Vi - Vi) functions defined o, such that ifw; = I; or w; = u; then

- ~ a;(w) > 0 orb;j(w) > 0, respectively. The following theorem

eV Vi) SemeaS e Mz Vid is(ve>ry useful(foz presenting thatw), U (w) andF (w) are

+oet "good” estimates of, U andF, respectively.

+ PUSKS, -

Theorem 1 [10].For any feasible w, [x)NU (x) = 0. More-

over, if W is a stationary point of problen(8) where strict

where complementarity holds, then there exists a neighborhg@g) N
of W such that

(12)

_ _ =T ol
A=greand V=T pdia 13) |0 =L[, U =T, FM=F, vweNm). (18)



loannis E. Livieris

For the sake of simplicity, we abbrevidtéw), U (w)
andF (w) to Ly, Ux andR, respectively. Next, we recall the
active set identification technique and briefly describe how 3]
to determine a search direction. Let us consider the subspac
direction df“ atw, € 4 defined as the search direction for
the inactive variables. Ledy be the matrix whose columns 4]
are{e : i € K}, whereg is thei-th column of the identity (5]
matrix andH, be an approximation of the full space inverse [6]
Hessian matrix. Moreover, Iét, be an approximation of the
Hessian matrix in the subspace, thép= Zlf HikZ«. Then,
the search directiody = (dc*,d*, d*) is defined by

li — W, Vi€ Ly
Oy = Ui — W, Vi € Ug; (19)
_n;Oﬂ@?)NViGH@ [7]

whered,; andw, are thei-th components ofl, andw, re-
spectively andj; is a positive scalar defined by

L . — F o

U;:max n:n§1,|| Wi = n(Hkgk)iSLh W ,
with i € F(wy)

(20) 8]

Hence, by the previous relation, it is not difficult to coraéu [°]
that
[10]

W+ dg € A. (21) [11]

T~
gk = max(,,iﬂmm,min ( S Yk gmax)) .

[1] Setk=0.
[2] repeat

Calculate the error function vallg and its
gradientgy.

Determinely, Uy andF, using (17).
Determine the search directiadlp using (19).
Calculate the safe-guarded approximation of
Lipschitz constant

TSI (22)

Ay
|02

Nk to be the largest one ifay, axB, axB2, ...}

satisfying the modified Armijo condition

Setay = and choose the learning rate

1
E (Wi + Nkdk) — Ex < ok | g8 dk — EnkllkadkHz (23)

Update the weight® ;1 = Wi + Nkdx.
Update the correction paifs;, Vi), with

=K. k—rt.
UpdateHy using (12).
Setk =k+1.

[11] until (Ex < Eg andl < wg < u).

2.3 Training algorithm

At this point, we present a high level description of the pro-

Let wg be the current vector of weights. At the each it-

posed Advanced Active set L-BFGS (AA-L-BFGS) neural erationk, the algorithm calculated the error function value

network training algorithm.

Ex and the gradierty at pointwy (Step 3). Then, the AA-L-

BFGS algorithm determines the index sketsandUy of ac-

tive weights and the index skt of non-active weights (Step

Algorithm 1: Advanced Active set L-BFGS (AA-L-BFGS)

Input:

Output:

4). In the sequel, AA-L-BFGS algorithm utilizing (19), de-

termines the search directial (Step 5). Notice that each

component of the search directidg with i € L UUj, rel-

ative to the active weights, can be easily computedby-

li —w anddy = ui —w fori e Ly andi € Uy, respec-

tively. The rest components of the search directigrwith

i € K can be calculated using the advanced L-BFGS Hessian

approximation of the subspace defined by the non-active

weights. Next, the algorithm calculates the safe-guarged a

proximation of the Lipschitz constant and performs a line

. search procedure satisfying the modified Armijo condition

fg‘:ér;tgggﬁsrtt;?ﬁnd on the estimation of (23) to determine the new connection weighis ; of the

He — Initial a i i f the Hessi i network (Steps 6-8). Finally, AA-L-BFGS updates the cor-
0 pproximation ot the Ressian matrix;q ., pairs and the Hessian approximation utilizing tthe a

m — Number of correction vector pairs. vanced L-BFGS update (12) (Steps 9-10).

Eg — Error goal. i o .

W, — Weights of the trained ANN. It is worth noticing that_ the proposed algorithm AA-L-

BFGS hagO(n?n) complexity.

wp — Initial weights.

o € (0,1) — Hyper-parameter of modified
Armijo line search.

U € [0,00) — Hyper-parameter of modified
Armijo line search.

B € (0,1) — Hyper-parameter of modified
Armijo line search.

Zmin — Lower bound on the estimation of
Lipschitz constant.
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3 Global convergence analysis If the sequencéw} is finite with last pointw then by
Lemma 2 we obtain that is a stationary point of (3). Next,
In order to establish the global convergence result for Algowe assume that the sequence is infinite. Let
rithm 1, we will impose the following assumptions.
Ky = {k|nk = oy} and Ko={k|nk<oax}. (27)
Assumption 1 The level sef2 = {we R" : E(w) < E(wp)}N

% is compact In the sequel, we consider the following cases:

Case't If k€ Kq, then by Lemma 1 and the modified Armijo

Assumption 2 In some neighborhood” € Q, E is differ-  line search (23), we have

entiable and its gradiemtis Lipschitz continuous, namely, - 1 )

there exists a constaf > 0 such that E (Wi + nidi) — Ex < o1k [gk A — 5 MKl ] (28)

