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Abstract: Nowadays, cryptocurrencies are established and widely recognized as an alternative13

exchange currency method. They have infiltrated most financial transactions and as a result14

cryptocurrency trade is generally considered one of the most popular and promising types of15

profitable investments. Nevertheless, this constantly increasing financial market is characterized by16

significant volatility and strong price fluctuations over short-time period; therefore, the development17

of an accurate and reliable forecasting model is considered essential for portfolio management and18

optimization. In this research, we propose a multiple-input deep neural network model for the19

prediction of cryptocurrency price and movement. The proposed forecasting model utilizes as20

inputs different cryptocurrency data and handles them independently in order to exploit useful21

information from each cryptocurrency separately. An extensive empirical study was performed22

using three consecutive years of cryptocurrency data from three cryptocurrencies with the highest23

market capitalization i.e. Bitcoin (BTC), Etherium (ETH) and Ripple (XRP). The detailed experimental24

analysis revealed that the proposed model has the ability to efficiently exploit mixed cryptocurrency25

data, reduces overfitting and decreases the computational cost in comparison with traditional26

fully-connected deep neural networks.27

Keywords: Deep learning; convolutional networks; LSTM; overfitting; time-series; forecasting.28

1. Introduction29

Cryptocurrencies have been established and widely recognized as a new electronic alternative30

exchange currency method, which have considerable implications for emerging economies and in31

general for the global economy [1]. They have infiltrated most financial transactions and as a result32

cryptocurrency trade is generally considered one of the most popular and promising type of profitable33

investments. Nevertheless, this constantly increasing financial market is characterized by significant34

volatility and strong price fluctuations over time. Nowadays, cryptocurrency forecasting is generally35

considered as one of the most challenging time-series prediction problems due to the large number of36

unpredictable factors involved and the significant volatility of cryptocurrencies’ prices, resulting in37

complicated temporal dependencies [2–4].38

During the last years, deep learning methodologies were applied on time-series predictions,39

focusing on popular real-world application domains such as cryptocurrency market. Most of40

these models exploit advanced deep learning techniques and special architectural designs based on41

convolutional and Long short-term memory (LSTM) layers [5–10]. Convolutional layers are utilized to42

filter out the noise in complex time-series data as well as extracting new valuable features while LSTM43
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layers are used to efficiently capture sequence patterns as well as long and short term dependencies44

[9].45

Nevertheless, although advanced deep learning models possess the ability to address highly46

nonlinear time-series problems, they were proved to produce inefficient and unreliable cryptocurrency47

forecasts. More specifically, Pintelas et al. [11] and Livieris et al. [12] presented some comprehensive48

researches and highlighted that the difficulties in cryptocurrency forecasting are based on two main49

reasons: First, cryptocurrencies time-series are close to random walk process, which implies that50

the prediction problem is considered too complex and too complicated; Second, the inefficiency of51

deep learning models is mainly based on the existence of autocorrelation in the errors and the lack of52

stationarity [2,13]. It is worth mentioning that stationarity property constitutes an important property53

in time-series modeling as well as for the reliability of the prediction models. Notice that non-stationary54

series possess high volatility, trend, are frequently characterized by heteroskedasticity and significant55

properties such as mean, frequency, variance and kurtosis vary over time.56

Along this line, Livieris et al. [2] introduced a novel framework for enhancing deep learning57

forecasting models. The major novelty of their proposed work was the enforcement of a time-series58

to become “suitable” for fitting a deep learning model based on the stationarity property, as well59

as a framework the development of accurate and reliable prediction models. To impose stationarity60

the authors performed a series of transformations based on first differences or returns, without the61

loss of any embedded information. Additionally, they performed an extensive research focusing on62

the evaluation of the prediction accuracy of deep learning models, as well as the reliability of their63

forecasts by examining the existence of autocorrelation in the errors. Based on their experimental and64

theoretical evidence, the authors concluded that their proposed framework secures the “suitability” of65

a time-series for fitting a deep learning model and it is essential for developing accurate and reliable66

deep learning time-series models.67

Based on the previous works, the objective of this research is two-fold: Firstly, to investigate if the68

forecasting accuracy of a cryptocurrency deep learning model can be indeed enhanced by utilizing data69

from various cruptocurrencies; Secondly, to develop a deep learning model with advanced forecasting70

accuracy.71

In this work, we propose a multiple-input deep neural network model, called MICDL, for72

