
Neurocomputing 360 (2019) 294–303

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

An adaptive nonmonotone active set – weight constrained – neural

network training algorithm

Ioannis E. Livieris ∗, Panagiotis Pintelas

Department of Mathematics, University of Patras, GR 265-00, Greece

a r t i c l e i n f o

Article history:

Received 17 January 2019

Revised 19 April 2019

Accepted 9 June 2019

Available online 13 June 2019

Communicated by Dr. Ding Wang

Keywords:

Artificial neural networks

Constrained optimization

Weight bounds

ASA method

Conjugate gradient algorithm

Accuracy

a b s t r a c t

In this work, a new direction for improving the classification accuracy of artificial neural networks is pro-

posed by bounding the weights of the network, during the training process. Furthermore, a new adaptive

nonmonotone active set – weight constrained – neural network training algorithm is proposed in order

to demonstrate the efficacy and efficiency of our approach. The proposed training algorithm consists of

two phases: a gradient projection phase which utilizes an adaptive nonmonotone line search and an un-

constrained optimization phase which exploits the box structure of the bounds. Also, a set of switching

criteria is defined for efficiently switching between the two phases. Our preliminary numerical experi-

ments illustrate that the classification efficiency of the proposed algorithm outperforms classical neural

network training algorithms, providing empirical evidence that it provides more stable, efficient and reli-

able learning.

© 2019 Elsevier B.V. All rights reserved.

A

b

{

w

w

g

i

i

n

c

r

i

w

t

t

m

t

g

r

u
1. Introduction

Artificial Neural Networks (ANNs) are mathematical models

which have been universally established as an intelligent mech-

anism for processing information in order to deal with function

approximation, pattern recognition, process estimation and predic-

tion. In recent years, various types and structures of neural net-

works have been developed while the feedforward neural net-

works probably constitute the most popular and widely used fam-

ily of ANNs. Due to their excellent capability of self-learning and

self-adapting they have showed enhanced generalization ability,

adaptation competency and potent nonlinear input–output map-

ping [1–3] . Furthermore, they have often been found to be more

accurate than other classification techniques thus they have been

successfully applied in numerous applications of artificial intelli-

gence [4–10] .

Mathematically, the problem of training an ANN is highly con-

sistent with the unconstrained optimization theory. More specifi-

cally, it can be formulated as the minimization of an error func-

tion E (w) which depends on the connection weights w ∈ R

n of the

network, namely

min { E(w) : w ∈ R

n } . (1)
∗ Corresponding author.

E-mail address: livieris@gmail.com (I.E. Livieris).

g

[

a

c

n

https://doi.org/10.1016/j.neucom.2019.06.033

0925-2312/© 2019 Elsevier B.V. All rights reserved.
 traditional way to solve this problem is by an iterative gradient-

ased training algorithm which generates a sequence of weights

 w k } using the update formula

 k +1 = w k + ηk d k ,

here k is the current iteration usually called epoch , w 0 ∈ R

n is a

iven starting point, ηk > 0 is a stepsize (or learning rate) and d k
s a descent search direction. Moreover, the gradient can be eas-

ly obtained by means of back propagation of errors through the

etwork layers [11] .

The process of training an ANN has two significant performance

onsiderations to be taken into account: convergence speed and er-

or minimization . Increasing the convergence speed allows build-

ng of models on larger datasets with large numbers of parameters

hile reducing errors usually improves model prediction accuracy,

hereby making the neural network more efficient. In the litera-

ure, since the development of the back-propagation [11] , several

odified and new algorithms have been proposed for improving

he efficiency of the minimization error process and increase the

eneralization ability of the trained network. Most of these algo-

ithms are based on the unconstrained optimization theory and

tilize second order derivative related information, such as conju-

ate gradient algorithms [1,2,12,13] and quasi-Newton algorithms

14–16] . Nevertheless, most of these traditional training algorithms

re monotone which implies that the convergence rate may be

onsiderably reduced, especially when the iterations are trapped

ear a narrow curved valley [17] .

https://doi.org/10.1016/j.neucom.2019.06.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.033&domain=pdf
mailto:livieris@gmail.com
https://doi.org/10.1016/j.neucom.2019.06.033

I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303 295

g

s

j

t

t

m

p

h

r

t

t

s

o

o

r

[

t

M

a

m

w

B

w

o

d

a

W

c

t

o

a

d

t

s

s

S

n

e

[

r

t

a

a

t

f

A

M

a

a

g

F

p

g

2

n

t

i

i

w

b

A

r

i

f

[

c

d

l

p

o

t

2

g

B

P

L

w

a

η

w

η

w

v

b

f

a

B

[

n

w

s

[

t

M

M

d

o

s

t

l

a

i

i

A
To address this problem, an interesting approach has been sug-

ested by Grippo et al. [18] who proposed to allow the iterative

equence to occasionally generate points with nonmonotone ob-

ective values, exploiting the accumulated information with regard

o the most recent values of the function. The motivation behind

his strategy is that, usually the first choice of a trial point by a

inimization algorithm conceals significant information about the

roblem structure [18] . On the basis of this idea, many researchers

ave proposed new nonmonotone neural network training algo-

ithms [19–24] providing some encouraging and promising results.

It is commonly known that the classification efficiency of a

rained neural network depends on its architecture but mostly on

he values of its weights. Nevertheless, some weights may have

ignificantly larger values than others, therefore dominating the

utput of the network. In other words, the generalization ability

f the neural network is degrading since some inputs and neu-

ons are not efficiently exploited. To address this problem, Livieris

25] considered a novel approach by bounding the weights, during

he training process, in order to be defined in a more uniform way.

ore analytically, the problem of training an ANN is considered as

 constrained optimization problem, namely

in { E(w) : w ∈ B} , (2)

ith

 = { w ∈ R

n : l ≤ w ≤ u } , (3)

here the vectors l, u ∈ R

n denote the lower and upper bounds

n the weights w of the optimization problem, respectively. In or-

er to evaluate the efficacy and the efficiency of this approach,

 weight constrained training algorithm was proposed, named

CNN, presenting some interesting and promising results.