. . . T

lg(w) — g()|| < Zw—, Vwwe .. (24) _ _a(gkdkz) ( 2+ )g;dk (29)
”dkH 2L max

Assumption 3 There exist positive scalacg andc, such 2+ )

that any matrixH satisfies < —oy? (—Mma)() [ i (30)

c1l|Z|? < " Hiz < col|Z))?, vzeRIAd z£0 (25) Casell If k € Ky, thenny < ay, henceny/B < ag. Letn =

nB~1, then by the modified Armijo line search (23), we
Notice that since the error functidhis bounded below obtain
in R" by zero, it is differentiable and its gradient is Lipschitz 1
continuous [12], Assumptions 1 and 2 always hold. E(Wi+ nkd) — Ex > on {gldk - é"lllfk|dk|2] . (31)
In the sequel, we will present some Lemmas which are

significant for the establishment of global convergence ot)sing the mean value theorem on the left-hand side of the
algorithm AA-L-BFGS. above inequality, we have that there exits= [0,1] such

that
Lemma 1 [10]. Suppose that the sequendeg} and{dy} 1
are generated by Algorithm AA-L-BFGS, then there exists & 9(Wk -+ 6nd) " de > on [gldk - énﬂ-fﬂdkllz] . (32)
positive constany such that
Therefore,(g(W + &) — g(Wi))" di > (0 — 1) gl d -
Lonp4]|de?, which together with Assumption 2 and the
Cauchy—Schwartz inequality, we obtain

gr di < —y]ldk]/2. (26)

Lemma 2 [10]. Suppose that the sequendeg} and {dy}
are generated by Algorithm AA-L-BFGS. Thep;=d0 iff wy 1 2 T
is a stationary point of probler(8). 2+ 500Z | nl/dd]|” > (0 — 1)gy d. (33)

Lemma 3 [10]. Suppose that the sequendes} and{d,}  BY re-arranging the previous relation, we have
are generated by Algorithm AA-L-BFGS. Furthermore, sup- 28(0—1) gldk

pose that the subsequende®}k — W and{dk}x — 0as nx> . (34)
k— . ThenWis a stationciry Loint of3). (4 22 + opLc||dul®
Utilizing (22), (26) and (34), we can easily obtain
Next, making use of Lemmas 1, 2 and 3 we can establish
the global convergence theorem for Algorithm AA-L-BFGS |, 2B(1-o)y _ (35)
whose proof is similar to that of Theorem 2.1 in [10], how- 2.2 + O U ZLmax
ever we present it here for completeness. Next, by the modified Armijo line search (23) and Lemma 1,

Theorem 2 Suppose that Assumptions 1 and 3 hold. If theWe get

sequencéwy} is generated by Algorithm AA-L-BFGS, then E (Wi + Nide) — Ex < o | g dk— }rlkl-lngdkHz (36)
every limit point of this sequence is a stationary point ef th B 2
problem(3). - 2B0(0—1)y? Id?.

Proof. From relations (21) and (23) and Lemma 1 we have ) _ 2$-+ OHZmax o
that the sequence of weighfsi} are generated by Algo- Slnce{Ek} is decreasing and bounded from below, itim-
rithm AA-L-BFGS are contained in the compact &etThus, Mediately follows from (30) and (37) thdtk} — O which

it immediately follows from Assumption 1 that there exists {09€ther with Lemma 3 completes the proof. U

at least a limit point of this sequence.

(37)
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4 Experimental results — “IWCNN?" stands for improved Weight-Constrained Neu-
ral Network training algorithm [26].

In this section, we conduct a series of experiments for eval-
uating the performance of the proposed training algorithm ~Additionally, in order to investigate the sensitivity ofth
AA-L-BFGS against AANN and iWCNN. These algorithms Proposed algorithm AA-L-BFGS to the selection of bounds
were selected since they constitute the On|yweight-ca'mmd of the WEightS, we have selected three different bounds for
training algorithms proposed in the literature. the weights, namely—1,1], [-2,2] and [-5,5] as in [21,

Al training algorithms were implemented in Matlab 7.6 22]-
and evaluated on a laptop (2.4GHz Quad-Core processor,
4GB RAM). The initial weights of all weight-constrained
neural networks were defined using the Nguyen-Widrow me#-1 Escherichia coli classification problem

thod [28]. The line search parameters of AA-L-BFGS were o o _
set aso = 102, 4 = 0.01 andB = 0.5 for all experiments 1 "€ Escherichia coli. coli) classification problem consists

[24]. We leta(w) = bi(w) = 108 andHo = | as in [35] of 336 patterns and concerns the classification of the protei
while the boundaries for the approximation of Lipschitzcon l0calization patterns into eight localization sites by éoyp
stant were set abmin = 103 and Lmax = 10° as in [24, INg SOme measures about the cell i.e cytoplasm (cp), inner-
32]. The number of correction pairs used in AA-L-BFGS Mmembrane (im), periplasm (pp), inner membrane Uncleav-
ism =7 and in order to maintain the positive definiteness oftPIe signal sequence (imU), outer-membrane (om), outer-
theadvancedimited memory BFGS matrix (7), a correction Mémbrane Lipoprotein (omL), inner-membrane Lipoprotein

pair {s, yk} is discarded if the curvature condition (imL), inner membrane cleavable signal sequence (imS) [13]
T P For this imbalanced dataset, we used a neural network with 1
Sk > 107719l (38)  hidden layer of 16 neurons and an output layer of 8 neurons.