the prediction of cryptocurrency price and movement. Initially, all cryptocurrency time-series data73

are transformed based on returns transformation in order to satisfy the stationarity property and74

be “suitable” for fitting the proposed deep neural network model [2]. Subsequently, the proposed75

prediction model uses as inputs the transformed data from various cryptocurrencies and handles them76

independently, in the sense that each cryptocurrency data consist of inputs to different convolutional77

layers, in order to each cryptocurrency information to be exploited and processed, separately. Finally,78

the processed data from each cryptocurrency are merged and further processed for issuing the final79

prediction. The rationale for the utilization of a multi-input neural network is that this type of models80

have been originally proposed for more efficiently exploiting mixed data and refers to the case of81

having multiple types of independent data [14]. In the literature, these models have been successfully82

applied for addressing a variety of difficult real-world problems reporting promising results while83

they were found to outperform traditional single output models [14–18]. The main idea behind these84

models is to extract valuable information from each category of mixed data, independently and then85

concatenate the information for issuing the final prediction. Additionally, we conducted an empirical86

study utilizing almost four consecutive years (Jan-01, 2017 - Oct-31, 2020) of cryptocurrency data87

from the three cryptocurrencies with the highest market capitalization i.e. Bitcoin (BTC), Etherium88

(ETH) and Ripple (XRP). The numerical experiments report that the proposed model provided reliable89

price movement predictions outperforming traditional deep learning models as well as accurate price90

forecasting. Moreover, the detailed experimental analysis highlight that MICDL has the ability to91

efficiently exploit mixed cryptocurrency data and reduces overfitting with lower computational cost92

compared to a traditional fully-connected deep neural network.93
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The remainder of this paper is organized as follows: Section 2 presents a brief review of deep94

learning models for cryptocurrency price and movement forecasting. Section 3 presents a detailed95

description of the proposed framework focusing on highlighting its architecture and benefits. Section 496

presents data preparation and reports the descriptive statistics, describing the basic features of each97

data. Section 5 presents the detailed experimental analysis, focusing on the evaluation of the proposed98

framework. Section 6 summarizes the main findings of this research, presents the conclusions and99

some interesting future directions.100

2. Related work101

Cryptocurrency price analysis and forecasting constitutes a considerably complicated problem102

in time-series analysis and a considerably challenging research area. It’s complexity and difficulty103

is caused by the cryptocurrency time-series’ significant fluctuations and volatility, which are highly104

influenced by an enormous number of factors. In the literature, recent research efforts have utilized and105

adopted deep learning methodologies for predicting cryptocurrency price and directional movement to106

improve forecasting accuracy. Some interesting findings and useful conclusions are briefly presented.107

Derbentsev et al. [3] attempted to model short-term dynamics of the three most capitalized108

cryptocurrencies, i.e. Bitcoin, Etherium and Ripple, using several sophisticated prediction models.109

More specifically, they evaluated the prognostic performance of an Artificial Neural Network (ANN),110

a Random Forest (RF) and a Binary Autoregressive Tree (BART) model. The utilized data obtained111

1583 daily cryptocurrency prices from Aug-1, 2015 to Dec-1, 2019. Their experimental results reported112

that that ANN and BART models exhibited 63% average accuracy for predicting directional movement113

which was considerably higher than the “naive” model.114

Chowdhury et al. [4] applied advanced machine learning prediction models on the index and115

constituents of cryptocurrencies for forecasting future values. More analytically, their primary aim was116

the prediction of the closing price of the CCI30 index as well as nine major cryptocurrencies in order to117

assist cryptocurrency investors in trading. In their work, they utilized a variety of machine learning118

models including Gradient Boosted Trees, ANNs, k-nearest neighbor as well as robust ensemble119

learning models. Their utilized data contained daily closing prices from Jan-01, 2017 to Jan-31, 2019.120

Ensemble models and Gradient Boosted Trees exhibited the best prediction performance, which was121

competitive and sometimes better, compared to that of similar state of the art models proposed in the122

literature.123

Pintelas et al. [11] conducted an interesting research, evaluating sophisticated deep learning124

models for predicting cryptocurrency prices and movements. Their research revealed the significant125

limitations of deep learning models for exhibiting reliable forecasts. Based on their experimental126

analysis, the authors highlighted the need for adopting more advanced algorithmic approaches127

for the development of efficient and reliable cryptocurrency models. Along this line, Livieris et128

al. [12] considered to improve the forecasting performance and reliability of deep learning models129

utilizing three widely utilized ensemble strategies, i.e. Averaging, Bagging and Stacking. The authors130

utilized hourly prices of Bitcoin, Etherium and Ripple from Jan-1 2018, to Aug-31, 2019. Additionally,131

they conducted an exhaustive performance evaluation of various ensemble models using several132