Motivated by the previous works, we propose a new weight

onstrained neural network training algorithm which is based on

he well established constrained optimization theory and consists

f two phases. In the first phase, the proposed algorithm exploits

 property of an active-set estimate which ensures a significant re-

uction in the error function (2) when setting the bounds of all

hose weights estimated as active; while in the second phase a

uperlinear convergent conjugate gradient method is used in the

ubspace of the weights estimated as non-active ones.

The remainder of this paper is organized as follows:

ection 2 presents a detailed description of the proposed neural

etwork training algorithm. Section 3 presents our numerical

xperiments utilizing the performance profiles Dolan and Morè

26] . Finally, Section 4 presents the discussion and our concluding

emarks.

Notations . Throughout this paper, the gradient of the error func-

ion is indicated by ∇E(w k) = g k and the vectors s k = w k +1 − w k

nd y k = g k +1 − g k represent the evolutions of the current point

nd of the error function gradient between two successive itera-

ions.

For any w ∈ B, let us define the set A (w) of active indices, as

ollows:

 (w) = { i ∈ [1 , n] : w i = l i or w i = u i } .
oreover, let g I (w) denote the vector whose components associ-

ted with the set A (w) are zero, while the rest of the components

re identical to those of g (w), namely

 I i (w) =

{
0 , if i ∈ A (w) ;
g i (w) , if i �∈ A (w) .

(4)

inally, the active indices are considered to satisfy the strict com-

lementarity condition in case w i = l i and g i (w) > 0 or w i = u i and

 (w) < 0.
i
. Proposed neural network training algorithm

In this section, we present the proposed weight-constrained

eural network training algorithm which constitutes the main con-

ribution of this research. We recall that our training methodology

s considered as a constrained optimization problem since bounds

n the form of box constraints are applied to the neural network’s

eights, during the training process. The motivation for placing

ounds on the values of weights, aims at efficiently training an

NN by defining the weights in a more uniform way in order to

educe the likelihood that some weights will “blow up” to unreal-

stic values. The proposed training algorithm demonstrates the ef-

ectiveness of our methodology and is based on the ASA method

27] , one of the most successful and efficient large-scale bound-

onstrained optimization methods.

The proposed training algorithm consists of two phases: a gra-

ient projection phase which utilizes an adaptive nonmonotone

ine search and an unconstrained optimization phase which ex-

loits the box structure of the constraints in (2) . Additionally, a set

f switching criteria is defined for efficiently switching between

he two phases.

.1. Phase I: adaptive nonmonotone gradient projection

We present the adaptive Nonmonotone Gradient Projection Al-

orithm (aNGPA). Let P denote the projection onto the feasible set

, namely

 (w) = arg min

w ∈B
‖ w − w ‖ .

et w k ∈ B be the current iterate. We compute an initial iterate

 k = w k − ηCBB
k g k , where ηCBB

k is the sage guarded Cyclic Barzilai

nd Borwein (CBB) stepsize, that is

CBB
k = max { ηmin , min { ηmax , η

CBB
k }} (5)

here ηmin < ηmax are scalars for bounding the stepsize and

CBB
k =

⎧ ⎪ ⎨

⎪ ⎩

s T
k −1

s k −1

y T
k −1

s k −1

if k (mod m) = 0 ;

ηCBB
k −1

otherwise ,

(6)

here m ≥ 1 is the cyclic length. The theoretical and numerical ad-

antages of CBB stepsize as well as its adaptive calculation have

een discussed in detail by Dai et al. [28] .

The point w k can be infeasible, so its projection P (w k) on the

easible set is computed. In other words, if w k is outsize B, we

pply the projection P to obtain a point P (w k) on the boundary of

. The search direction d k = P (w k) − w k is along the line segment

 w k , P (w k)] . Finally, the next iteration w k +1 is obtained, utilizing a

onmonotone line search along the line segment connecting P (w k)

ith w k .

The performed line search can be considered as a modified ver-

ion of the nonmonotone line search proposed by Hager and Zhang

27] , equipped with an adaptive strategy for finding estimates of

he memory element (also named nonmonotone learning horizon)

 at each iteration based on the concept of the Lipschitz constant.

ore specifically, we adapt the approach presented in [23] which

ynamically determines the size of M exploiting the morphology

f the error surface through a local estimation of the Lipschitz con-

tant. The significant advantage of this adaptive strategy relates to

he fact of avoiding utilizing a poorly user-defined nonmonotone

earning horizon. A high level description of the steps of this phase

re presented in Table 1 .

In Step 6, E r
k

denotes the “reference” error function value which

s adaptively calculated based on a CBB scheme as in [27] . It

s worth noticing that the condition E k ≤ E r
k

guarantees that the

rmijo-type line search (Step 11) can be satisfied. Moreover, the

296 I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303

Table 1

Phase I: adaptive nonmonotone gradient projection.

Procedure: aNGPA

Input: w k – Current iterate.

Output: w k +1 - Next iterate.

Step 1. Calculate ηCBB
k using (5) and (6) .

Step 2. Set d k = P(w k − ηCBB
k g k) − w k .

Step 3. Calculate an approximation of the Lipschitz constant

L k = max

{
L min , min

{
L max ,

‖ g k −g k −1 ‖
w k −w k −1

} }
.

Step 4. Calculate M k by / ∗ Nonmonotone learning horizon ∗/

M k =

⎧ ⎪ ⎨

⎪ ⎩

max { M min , min { M k −1 + 1 , M max } } , if L k −2 > L k −1 > L k ;
max { M min , min { M k −1 − 1 , M max } } , if L k −2 < L k −1 < L k ;
M k −1 , otherwise.

Step 5. Set E max
k

= max { E(w k −i) : 0 ≤ i ≤ min (k, M k − 1) } . / ∗ Local maximum of error ∗/

/ ∗ function values near w k
∗/

Step 6. Choose E r
k

∈ [E k , max { E r
k −1

, E max
k

}] and E r
k

≤ E max
k

infinitely often .