is not satisfied [21,20]. Finally, the algorithms AANN and The error goakg was set to 0.01, the maximum number of
iIWCNN were implemented with their default optimized pa- epochs was set to 1000 and the classification accuracy was
rameter settings [26, 25]. measured utilizing 4-fold stratified cross-validation]21
For conducting the performance evaluation of the train-  Table 1 presents the descriptive statistics including min,
ing algorithms, we selected three well-known problems acmean, max and st.d of CPU time in seconds for each weight-
quired from the UCI Repository [8]: the Escherichia coli constrained training algorithm. Clearly, AA-L-BFGS exhib
problem, the Splice-junction gene sequences problem arited the best overall performance, relative to all bound on
the Yeast problem. It is worth mentioning that for reasonghe weights. More specifically, AA-LBFGS reported 1.40,
of more objective comparison, we decided that all classifi0.91 and 0.72 mean CPU time for boundsl, 1], [-2,2]
cation problems were adjusted using their original “ses?up and[-5,5], respectively. In contrast, AANN reported 1.65,
introduced in [1, 31, 16]. 1.03 and 0.8 while iWCNN reported 1.76, 1.22 and 0.8, in
For each benchmark, we performed 100 simulations fothe same situations. Moreover, it is worth mentioning, that
all training algorithms utilizing the same initial weigread  tighter bounds are most likely for AA-L-BFGS to consid-
presented the descriptive statistics including Minimurinjm  erably outperform the rest weight-constrained algoritivms
Mean (mean), Maximum (max) and Standard Deviation (st.d¢rms of CPU time.
of CPU time in seconds. Nevertheless, since a small number
of simulations tends to dominate the numerical results, the

. . . . - Weight
cumulative total for CPU time over all simulations does not AA-L-BFGS  AANN IWCNN bouﬁds
seem to be too |nf0rn_1§t|ve; thu;, we al§o evaluated the per- - 056 052 107
formance of each training algorithm using the performance yeanl  1.40 1.65 1.76 11
profiles of Dolan and Morée [7]The utilization of perfor- max 2.62 2.76 2.78 [-1.1]
mance profiles demonstrate perhaps the most complete inst.d 0.60 0.51 0.39
formation in terms of efficiency and solution quality and min 0.61 0.65 0.57
eliminates the influence of a small number of simulations mean 0.91 1.03 1.22 3

, : : 1.35 1.69 215 | [22
on the evaluation process [7]. The curves in the following M&* : : :
: . . st.d 0.19 0.24 0.36
figures have the following meaning:
min 0.49 0.44 0.49
— “AA-L-BFGS” stands for the proposed Advanced Ac- mean 0.72 0.80 0.80 .
tive set L-BFGS algorithm. max 0.92 1.14 1.03 [-5.5]
st.d 0.13 0.16 0.14

— “AANN" stands for Adaptive nonmonotone Active set
-weight constrained- Neural Network training algorithm
[25].

Table 1 CPU time (seconds) of the weight-constrained training-algo
rithms for the Escherichia coli classification problem
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Figure 1 presents the performance profiles for the
cherichia coli classification problem, based on CPU tin
More specifically, AA-L-BFGS exhibited 55%, 61% and 5:
of simulations with the least CPU time, with bourjddl, 1],
[—2,2] and[—5,5] on all weights, respectively while AANN
exhibited 30%, 17% and 32% of simulations, in the same
uations. iWCNN presented the worst performance exhi
ing 15%, 22% and 20% of simulations with the least CI
time, with bounds—1,1}, [-2,2] and[-5, 5] on all weights,
respectively. Therefore, the interpretation of Figure thde-
strates that the proposed algorithm AA-L-BFGS exhibits
highest probability of being the optimal training algorith
regarding all bounds on the weights.

(b) Weight bounds$ — 2,2]

1
0.9 B
0.8 b
0.7 b
0.6 il
E i
o 0.5
0.4 il
0.3 B
02f’ ——AA-L-BFGS -
o —-—=AANN |
' ~-—-iWCNN
o ‘ e
2 3 4

-
(c) Weight bounds— 5, 5]

Fig. 1 Logio scaled performance profiles for the Escherichia coli clas-

sification problem

4.2 Splice-junction gene sequences classification problem

Splice-junction gene sequences classification problem con
cerns the identification of exon/intron boundaries (El}, in
tron/exon boundaries (IE) or neither boundary (N), given a
DNA sequence of 60 nucleotides [29]. For this classification
problem, we used a neural network with 2 hidden layers of 4
and 2 neurons, respectively and an output layer of 3 neurons.
The error goaEg was set to 10°, the maximum number of
epochs was set to 2000 and the classification accuracy was
measured utilizing 10-fold stratified cross-validatioh [1

Table 2 presents the descriptive statistics in terms of CPU
time, regarding all weight-constrained training algarith
For weight bound$—1, 1], AA-L-BFGS reported 555+
29.7 CPU time while AANN and iWCNN reported 613+
26.4 and 6742+29.19, respectively. For weight bounfs2, 2],
AA-L-BFGS presented 388+ 16.87 CPU time while AANN
and iIWCNN presented 485+ 31.5 and 40+ 23.03, respec-
tively. For weight boundg—5,5], AA-L-BFGS exhibited
27.37+10.67 CPU time while AANN and iWCNN exhib-
ited 3936+ 25.76 and 3491+ 17.78, respectively. Summa-
rizing, the interpretation of Table 2 highlights that AA-L-
BFGS requires 12.38%-30.47% and 10.3%-22.1% less CPU
time on average, compared to AANN and iIWCNN, respec-
tively.