Step 7. Set E R = min { E r
k
, E max

k
} . / ∗ Check if the error function ∗/

/ ∗ values change “too slowly ” ∗/

Step 8. If (E(w k + d k) ≤ E R + σ g T
k

d k) then / ∗ Line search ∗/

Step 9. Set ηk = 1 .

Step 10. else

Step 11. Determine ηk satisfying the following Armijo-type condition

E(w k + ηk d k) ≤ E R + σηk g
T
k

d k .

Step 12. end if

Step 13. Update the weights w k +1 = w k + ηk d k .

Table 2

Phase II: Unconstrained optimization.

Procedure: CG-DESCENT

Input: w k – Current iterate.

Output: w k +1 – Next iterate.

Step 1. Calculate the active gradient components g I (w k) using (4) .

Step 2. Compute the descent direction d k using (7) where the update parameter βk is defined by (8), (9) and (10) .

Step 3. Compute the learning rate ηk satisfying the Wolfe line seach conditions

φ(w k) ≤ φ(0) + c 1 ηk φ
′ (0) ,

φ′ (w k) ≥ c 2 φ(0),

where φ(η) = E(P(w k − ηd k)) and 0 < c 1 < c 2 < 1.

Step 4. Update the weights w k +1 = P(w k + ηk d k) .

d

T

β

w

β

θ

w

2

n

w

t

C

e

e

s

requirement “E r
k

≤ E max
k

infinitely often” is needed for the global

convergence result [27] and essentially checks if the error function

values decrease “too slowly ” in which case E r
k

= E max
k

.

2.2. Phase II: unconstrained optimization

Although aNGPA in theory can deal with box constrained op-

timization quite efficiently and its global convergence for general

functions has established [27] , in practice its convergence speed

can be slow especially near a local minimizer. To address this prob-

lem, similar to [27] , CG-DESCENT algorithm is applied which op-

erates in a lower-dimensional space since some weights of w are

fixed. A significant advantage of this approach is that the search

direction is computed only in the subspace composed by non-

active variables. This allows savings in computational time, espe-

cially when dealing with large neural networks. In other words,

after a suitable working face is detected by aNGPA, the proposed

algorithm switches to the CG-DESCENT algorithm, in order to opti-

mize over that face.

In general, CG-DESCENT [29] constitutes an efficient state-of-

the-art unconstrained optimization method. This algorithm gen-

erates a sequence of points { w k }, starting from an initial point

w 0 ∈ R

n , using the iterative formula

w k +1 = w k + ηk d k ,

where ηk > 0 is the step length chosen by some line search and the

search direction d is defined by
k
 k =

{

−g 0 , if k = 0 ;
−g k + β

HZ

k d k −1 , otherwise .
(7)

he update parameter β
HZ

k is calculated by

HZ

k = max { βHZ
k , θk } , (8)

here

HZ
k =

1

d T
k −1

y k −1

(
y k −1 − d k −1

‖ y k −1 ‖

2

d T
k −1

y k −1

)T

g k , (9)

k =

−1

‖ d k −1 ‖ min { δ, ‖ g k −1 ‖} . (10)

here δ is a scalar.

.3. Adaptive nonmonotone active set – weight constrained – neural

etwork training algorithm

In the rest of this section, we present the proposed algorithm

hich utilizes the aNGPA to identify the active constraints (face of

he feasible set B) and the unconstrained optimization algorithm

G DESCENT to optimize E (w) over a face identified by the aNGPA,

xploiting its computational efficiency. Before, presenting the nec-

ssary set of rules for switching between the two phases, we give

ome useful notations.

I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303 297

Table 3

Algorithm 1: adaptive nonmonotone active set – weight constrained – neural network training algorithm.

Algorithm: Adaptive nonmonotone Active set – weight constrained – Neural Network (AANN)

Input: w 0 – Initial weights.

μ – Hyper-parameter.

ρ – Hyper-parameter.

Output: w k – Weights of the trained ANN.

Step 1. Initiate k = 0 and E r −1 = E(w 0) .

Step 2. Set Status = “ aNGPA ” and Restart = F alse .

Step 3. repeat

Step 4. if (Status = “ aNGPA ”) then / ∗ Phase I: aNPGA ∗/

Step 5. Execute aNGPA.

Step 6. Set Restart = F alse .

Step 7. if (U(w k) = ∅) then

Step 8. if ‖ g I (w k) ‖ < μ‖ P(w − g(w)) − w ‖ then

Step 9. μ = ρμ.

Step 10. else

Step 11. Status = “ CG-DESCENT ”. / ∗ Switch to CG-DESCENT ∗/

Step 12. end if

Step 13. else if (A (w k) = A (w k −1) = · · · = A (w k −n 1)) then

Step 14. if ‖ g I (w k) ‖ ≥ μ‖ P(w − g(w)) − w ‖ then

Step 15. Status = “ CG-DESCENT ”. / ∗ Switch to CG-DESCENT ∗/

Step 16. end if

Step 17. end if

Step 18. else / ∗ Phase II: Unconstrained optimization ∗/

Step 19. Execute CG-DESCENT.

Step 20. if (‖ g I (w k) ‖ < μ‖ P(w − g(w)) − w ‖) then

Step 21. Status = “ aNGPA ”. / ∗ Restart aNGPA ∗/

Step 22. Restar t = T r ue .

Step 23. else if (|A (w k) | > |A (w k −1) |) then

Step 24. if (U(w k) � = ∅ and |A (w k) | ≤ |A (w k −1) | + n 2) then

Step 25. Status = “ aNGPA ”. / ∗ Restart aNGPA ∗/

Step 26. end if

Step 27. Restar t = T r ue .

Step 28. else

Step 29. Restart = F alse .

Step 30. end if

Step 31. end if

Step 32. Set k = k + 1 .

Step 33. until (stopping criterion).

w

U

w

c

c

e

b

t

w

T

o

g

c

m

I

‖

w

C

n

t

s

p

p

N

a

s

t

w

W

d

r

e

e

i

g

t

l

t

d

s

m

e

i

c

3

u

g

U
For any w ∈ B, and for fixed parameters α ∈ (0, 1) and β ∈ (1, 2),

e define the (undecided index) set

(w) =

{
i ∈ [1 , n] :

| g i (w) | ≥ ‖ P (w − g(w)) − w ‖

α and

w i ≥ ‖ P (w − g(w)) − w ‖

β

}
.

hich constitutes a fundamental set, embedded in the switching

riteria. In fact, each index i contained in U corresponds to the

omponent w i which is not close to zero and the associated gradi-

nt component g i (w) is relatively large. The switching criteria are

ased on whether the set of undecided indices is empty or the ac-

ive set subproblem is solved with sufficient accuracy.

In case, the set U(w) is empty, we consider that the indices

ith large associated gradient components are almost identified.

herefore, in this case, we switch from aNGPA to the unconstrained

ptimization algorithm CG-DESCENT to exploit its superior conver-

ence.

Accordingly, when the ratio between the norm active gradient

omponents ‖ g I (w) ‖ is sufficiently small relative to the error esti-

ator ‖ P (w − g(w)) − w ‖ , we switch from CG-DESCENT to aNGPA.

n other words, in case the condition

 g I (w k) ‖ < μ‖ P (w k − g(w k)) − w k ‖ , (11)

here μ∈ (0, 1) is a parameter is satisfied then we switch from

G-DESCENT to aNGPA. Notice that, aNGPA allows bound compo-

ents of w k to move into the interior of the feasible set in contrast

o CG-DESCENT where bound components are fixed. Therefore, by

witching from CG-DESCENT to aNGPA, the iterates are able to ex-

lore a new face of the feasible set.

At this point, we present a high level description of the pro-

osed Adaptive nonmonotone Active set – weight constrained –
eural Network (AANN) training algorithm (Table 3). Initially, the

NGPA procedure is applied until the active constraints satisfying

trict complementarity are identified. Then, we switch from aNGPA

o the unconstrained optimization algorithm CG-DESCENT (Step 19)

hich is applied until a subproblem has been solved (Step 21).

hen new constraints are identified as active then the algorithm

ecides to restart either CG-DESCENT or aNGPA. Notice that, by

estarting the CG-DESCENT, we denote that the iterates are gen-

rated by the CG-DESCENT using as the initial point the current it-

rate w k . By restarting the aNGPA, we denote that w 0 in the aNGPA

s initiated with the current iterate w k .

Furthermore, in case U(w k) = ∅ and ‖ g I (w k) ‖ < μ‖ P (w −
(w)) − w ‖ then the algorithm decreases parameter μ by a fac-

or ρ ∈ (0, 1) in which case the accuracy with which the subprob-

ems are solved by CG-DESCENT is increased. As a result, parame-

er μ may become sufficiently small which implies that the con-

ition (11) is never satisfied; therefore the algorithm may never

witch to the aNGPA phase. In such a case, the constrained opti-

ization problem (2) is solved by the CG-DESCENT algorithm; nev-

rtheless, this case rarely observed in our numerical experiments.

Finally, it is worth noticing that since the proposed algorithm

s based on the ASA method, it has O (n) complexity and its global

onvergence has been established in [27] .

. Numerical experiments

In this section, we present experimental results in order to eval-

ate the performance of the proposed neural network training al-

orithm in four famous classification problems acquired from the

CI Repository of Machine Learning Databases [30] : the Wisconsin

298 I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303

Table 4

Parameter specification of procedure aNGPA.

Hyper-parameter Description

ηmin = 10 −20 and ηmax = 10 20 . Bounds on the CBB stepsize.

L min = 10 −3 and L max = 10 8 . Bounds on the estimation of Lipschitz

constant.

M min = 3 and M max = 15 . Bounds on the nonmonotone learning

horizon.

σ = 10 −4 . Parameter entering in the nonmonotone

line search.

m = 4 . Cyclic length.

Table 5

Parameter specification of procedure CG-DESCENT.

Hyper-parameter Description

σ1 = 0 . 1 and σ2 = 0 . 9 . Parameter entering in the Wolfe line search.

δ = 0 . 4 . Parameter entering in the update parameter.

Table 6

Parameter specification of algorithm AANN.

Hyper-parameter Description

μ = 10 −1 . ‖ g I (w k) ‖ < μ‖ P(w − g(w)) − w ‖ implies

the unconstrained optimization

subproblem was efficiently solved.

ρ = 0 . 5 . Decay factor used to decrease μ in aNGPA.

n 1 = 2 and n 2 = 1 . Integer connected with active set

repetitions or change.

3

l

p

s

N

d

L

t

u

s

r

p

t

o

w

s

t

h

t

3

m

s

b

m

fl

b

g

1

[

o

c

b

s

A

o

b

5

s

r

A

p

t

w

a

3

t

t

o
diagnosis breast cancer problem, the Escherichia coli problem, the

Pima Indians diabetes problem and the Yeast problem as in [25] .

Our experimental analysis was obtained by conducting a two

phase procedure: In the first phase, the classification performance

of the proposed algorithm AANN was evaluated against the state-

of-the-art neural network training algorithms Resilient backpropa-

gation [31] and Levenberg–Marquardt training algorithm [32] , and

the efficient conjugate gradient algorithm CG-DESCENT. In the sec-

ond phase, we evaluate the performance of AANN against the

recently proposed Weight Constrained Neural Network (WCNN)

training algorithm [25] .

All neural networks had logistic activation functions, received

the same sequence of input patterns and the initial weights were

initiated using the Nguyen–Widrow method [33] . For evaluating

classification accuracy we have used the standard procedure called

stratified k-fold cross-validation . The implementation code was writ-

ten in Matlab 7.6 and CGHZ, Rprop , LM and WCNN were uti-

lized with their default optimized parameter settings [25,29,31,32] .