Figure 2 presents the performance profiles for the Splice-
junction gene sequences classification problem Firstlg, it
worth noticing that the proposed algorithm AA-L-BFGS re-
ported the best overall performance, regarding all bounds o
the weights, since its curves lie on the top. More specificall
AA-L-BFGS trained 62% of simulations with the least CPU
time, with boundg—1,1] on the weights while AANN and
iIWCNN trained only 32% and 30% of simulations, respec-
tively. For weights bound$—2,2], AA-L-BFGS reported
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52% of simulations with the least CPU time while AAN'

._-J"l___":
and iWCNN reported only 32% and 28% of simulations, r — P 1
spectively. Finally, for weights boundis 5, 5], AA-L-BFGS i
exhibited 65% of simulations with the least CPU time whi
AANN and iWCNN exhibited only 30% and 10% of simu |
lations, respectively. ]
AA-L-BFGS  AANN iWCNN Weight ]
bounds |
min 20.00 31.53 27.24
mean|  52.55 61.03 67.42 | ) 02r —AA-L-BFGS 1
max | 142.77 149.41 148.08 : oal —===AANN ]
st.d 29.70 26.40 29.19 —-==iWCNN
min | 15.27 15.94 15.36 ° 2 s 4
mean|  35.88 40.95 40.00 [2.2] T
max 102.81 138.58 136.24 ' PR e
st.d 16.87 31.50 23.03
min 11.33 16.08 17.01 !
mean 27.37 39.36 34.91 [-5,5] 1
max 49.09 134.85 88.02 ' |
st.d 10.67 25.76 17.78
Table 2 CPU time (seconds) of the weight-constrained training-al¢ i
rithms for the Splice-junction gene sequences classificgiroblem 1
4.3 Yeast classification problem
0.2 ——AA-L-BFGS -
This imbalanced classification benchmark concerns the o1f :::AVO(’:\II\TN :
termination of the cellular localization of the yeast pioge 0 ‘ it
into ten localization sites [13]. The data consists of 14 2 3 4

instances each of them having 8 features of real conti..u
ous values. For this problem, we used a neural network v

1 hidden layer 16 neurons while the error g&al and the !
maximum number of epochs were set to 0.05 and 1000 0.9
spectively. The classification accuracy was measured-ut
ing 4-fold stratified cross-validation [21].

Table 3 presents the descriptive statistics including n
mean, max and st.d of CPU time in seconds for Yeast ¢ 0.6
sification problem. AA-L-BFGS exhibited 45.00, 19.87 a1 &,
18.62 mean CPU time for bounfis1, 1], [-2,2] and[-5,5], &
respectively while AANN exhibited 50.76, 21.42 and 19.1
Thus, we conclude that AA-L-BFGS requires 2.92%-11.3 03

0.8

0.7

0.4 = 1

™
et ———

less CPU time on average, compared to AANN. Additic 02t —  AA-L-BFGS
ally, iWCNN reported 66.23, 23.93 and 20.25 mean CI E —-==-AANN |
time for bound$—1, 1], [-2, 2] and[—5, 5], respectively whic . —-==iWCNN
implies that AA-L-BFGS requires 8.03%-32.06% less CF 0 15 5 05 3 a5 4 a5 5 556
time on average, compared to iIWCNN. Finally, it is wor r

mentioning, that tighter bounds are most likely for AA-L- (c) Weight bounds—5,5]

BFGS to considerably outperform the classical weight-congig. 2 Log,, scaled performance profiles for the Splice-junction gene
strained algorithm AANN and iIWCNN, in terms of CPU sequences classification problem
time.
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AA-L-BFGS  AANN IWCNN Weight
bounds

min 20.04 27.80 30.79
mean  45.00 50.76 66.23 1)
max | 190.95 165.00 125.96 ’
st.d 28.03 23.36 35.34
min 11.82 14.49 16.33
mean|  19.87 21.42 23.93 12.2]
max 29.05 28.94 33.24 ’
st.d 3.80 251 4.13
min 12.63 15.49 13.51
mean|  18.62 19.18 20.25 15.5]
max 27.36 23.72 27.36 ’
st.d 3.21 2.05 3.98

Table 3 CPU time (seconds) of the weight-constrained training-al¢
rithms for the Yeast classification problem

Figure 3 illustrates the performance profiles for the Ye
classification problem, relative to all bounds on the wesgt
Similar, conclusions can be made with the previous clas:
cation benchmarks. For weight bourjedl, 1], AA-L-BFGS
reported 52% of simulations with the least CPU time, w
boundg—1,1] on the weights while AANN and iWCNN re-
ported only 35% and 18% of simulations, respectively.
weight bounds—2,2], AA-L-BFGS exhibited 54% of sim-
ulations with the least CPU time while AANN and iWCNI
exhibited only 30% and 16% of simulations, respective
For weight bound$—5,5], AA-L-BFGS presented 54% o
simulations with the least CPU time while AANN and iwC
exhibited only 26% and 24% of simulations, respective
Summarizing, the proposed training algorithm AA-L-BFC
exhibited the highest probability of being the optimaltrai
ing algorithm, regarding all bounds on the weights.