Tables 4–6 present the values of parameters of aNPGA, CG-

DESCENT and AANN, respectively. The simulations have been car-

ried out on a PC (2.66 GHz Quad-Core processor, 4GB RAM) run-

ning Linux operating system while the results have been averaged

over 100 simulations.

The cumulative total for a performance metric over all simula-

tions does not seem to be too informative, since a small number of

simulations tend to dominate these results. For this reason, we uti-

lize the performance profiles of Dolan and Morè [26] relative to the

performance metrics: accuracy and F 1 -score , to present perhaps the

most complete information in terms of robustness, efficiency and

solution quality. The use of performance profiles eliminates the in-

fluence of a small number of simulations on the benchmarking

process and the sensitivity of results associated with the ranking of

solvers [26] . The performance profile plots, for every τ ≥ 1, the pro-

portion P (τ) of simulations for which any training algorithm has a

performance within a factor τ of the best algorithm.
.1. First phase of experiments

In the sequel, we briefly describe each classification prob-

em and present the performance comparison between the pro-

osed algorithm AANN and the state-of-the-art algorithms Re-

ilient backpropagation, Levenberg–Marquardt and CG-DESCENT.

otice that the classical training algorithm were utilized with their

efault optimized parameter settings. It is worth noticing that the

evenberg–Marquardt algorithm utilizes the gradient vector and

he Jacobian matrix of (1) ; thus, it has been established as a pop-

lar choice for training small ANNs. In contrast, CG-DESCENT, Re-

ilient backpropagation as well as AANN due to their low memory

equirements and their simplicity of computations, can be also ap-

lied to train large neural networks. Furthermore, we recall that

he main difference between the proposed AANN and the state-

f-the-art training algorithm is that AANN trains a neural network

ith bounds on its weights, in order to reduce the likelihood that

ome weights will “blow up” to unrealistic values.

In order to explore the sensitivity of the proposed algorithm to

he selection of bounds of the weights, similar to Livieris [25] , we

ave selected three different bounds for the weights. Summarizing,

he curves in the following figures have the following meaning

• “AANN 1 ” stands for algorithm AANN with bounds on the

weights −1 ≤ w i ≤ 1 .

• “AANN 2 ” stands for algorithm AANN with bounds on the

weights −2 ≤ w i ≤ 2 .

• “AANN 3 ” stands for algorithm AANN with bounds on the

weights −5 ≤ w i ≤ 5 .

• “CGHZ ” stands for the classical CG-DESCENT [29] .

• “Rprop ” stands for Resilient backpropagation [31] .

• “LM ” stands for Levenberg-Marquardt training algorithm [32] .

.1.1. Wisconsin diagnosis breast cancer classification problem

The first benchmark concerns the diagnosis of breast cancer

alignancy. The data were collected at the University of Wiscon-

in Hospital for the diagnosis and prognosis of breast tumors solely

ased on FNA test. This test involves fluid extraction from a breast

ass using a small gauge needle and then visual inspection of the

uid under a microscope. The dataset contains 569 instances (357

enign – 212 malignant), where each instance has 32 attributes re-

arding FNA test measurements. We utilized a neural network with

 hidden layer of 568 neurons and an output layer of 2 neurons

34] . The error minimization is set to 0.02, the maximum number

f epochs is set to 20 0 0 and all networks were tested using 10-fold

ross validation.

Fig. 1 (a) and (b) presents the performance profiles for the

reast cancer classification problem, based on accuracy and F 1 -

core, respectively. Firstly, it is worth noticing that AANN 1 and

ANN 2 outperformed the classical training algorithms in terms

f classification accuracy, presenting the highest probabilities of

eing the optimal solvers. AANN 1 and AANN 2 report 53.3% and

0% of simulations with the highest classification accuracy, re-

pectively; while CGHZ , Rprop and LM report 35%, 41.6% and 40%,

espectively. With regards to the F 1 -score performance metric,

ANN 1 and AANN 2 exhibited almost identical performance, out-

erforming the rest training algorithms. Therefore, the interpreta-

ion of Fig. 1 demonstrates that application of the bounds on the

eights of the neural network, increased the overall classification

ccuracy.

.1.2. Escherichia coli classification problem

This problem is based on an imbalanced data set of 336 pat-

erns and concerns the classification of the E. coli protein localiza-

ion patterns into eight localization sites. E. coli, being a prokary-

tic gram-negative bacterium, is an important component of the

I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303 299

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

432
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

Fig. 1. Log 10 scaled performance profiles for the Wisconsin diagnosis breast cancer classification problem.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

Fig. 2. Log 10 scaled performance profiles for the Escherichia coli classification problem.

b

t

n

t

t

a

p

t

c

A

s

o

t

t

t

t

a

t

c

t

b

r

3

a

b

8

i

4

m

t

[

iosphere. Three major and distinctive types of proteins are charac-

erized in E. coli : enzymes, transporters and egulators. The largest

umber of genes encodes enzymes (34%) (this should include all

he cytoplasm proteins) followed by the genes for transport func-

ions and the genes for regulatory process (11.5%) [35] . We utilized

 neural network with 1 hidden layer of 16 neurons and an out-

ut layer of 8 neurons [36] . The error goal is set to 0.02 within

he limit of 20 0 0 epochs and all networks were tested using 4-fold

ross-validation [37] .

Fig. 2 illustrates the performance profiles for AANN 1 , AANN 2 ,

ANN 3 , CGHZ, Rprop and LM, regarding the Escherichia coli clas-

ification problem. Clearly, AANN 1 exhibit the highest probability

f being the optimal solver, significantly outperforming all other

raining algorithms, followed by AANN 2 . It is worth mentioning

hat AANN 1 and AANN 2 report 40% and 26.7% of simulations with

he highest classification accuracy, respectively; while the state-of-

he-art training algorithms CGHZ , Rprop and LM present 13.3%, 15%

nd 20%, respectively. Therefore, we can easily conclude that the
ighter the bounds on the weights, the more efficient the resulting

lassification performance will be, in most cases. With regards to

he performance of the proposed algorithm, AANN 1 illustrates the

est performance; while AANN 3 exhibited the worst performance,

elative to both performance metrics.