—— AA-L-BFGS -
=== AANN
~-=-iWCNN

0 . . . . . . .
15 2 25 3 35 4 45 5

-
(a) Weight bound$—1,1]

1

0.9

— —— AA-L-BFGS
r —-=- AANN
~-=-iWCNN

——AA-L-BFGS -
=== AANN
~-=-iWCNN

0 I I I
2 3

-
(c) Weight bounds— 5, 5]

Fig. 3 Logio scaled performance profiles for the Yeast classification

problem

4.4 Generalization performance

In the sequel, we evaluate the classification performance of
all weight-constrained training algorithms utilizing ther-
formance metrics;-scoreand Accuracy Additionally, we
compare the confusion matrices of all training algorithms,
for each benchmark and utilized bounds on the weights. No-
tice in each case, all training algorithm were initiatedhwit
the same initial weights. The confusion matrix provides ad-
ditional information about classes which are commonly mis-
labeled one as another, therefore providing a deeper insigh
to the classification performance of each training algatith
Each row of a confusion matrix represents the instances in a
predicted class while each column represents the instances
in an actual class.
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Figure 4 presents the classification performance of AAthe best performancein 4 classes, namely “pp”, “imU”, “om”
L-BFGS, AANN and iWCNN training algorithms, regard- and “omL”, for the weight bounds ar{é-5, 5. Additionally,
ing the Escherichia coli problem. The proposed algorithmmotice that all training methods exhibit 0% performance the
AA-L-BFGS exhibited the highest classification accuracyclasses “imL” and “imS”. It is worth noticing that for the
andF;-score, relative to all bounds on the weights. Addition-classes “cp”, “im” and “pp” all training algorithms exhib-
ally, all training algorithms presented the best perforogan ited similar performance while for the classes “imU”, “om”
with bounds[—1, 1], closely followed by[—2,2]. while the  and “omL’ the proposed algorithm considerably outperform
classification performance of all algorithms was considerthe classical weight-constrained training algorithmsergh
ably decreased, for weight bounds5, 5]. fore, we concluded that AA-L-BFGS for this imbalanced set

provided more efficient and reliable training.

BN AA-L-BFGS cp | im | pp [imU| om |omL|imL |imS
= i‘\\,’\jé"\’;‘N cp|141] 0| 2] 0| 0] o]0 oO
im|5]61] o1t o] o] o] o
086 1 0856 | 4| 1|4a7]0]0]0] 0] O
mu| 1 {12 o023 0ofo]ofo
om[o|o|3]ol1r] o] o] o
o 084 omt] o[olof|ofo|[s5]0]fo0
8 mL| 0] 0]o0]1]0o|1]o0]oO
T ims|l]o|l1[1]loflolofo]o
AA-L-BFGS
0,82
cp | im | pp |imU| om |omL|imL |[imS
cpl141] o 2] o] oflofo]o
0,80 im|[5[6]1]9]|o[o]ofo
pp| 4] 24|00 o0o]ofo
= (22 (55 oo 4o el ol o]0
om
Weight bounds om0 0 0 0 1 2 0 0
(a) F1-score imt{o|lolo|l1]0o|1|]0]oO
ims|]o|l1[1]loflolofo]o
AANN
BN AA-L-BFGS
88,0 { I AANN
. \WCNN cp | im | pp |imU | om |jomL|imL [imS
87.12 cp [ 141 O 2 0 0 0 0 0
87.0 im|[5[6| 1][11]o]o0o]ofo
pp | 4 1 (47| 0 0 0 0 0
imul 1 [14] of2]o0oflofo]o
g 860 om| o|o0|4]o0[16|0] 0] O
§ omL] 0| 0| O0]Oo|1]4]0]o0
< mLloloflol1]lol1lo]o
85,0 ims| o1 1]oflofo]o]o
iIWCNN
840 Table 4 Confusion matrices of all training algorithms with bounds
' [—1,1] for Escherichia coli problem
83,0
[-1,1] [-2,2] [-5.5]
Weight bounds
(b) Accuracy cp | im | pp |imU | om |jomL|imL |[imS
cp|141{ o[ 2]o0ofofofofo
Fig. 4 Classification performance of each weight-constrainedateu m| 5 )60 1]121}]0)0)J0)0
network training algorithm on Escherichia coli problem pp| 410|410 0J0)0]}O0
imul 2 [12] o[22l oo oo
om| o[ o] 4]o0o]1.] 0] 0] o0
Tables 4, 5 and 6 present the confusion matrices of all ?nTLL g g 8 2 8 i g g
training algorithms with weight bounds-1,1], [-2,2] and msl ol 1 1110l o0olol0lo0
[—5,5], respectively. AA-L-BFGS presented the best perfor- AA-L-BFGS

mance in 5 classes, namely “cp”, “pp”, “imU”, “om” and
“omL”, regarding the weight bounds-1,1] and[—2, 2] and
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3
E
=
0

cp | im | pp |imU| om jomL|i Figure 5 presents the classification performance of all

icnﬁ’ 121 ;3 2 2 8 8 8 8 weight-constrained training algorithms, regarding thicep

|4 2|46l0]0 o000 junction gene sequences problem. Clearly, the proposed al-

imU|[ 1 |16 0 17| 1] 0| 0| 0O gorithm AA-L-BFGS reported the highest classification ac-

on| 0] 0|5]0]15/]0]0]0 curacy and the bed¥-score, relative to all bounds on the

R weights. AA-L-BFGS presented 0.75%-1.6% and 0.007-0.011

msl ol 1 111 ololol ol o greater generalization accuracy aRgscore, respectively
AANN compared to AANN and iWCNN.