.2. Pima Indian diabetes classification problem

The aim of this real-world classification task is to decide when

 Pima Indian female is diabetes positive or not. The data of this

enchmark consists of 768 different patterns each of them having

 features of real continuous values and a class label (diabetic pos-

tive or not). We used a neural network with 2 hidden layers of

 neurons each and an output layer of 2 neurons [38] . The error

inimization is set to 0.14, the maximum number of epochs is set

o 20 0 0 and all networks were tested using 10-fold cross validation

39] .

300 I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

Fig. 3. Log 10 scaled performance profiles for the Pima Indians diabetes classification problem.

1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(
)

AANN1
AANN2
AANN3
CGHZ
Rprop
LM

Fig. 4. Log 10 scaled performance profiles for the Yeast classification problem.

t

r

i

r

r

r

a

d

t

t

e

n

3

n
Fig. 3 (a) and (b) presents the performance profiles for the Pima

Indian diabetes classification problem, based on the performance

metrics accuracy and F 1 -score, respectively. Firstly, it is worth men-

tioning that AANN 1 exhibits the highest probability of being the

optimal algorithm since its curve lie on the top, regarding both

performance profiles. Furthermore, AANN 2 and LM exhibit similar

performance outperforming CGHZ and Rprop .

3.3. Yeast classification problem

This problem is based on an imbalanced dataset and concerns

the determination of the cellular localization of the yeast proteins

into ten localization sites. Saccharomyces cerevisiae (yeast) is the

simplest Eukaryotic organism. For this classification problem, we

utilized a neural network with 1 hidden layer of 16 neurons and

an output layer of 10 neurons [36] . The error minimization is set

to 0.05, the maximum number of epochs is set to 20 0 0 and all

networks were tested using 10-fold cross validation [37] .
Fig. 4 presents the performance profile for the Yeast classifica-

ion problem, investigating the performance of each training algo-

ithm. AANN 1 and AANN 2 illustrate the highest probability of be-

ng the optimal training algorithm in terms of classification accu-

acy, since their curves lie on the top. Both AANN 1 and AANN 2

eport 38.3% of simulations with the highest classification accu-

acy, respectively; while CGHZ, Rprop and LM report 25%, 31.6%

nd 21.6%, respectively. Moreover, the interpretation of Fig. 4 (b)

emonstrates that AANN 1 exhibits the best performance based on

he F 1 -score metric, followed by AANN 2 . Finally, we conclude that

he tighter the bounds get, the higher the chance for good gen-

ralization performance (i.e., the classification ability of the neural

etwork will be higher).

.4. Second phase of experiments

In the sequel, we compare the performance of the proposed

eural network training algorithm AANN with that of the recently

I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303 301

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

Fig. 5. Log 10 scaled performance profiles based on accuracy of AANN against WCNN.

p

g

i

a

l

p

r

l

C

b

b

e

p

a

W

p

p

p

g

6

d

m

t
roposed Weight Constrained Neural Network (WCNN) training al-

orithm [25] . The curves in the following figures have the follow-

ng meaning

• “AANN 1 ” stands for algorithm AANN with bounds on the

weights −1 ≤ w i ≤ 1 .

• “AANN 2 ” stands for algorithm AANN with bounds on the

weights −2 ≤ w i ≤ 2 .

• “AANN 3 ” stands for algorithm AANN with bounds on the

weights −5 ≤ w i ≤ 5 .

• “WCNN 1 ” stands for algorithm WCNN [25] with bounds on the

weights −1 ≤ w i ≤ 1 .

• “WCNN 2 ” stands for algorithm WCNN [25] with bounds on the

weights −2 ≤ w i ≤ 2 .

• “WCNN 3 ” stands for algorithm WCNN [25] with bounds on the

weights −5 ≤ w i ≤ 5 .

Fig. 5 presents the performance profiles of all versions of AANN

nd WCNN based on accuracy, regarding all classification prob-

ems. Firstly, it is worth noticing that all versions of AANN out-

erform the corresponding versions of WCNN, in terms of accu-
 s
acy. AANN 1 outperforms all constrained training algorithms, fol-

owed by AANN 2 and WCNN 1 which report similar performance.

onclusively, it is worth noticing that similarly with the other

enchmarks examined, the classification efficiency increases as the

ounds of the weights get tighter.

Fig. 6 reports the performance profiles based on F 1 -score of

ach constrained training algorithm, regarding all classification

roblems. Similar observations can be made with Fig. 5 . Clearly,

ll versions of AANN outperform the corresponding versions of

CNN, relative to all benchmarks. AANN 1 demonstrates the best

erformance since its curves lie on the top in all classification

roblems, followed by AANN 2 . Moreover, AANN 3 and WCNN 3

resent the worst performance among all constrained training al-

orithms, with AANN 3 reporting slightly better performance.

Conclusively, we point out that the interpretation of Figs. 5 and

 show that regarding the constrained training algorithms, AANN

evelops neural networks with increased prediction accuracy in

ost cases. Furthermore, we can easily conclude that in general

he tighter the bounds on the weights, the more efficient the re-

ulting classification performance will be.

302 I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(
)

AANN1
AANN2
AANN3
WCNN1
WCNN2
WCNN3

Fig. 6. Log 10 scaled performance profiles based on F 1 -score of AANN against WCNN.

u

p

p

o

m

n

c

e

s

i

t

i

b

d

t

i

t

t

q

4. Conclusions

In this work, we proposed a new – weight constrained – neu-

ral network training algorithm, based on the ASA method. The

proposed algorithm exploits a property of an active-set estimate

which ensures a significant reduction in the error function when

setting to the bounds all those weights estimated as active; and

utilizes an advanced conjugate gradient method in the subspace

of the weights estimated as non-active to increase convergence.