3
E
=
0

cp | im | pp |imU| om |omL]|i

cpl141l 0| 2|o0o|lo0o|o0o]o0]oO — Ve
im|5[60] 1]12]0ofo0o]o0ofo ——S
Pp 4 1 47 0 0 0 0 0 0,95 1 . \WCNN
mul 1 [122] 0o [2]o0oflofo0]o
om|{ 0| 0|4]0|1w|0|O0]O
omtf ol o|olo]1]4]0]o0 0.94
mc] o[ ool 1 1]o0ofo
ims|o|1[1]oflofo0o]ofo g
iWCNN 3
Table 5 Confusion matrices of all training algorithms with bounds 0%
[—2,2] for Escherichia coli problem
0,92
cp | im | pp |imU| om |{omL|imL |imS 0.1
cpl139l o [ 4l olo]o]ofo (1.4 2.2 [5:5)
im|5|60] 1 |11] 0] 0] 0] O Weight bounds
pp| 6| 0|4 0|0|O0]O0]O (a) Fy-score
imul 4 [12] o f19]oflofo0]oO
om|{ 0| o0|5]|0|1|o|o0]oO
omtf o o|o]o]o|s5]0]o0 B AA-L-BFGS
imc] oloJol1]o]1]lo]o = AANN
ms| 0| o|1]1|0|0] 0] O 650 f—IWCNN
AA-L-BFGS '
cp | im | pp |imU| om [omL|imL |imS
cpl140] 0 | 3] o]o]ofo]o g 94,0 -
im| 86054 |0|0|o0]oO0 3
pp| 4] 1 [4a7] o ool o <
imul 1 20013 1]o0ofo0]o
omlof[o|5]o]|1s|of0]o0
93,0
omtf olojoflo|1]|4]0]oO
imL] ol o]o]f1 1]o0]o
ims|o|1|1]o0oflof]o0o]o0foO
AANN
92,0
[-1.1] [-2,2] [-5,5]
cp | im | pp |imU| om [omL|imL |imS Weight bounds
cp|139] 0 | 4o o|lofo0]oO
m| 6|61] 2|8 |0|0]0]o0 (b) Accuracy
pp| 4| 3[45] 0 o|lofo . . . )
mul T Tl ol 1101010 Fig. 5 Clas_S|_f|cat|on performancg of_ eac_h weight-constrainedateu
oml 0o Tol 5 Tolmlol ol o network training algorithm on Splice-junction gene seqésproblem
omtf ol oJoflo|1]4]o0o]o0
imL] ol o]|of1 1/o0]o
imsS| 0| 1| 1|0]0o]o0o|0]oO Tables 7, 8 and 9 present the confusion matrices of all

IWCNN training algorithm with bound§-1,1], [-2,2] and[-5, 5],
Table 6 Confusion matrices of all training algorithms with bounds respectively. The proposed training algorithm AA-LBFGS
[~5,5] for Escherichia coli problem reported the best performance for classes El and IE, regard-
ing all weight bounds. More specifically, AA-LBFGS pre-
sented 95.44%, 95.44% and 94.26% for class El for weight
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boundg—1,1], [-2,2] and[-5, 5], respectively while AANN
reported 93.74%, 93.74% and 93.35%, in the same situa
tions. Moreover, AA-LBFGS exhibited 93.62%, 93.49% and
92.71% for class IE for weight bounds1,1], [-2,2] and
[-5,5], respectively while AANN reported 91.15%, 91.15%
and 90.76% in the same situations. In contrast, AA-LBFGS
presented slightly worst for class N, compared to both AANN §

(5]
and iWCNN. b
El [IE|N El [IE]N EI[IE]N
El [732] 21 14 El | 719] 29 | 19 El | 718] 30 | 19
IE | 24 | 719] 25 IE | 30 [700] 38 IE | 34 [ 692] 42
N | 30 | 57 |1568 N | 41| 42 [1572 N | 40 | 42 |1573
AA-L-BFGS AANN iWCNN
Table 7 Confusion matrix of all training algorithms with bounds
[—1,1] for Genes problem
El [IE|N El [ IE|N El [IE|N
El [732] 21 14 El | 719] 29 | 19 El |716] 32 | 19
IE | 24 | 718] 26 IE | 30 [700] 38 IE | 34 [692] 42
N | 31 | 59 [1565 N | 41| 42 [1572 N | 41| 42 |1572
AA-L-BFGS AANN iWCNN
Table 8 Confusion matrix of all training algorithms with bounds
[—2,2] for Genes problem
El [IE|N El [ IE|N El [IE|N g
El | 723] 30 | 14 El | 716 32 | 19 El | 713] 35 | 19 3
IE | 24 | 712] 32 IE | 30 [697] 41 IE | 35 | 688| 45 <
N | 32 | 63 [1560 N | 42 | 50 [1563 N | 41 | 48 |1566
AA-L-BFGS AANN iIWCNN
Table 9 Confusion matrix of all training algorithms with bounds
[—5,5] for Genes problem

Figure 4 presents the classification performance of AA-
L-BFGS, AANN and iWCNN training algorithms, regard-
ing the Yeast problem. Firstly, it is worth mentioning that

0,58 -

0,56 -

0,54 -

0,52 -

0,50

N AA-L-BFGS
. AANN
I \WCNN

0.529

0.529

Y|

0.561 0.561

[-2,2]
Weight bounds

[-5.5]

(a) Fy-score

62,0

61,0

60,0 4

59,0

58,0

N AA-L-BFGS
. AANN
. \WCNN

11

61.15

[-2,2]
Weight bounds

[-5.9]

(b) Accuracy

AA-L-BFGS reported the highest classification accurady, reFig. 6 Classification performance of each weight-constrainedaieu
ative to all bounds on the weights. Furthermore, all train-"étwork training algorithm on Yeast problem

ing algorithms presented the best performance with bounds
[—2,2], while for weight bound$—1, 1] and[—5, 5] they ex-
hibited similar classification performance.