Moreover, the utilized nonmonotone line search of the proposed

algorithm is equipped with an adaptive strategy for defining the

nonmonotone learning horizon, exploiting the morphology of the

error surface through a local estimation of the Lipschitz constant.

Our preliminary numerical experiments demonstrate the classifica-

tion efficiency of the proposed algorithm, providing empirical evi-

dence that it provides more stable, efficient and reliable learning.

Additionally, it is worth mentioning that the bounds on the

weights of a neural network increased the overall classification

accuracy in most cases. Placing these constraints on the values

of weights, reduces the likelihood that some weights will “blow
p” to unrealistic values. Therefore, we conclude that the pro-

osed methodology efficiently trains neural networks with im-

roved classification ability.

It is worth noticing that the determination of optimal bounds

n the weights is a rather difficult and challenging task; thus

ore research and experiments are needed. In our preliminary

umerical experiments we observed that the classification effi-

iency increases as the bounds of the weights get tighter. Nev-

rtheless, since this is not a general case, we cannot draw a

afe conclusion and more experiments are needed. Our opin-

on is that since benchmarks and weights initialization are in-

errelated. we cannot draw a safe conclusion and more exper-

ments are needed. To this end, the question of what should

e the values of the bounds for each benchmark or which ad-

itional constraints should be applied is still under investiga-

ion. An interesting idea could be to auto-adjust the bounds dur-

ng the training process using a strategy based on the utiliza-

ion of a validation set. Probably, the required research to answer

hese questions, may reveal additional and crucial information and

uestions.

I.E. Livieris and P. Pintelas / Neurocomputing 360 (2019) 294–303 303

t

r

s

r

r

g

[

a

i

C

c

i

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

In our future work, we intent to incorporate and pursue an ex-

ensive empirical experimental evaluation of our proposed algo-

ithmic framework to more advanced and complex architectures

uch as deep neural networks and Long Short Term Memory neu-

al networks. Additionally, another interesting direction for future

esearch is to evaluate the classification performance of AANN al-

orithm, together with regularization techniques such as dropout

40–42] . Moreover, since our experimental results are quite encour-

ging, our next step could be to evaluate the proposed algorithm

n other real world datasets, such as educational, health care, etc.

onflict of interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

eferences

[1] I.E. Livieris , P. Pintelas , An improved spectral conjugate gradient neural net-
work training algorithm, Int. J. Artif. Intell. Tools 21 (01) (2012) 1250 0 09 .

[2] I.E. Livieris , P. Pintelas , A new conjugate gradient algorithm for training neu-

ral networks based on a modified secant equation, Appl. Math. Comput. 221
(2013) 491–502 .

[3] R. Ahmed , M.E. Sayed , S.A. Gadsden , J. Tjong , S. Habibi , Artificial neural net-
work training utilizing the smooth variable structure filter estimation strategy,

Neural Comput. Appl. 27 (3) (2016) 537–548 .
[4] M. ławry ́nczuk , Training of neural models for predictive control, Neurocomput-

ing 73 (7–9) (2010) 1332–1343 .

[5] H.B. Demuth , M.H. Beale , O. De Jess , M.T. Hagan , Neural Network Design, Mar-
tin Hagan, 2014 .

[6] J. Misra , I. Saha , Artificial neural networks in hardware: a survey of two
decades of progress, Neurocomputing 74 (1–3) (2010) 239–255 .

[7] S. Asadi , J. Shahrabi , P. Abbaszadeh , S. Tabanmehr , A new hybrid artificial neu-
ral networks for rainfall–runoff process modeling, Neurocomputing 121 (2013)

470–480 .

[8] S.P. Xiao , H.H. Lian , K.L. Teo , H.B. Zeng , X.H. Zhang , A new Lyapunov func-
tional approach to sampled-data synchronization control for delayed neural

networks, J. Frankl. Inst. 355 (17) (2018) 8857–8873 .
[9] X.M. Zhang , Q.L. Han , X. Ge , D. Ding , An overview of recent developments in

Lyapunov–Krasovskii functionals and stability criteria for recurrent neural net-
works with time-varying delays, Neurocomputing 313 (2018a) 392–401 .

[10] X.M. Zhang , Q.L. Han , J. Wang , Admissible delay upper bounds for global

asymptotic stability of neural networks with time-varying delays, IEEE Trans.
Neural Netw. Learn. Syst. 99 (2018b) 1–11 .

[11] D. Rumelhart , G. Hinton , R. Williams , Learning internal representations by er-
ror propagation, in: D. Rumelhart, J. McClelland (Eds.), Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Cambridge, Mas-
sachusetts, 1986 . 318–362

[12] J. Wang , W. Wu , J.M. Zurada , Deterministic convergence of conjugate gradient

method for feedforward neural networks, Neurocomputing 74 (14–15) (2011)
2368–2376 .

[13] J. Wang , B. Zhang , Z. Sun , W. Hao , Q. Sun , A novel conjugate gradient method
with generalized Armijo search for efficient training of feedforward neural net-

works, Neurocomputing 275 (2018) 308–316 .
[14] Q. Liu , J. Liu , R. Sang , J. Li , T. Zhang , Q. Zhang , Fast neural network training on

FPGA using quasi-Newton optimization method, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. (2018) .

[15] S.F. McLoone , V.S. Asirvadam , G.W. Irwin , A memory optimal BFGS neural net-

work training algorithm, in: Proceedings of the 2002 International Joint Con-
ference on Neural Networks, Vol. 1, IEEE, 2002 . 513–518

[16] H. Badem , A. Basturk , A. Caliskan , M.E. Yuksel , A new efficient training strat-
egy for deep neural networks by hybridization of artificial bee colony and

limited-memory BFGS optimization algorithms, Neurocomputing 266 (2017)
506–526 .

[17] W. Sun , J. Han , J. Sun , Global convergence of nonmonotone descent meth-

ods for unconstrained optimization problems, J. Comput. Appl. Math. 146 (2)
(2002) 89–98 .

[18] L. Grippo , F. Lampariello , S. Lucidi , A nonmonotone line search technique for
Newton’s method, SIAM J. Numer. Anal. 23 (4) (1986) 707–716 .