Tables 10, 11 and 12 present the confusion matrices,
for weight bound$—1,1], [-2,2] and[-5,5], respectively.
Clearly, the proposed training algorithm AA-LBFGS repdrte
the best performance, considerably outperforming AANN
and iIWCNN. For weight bounds-1,1], AA-L-BFGS ex-
hibited the best performance for the classes “mit” and “nuc”
while for the rest classes, all training methods exhibitesd t
same performance. For weight bouid®, 2], AA-L-BFGS
presented the best performance in 6 and 3 out of 10 classes
compared to AANN and iWCNN, respectively. For weight
boundg-5,5], AA-L-BFGS outperformed AANN and iWCNN
in 6 classes, i.e. “cyt”, “erl”, “me2”, “me3”, “mit”, “nuc”;
while for the rest classes, all training methods exhibited t
same performance.

cyt | erl | exc| mel|me2|me3| mit | nuc | pox | vac
cyt [ 320 O 0 1 0 7 13699 0 0
erl | 0 5 0 0 0 0 0 0 0 0
exc| 4 0] 22| 3 2 0 2 2 0 0
mel| O 0 7132 4 0 1 0 0 0
me2| 8 0 4 113[15] 5 4 2 0 0
me3] 17 [ 0 0 0 2 [123] 4 [17] O 0
mit | 54 | 0 2 2 6 | 11 |146| 20 | 3 0
nuc | 138| 0 0 0 | 44| 13| 26 | 208] O 0
pox | 7 0 0 0 0 0 1 1 ]11| 0
vac| 11 | O 2 0 1 6 2 7 0 1

AA-L-BFGS
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Table 10 Confusion matrices of all training
[—1,1] for Yeast problem

algorithms with bounds

cyt | erl | exc | mel|me2|me3| mit | nuc | pox | vac
cyt | 318| O 0 1 0 8 371 99| 0O 0
erl 0 5 0 0 0 0 0 0 0 0
exc| 4 0| 22| 3 2 0 2 2 0 0
mell] O | O | 7 [32] 4 0 1 0] 0] O
me2| 6 0 4 13117 | 5 4 2 0 0
me3|{ 17| 0 | 0 | O | 2 [123] 3 [ 18| O | O
mit | 60 | O 2 2 6 10 [ 140 20 | 4 0
nuc| 139 0O 0 0 | 45| 13| 28 |204| O 0
pox| 6 0 0 0 0 0 2 1 11| 0
vac| 11| O 2 0 1 6 2 7 0 1

AAN

cyt | erl | exc|mel|me2| me3| mit | nuc | pox | vac
cyt [320] 0 | O 11]0 7 | 33[102] 0 | O
erl 0 5 0 0 0 0 0 0 0 0
exc| 4 0]22]| 3 2 0 2 2 0 0
mel| O 0 7 |132]| 4 0 1 0 0 0
me2| 8 0 4 13| 15| 5 4 2 0 0
me3| 17| 0O 0 0 2 | 123 4 171 0 0
mit [56 ] 0| 2 [ 2 [ 6 [11]143[]20] 3 | O
nuc|[140] O | O [ O [44]13]26[207] O | O
pox | 7 0 0 0 0 0 1 1 ]11] 0
vac| 11| O 2 0 1 6 2 7 0 1

iWCNN

cyt | erl | exc | mel|me2|me3| mit | nuc | pox | vac
cyt [ 324] 0O 0 1 0 7 13[9%]| 0 0
erl | 0 5 0 0 0 0 0 0 0 0
exc| 4 0|24 | 1 2 0 2 2 0 0
mel| O 0 6 | 34| 3 0 1 0 0 0
me2| 8 0 4 131 15| 5 4 2 0 0
me3| 17| O 0 0 2 |125| 3 16| O 0
mit | 53| 0 2 2 6 9 |150| 19| 3 0
nuc|131| O 0 0 | 43| 13| 24 |218| O 0
pox| 6 0 0 0 0 0 2 1 (11] 0
vac| 11| O 2 0 1 6 2 7 0 1

AA-L-BFGS

cyt | erl | exc [ mel|me2|me3| mit | nuc | pox | vac
cyt | 324] O 0 1 0 7 341 97| 0 0
erl 0 5 0 0 0 0 0 0 0 0
exc| 5 0]22| 3 2 0 2 2 0 0
mel| O 0 6 | 33| 3 0 1 0 0 0
me2| 8 0 4 | 13]15]| 5 4 2 0 0
me3| 22 | O 0 0 2 [120] 3 [ 16| O 0
mit | 57| 0 3 2 6 9 |145] 19| 3 0
nuc|137| O 0 0 | 44| 13| 25210 O 0
pox| 6 0 0 0 0 0 2 1 11| 0
vac| 11| O 2 0 1 6 2 7 0 1

AAN

cyt | erl | exc|mel|me2| me3| mit | nuc | pox | vac
cyt [ 324] 0O 0 1 0 7134197 0 0
erl | 0 5 0 0 0 0 0 0 0 0
exc| 4 0|24 | 1 2 0 2 2 0 0
mel| O 0 6 | 34| 3 0 1 0 0 0
me2| 8 0 4 13| 15| 5 4 2 0 0
me3| 22| 0 0 0 2 |120| 3 16| O 0
mit | 57| 0 3 2 6 9 |145] 19| 3 0
nuc | 134| 0 0 0 | 43| 13| 24 |215] O 0
pox| 6 0 0 0 0 0 2 1 (11] 0
vac| 11| O 2 0 1 6 2 7 0 1

Table 11 Confusion matrices of all training algorithms with bounds
[—2,2] for Yeast problem

iWCNN

cyt | erl | exc| mel|me2|me3| mit | nuc | pox | vac
cyt | 319] 1 0 0 1 3 138|991 0
erl 0 5 0 0 0 0 0 0 0 0
exc| 4 0|21]| 4 2 0 3 1 0 0
mel| 0 0 7134 3 0 1 0 0 0
me2| 8 0| 4 [13|15]| 5 4 2 0 0
me3| 17 | 0 0 0 2 |124| 4 16| O 0
mit | 58 | 0 2 2 6 9 | 145 19| 3 0
nuc|182| 1 2 0 1 12 | 25 | 206| O 0
pox| 4 0 1 1 0 0 2 2 10| O
vac| 13| O 3 0 2 7 2 3 0 0

AA-L-BFGS

cyt | erl | exc|mel|me2| me3| mit | nuc | pox | vac
cyt [ 318] 1 0 0 1 3 [3 ][9] 1 0
erl 1 4 0 0 0 0 0 0 0 0
exc| 4 0 ]|21] 4 2 0 3 1 0 0
mell O 0 5 34 | 3 0 1 0 0 0
me2| 8 0 4 14 | 14| 5 4 2 0 0
me3| 17 | 0 0 0 2 | 125 4 171 0 0
mit | 60 | O 2 2 6 | 10 |138] 20 | 4 0
nuc | 184| 1 2 0 2 | 13 ] 27 [ 200| O 0
pox | 4 0 1 1 0 0 2 2 10| 0
vac| 14| O 3 0 2 6 2 3 0 0

AAN

cyt | erl | exc| mel|me2|me3| mit | nuc | pox | vac
cyt | 320 O 0 0 0 3 | 32106 1 0
erl | 0 5 0 0 0 0 0 0 0 0
exc| 5 0]|]20] 4 2 0 3 1 0 0
mel| 0 0 6 | 35| 3 0 1 0 0 0
me2| 8 0 4 14|14 | 5 4 2 0 0
me3| 17 | 0 0 0 2 |1201 4 | 20| O 0
mit | 60 | O 2 2 6 10 | 140| 20 | 4 0
nuc|184| 1 2 0 2 11 | 26 | 203| O 0
pox | 4 0 1 1 0 0 2 2 10| 0
vac| 13 | O 3 0 2 7 2 3 0 0

iWCNN

Table 12 Confusion matrices of all training algorithms with bounds
[—5,5] for Yeast problem

Summarizing, the interpretation of Figures 4-6 and Ta-
bles 4-12 demonstrate the generalization ability of the pro
posed algorithm AA-L-BFGS. Moreover, we are able to con-
clude that the classification efficiency increases as thad®u
of the weights get tighter; nevertheless, this is not a ggner
case.

5 Conclusions & future research

In this work, we proposed a new advanced active set limited
memory BFGS algorithm for training weight-constrained-neu
ral networks. A significant property of the proposed algo-
rithm AA-L-BFGS is that it approximates the curvature of
the error function with high-order accuracy exploiting the
advanced secant condition proposed in [23]. Moreover, AA-
L-BFGS exploits the efficient active set identification tech
nique of Facchinei et al. [10] for handling the box constisin
on the weights. Under mild conditions, we established the
global convergence of the proposed algorithm provided that
the line search satisfies the Armijo-type conditikhis worth
noticing that in contrast to most weight-constrained train
ing algorithms which uses Wolfe line search, the utilizatio
of the modified Armijo line search, substantially decreases
the number of gradient evaluations, and as a result the CPU
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time of the training process is considerably decreased. The.

advantages of AA-L-BFGS are empirically proved by the
reported experimental results which illustrate the cfassi

cation efficiency of the proposed algorithm, presenting em.

pirical evidence that it provides more efficient and relkabl
learning.

Since the value of the weight bounds is still under con-
sideration an interesting next step could be the developmen

of an auto-adjustable strategy based on a validation set &

dynamically determine the bounds, during the training pro-
cess. Another aspect of future research could be to incor-
porate in our proposed framework, more elegant and so-
phisticated preprocessing methods such as sensitivitig-me
ods and oversampling SMOTE techniques [6,49}wvell as

to adopt other theoretical techniques which aim on reduc-
ing the size and complexity of networkinally, we intend
to pursue extensive empirical experiments in order to eval-

uate the performance of AA-L-BFGS on larger and moreg.

complex architectures such as recurrent neural networks an
deep neural networks.
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