[19] C.C. Peng , G.D. Magoulas , Nonmonotone Levenberg–Marquardt training of re-
current neural architectures for processing symbolic sequences, Neural Com-

put. Appl. 20 (6) (2011a) 897–908 .

20] C.C. Peng , G.D. Magoulas , Nonmonotone BFGS-trained recurrent neural net-
works for temporal sequence processing, Appl. Math. Comput. 217 (12) (2011b)

5421–5441 .
[21] C.C. Peng , G.D. Magoulas , Adaptive Nonmonotone Conjugate Gradient Training
Algorithm for Recurrent Neural Networks, ICTAI, IEEE, 2007 . 374–381

22] C.C. Peng , G.D. Magoulas , Advanced adaptive nonmonotone conjugate gradient
training algorithm for recurrent neural networks, Int. J. Artif. Intell. Tools 17

(05) (2008) 963–984 .
23] V. Plagianakos , G. Magoulas , M. Vrahatis , Determing nonmonotone strategies

for effective training of multi-layer perceptrons, IEEE Trans. Neural Netw. 13
(6) (2002) 1268–1284 .

24] I.E. Livieris , P. Pintelas , A new class of nonmonotone conjugate gradient train-

ing algorithms, Appl. Math. Comput. 266 (2015) 404–413 .
25] I.E. Livieris , Improving the classification efficiency of an ANN utilizing a new

training methodology, Informatics 6 (1) (2018) .
26] E. Dolan , J. Moré, Benchmarking optimization software with performance pro-

files, Math. Program. 91 (2002) 201–213 .
[27] W.W. Hager , H. Zhang , A new active set algorithm for box constrained opti-

mization, SIAM J. Optim. 17 (2) (2006) 526–557 .

28] Y.H. Dai , W.W. Hager , K. Schittkowski , H. Zhang , The cyclic Barzilai–Borwein
method for unconstrained optimization, IMA J. Numer. Anal. 26 (3) (2006)

604–627 .
29] W.W. Hager , H. Zhang , A new conjugate gradient method with guaranteed de-

scent and an efficient line search, SIAM J. Optim. 16 (1) (2005) 170–192 .
30] D. Dua, E.K. Taniskidou, UCI machine learning repository, 2017, http://archive.

ics.uci.edu/ml .

[31] M. Riedmiller , H. Braun , A direct adaptive method for faster backpropagation
learning: the RPROP algorithm, in: Proceedings of the IEEE International Con-

ference on Neural Networks, IEEE, 1993 . 586–591
32] M.T. Hagan , M.B. Menhaj , Training feed-forward networks with the Marquardt

algorithm, IEEE Trans. Neural Netw. 5 (6) (1994) 989–993 .
33] D. Nguyen , B. Widrow , Improving the learning speed of 2-layer neural network

by choosing initial values of adaptive weights, Biol. Cybern. 59 (1990) 71–113 .

34] I. Anagnostopoulos , I. Maglogiannis , Neural network-based diagnostic and
prognostic estimations in breast cancer microscopic instances, Med. Biol. Eng.

Comput. 44 (9) (2006) 773–784 .
35] P. Liang , B. Labedan , M. Riley , Physiological genomics of Escherichia coli pro-

tein families, Physiol. Genom. 9 (2002) 15–26 .
36] A. Anastasiadis , G. Magoulas , M. Vrahatis , New globally convergent training

scheme based on the resilient propagation algorithm, Neurocomputing 64

(2005) 253–270 .
[37] P. Horton , K. Nakai , Better prediction of protein cellular localization sites with

the k -nearest neighbors classifier, Intell. Syst. Mol. Biol. (1997) 368–383 .
38] L. Prechelt , PROBEN1-A set of benchmarks and benchmarking rules for neural

network training algorithms, in: Technical Report 21/94, Fakultt fr Informatik,
University of Karlsruhe, 1994 .

39] J. Yu , S. Wang , L. Xi , Evolving artificial neural networks using an improved PSO

and DPSO, Neurocomputing 71 (2008) 1054–1060 .
40] Y. Gal , Z. Ghahramani , Dropout as a Bayesian approximation: Representing

model uncertainty in deep learning, in: international conference on machine
learning, 2016, pp. 1050–1059 .

[41] N. Srivastava , G. Hinton , A. Krizhevsky , I. Sutskever , R. Salakhutdinov , Dropout:
a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.

15 (1) (2014) 1929–1958 .
42] Y. Gal , Z. Ghahramani , A theoretically grounded application of dropout in re-

current neural networks, Adv. Neural Inf. Process. Syst. (2016) 1019–1027 .

Ioannis E. Livieris received his B.Sc., M.Sc., and Ph.D.
degrees in Mathematics from the University of Patras,

Greece in 20 06, 20 08, and 2012, respectively. He is cur-
rently an adjunct professor in Technological Educational

Institute of Western Greece. His research interests in-
clude numerical optimization, neural networks, data min-

ing and machine learning.

Panagiotis Pintelas is a professor of Computer Science

with the Informatics Division of Department of Mathe-
matics at Patras University, Greece. His research interests

include software engineering, AI and ICT in education,
machine learning and data mining. He was involved in

or directed several dozens of National and European re-
search and development projects.

http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0029
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30860-4/sbref0041

	An adaptive nonmonotone active set - weight constrained - neural network training algorithm
	1 Introduction
	2 Proposed neural network training algorithm
	2.1 Phase I: adaptive nonmonotone gradient projection
	2.2 Phase II: unconstrained optimization
	2.3 Adaptive nonmonotone active set - weight constrained - neural network training algorithm

	3 Numerical experiments
	3.1 First phase of experiments
	3.1.1 Wisconsin diagnosis breast cancer classification problem
	3.1.2 Escherichia coli classification problem

	3.2 Pima Indian diabetes classification problem
	3.3 Yeast classification problem
	3.4 Second phase of experiments

	4 Conclusions
	Conflict of interest
	References