Conv-based and LSTM-based learners as based models. Their analysis highlighted that deep learning133

and ensemble learning may efficiently be adapted to develop strong, and reliable cryptocurrency134

prediction models, but with significant computational cost.135

Patel et al. [19] proposed a hybrid cryptocurrency prediction approach, which focuses on Litecoin136

and Monero cryptocurrencies. The proposed model is based on a recurrent neural network architecture137

which utilizes LSTM and GRU layers. The data in their study contained daily Litecoin data from138

Aug-24, 2016 to Feb-23, 2020 and Monero data from Jan-30, 2015 to Feb-23, 2020 concerning average139

price, open price, close price, high and low prices as well as the volume of trades. The reported140

experiments demonstrated that the proposed hybrid model outperforms traditional LSTM networks141

exhibiting some promising results.142
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A common limitation of all presented and discussed researches is that they focused on achieving143

better forecasting performance by exploiting more sophisticated models and techniques, usually144

ignoring the development of a sophisticated training dataset containing more useful information.145

In other words, most approaches treat each cryptocurrency independently ignoring its conceivable146

relations with other cryptocurrencies and they don’t take into consideration the complexity and147

non-stationarity of cryptocurrency time-series data.148

In this research, we propose a different approach and present a new model for the development149

of accurate and reliable forecasting models. The novelty of the proposed model is based on the utilized150

training data as well as its special architectural design. More specifically, in this work, we propose151

a multiple-input deep neural network model, which utilizes as inputs various cryptocurrency data152

and handles them independently in order to each cryptocurrency information to be exploited and153

processed, separately. The processed data from each cryptocurrency are merged and further processed154

for issuing the final prediction. To the best of our knowledge this is the first conducted approach155

which focused to exploit data from various cryptocurrencies for exhibiting more accurate forecasts.156

Following previous approaches [11,12], we provide a comprehensive performance evaluation for price157

prediction and directional movement.158

3. Multiple-input cryptocurrency deep learning model159

In this section, we present the proposed Multiple-Input Cryptocurrency Deep Learning (MICDL)160

model. The proposed approach is based on the idea of not prossessing all cryptocurrency data,161

simultaneously. In contrast, each cryptocurrency data is processed and handled independently and162

then the processed data from each cryptocurrency are merged and further processed for estimating the163

final prediction. The rationale behind the proposed approach is to develop a learning model which is164

able to independently extract useful information from various cryptocurrency data and subsequently165

process these information for achieving accurate and reliable predictions.166

Suppose that we have data from N cryptocurrencies. Each cryptocurrency data is utilized as input167

in a unique convolutional layer, which is followed by a pooling layer and a LSTM layer. The proposed168

approach focuses on exploiting the ability of convolutional layers for extracting useful knowledge by169

learning the internal representation of each cryptocurrency, independently, as well as the effectiveness170

of LSTM layers for identifying short-term and long-term dependencies. Then, the output vectors171

of all LSTM layers are merged by a concatenate layer. This layer is followed by a series of layers,172

which constitute the classical structure of a deep learning neural network i.e. a dense layer, a batch173

normalization layer, a dropout layer, a dense layer, a batch normalization layer, a dropout layer and a174

final output layer of one neuron. The architecture of MICDL is presented in Figure 1.175

Notice that although a traditional deep neural network model is able to analyze and encode any176

complex function, the convergence of its training process may be degradated due to the number of177

weights, which exponentially increases as the number of layers increases; and due to the vanishing178

gradient problem, which usually occurs in large networks. In contrast, the significant advantages of the179

proposed model’s architecture is that it provides more flexibility and adaptivity for low computation180

effort compared to a fully connect neural network with a similar number of layers as well as greater181

resistance to the vanishing gradient problem, due to its sparse structure [16,20].182

Subsequently, we present a brief description of the main elements of the proposed MICRL model183

i.e. Convolution and pooling layers, LSTM layers, Dense layers, Batch-normalization layers and184

dropout layers.185

• Convolutional layer: Convolutional layers [21] constite a novel class of neural network layers186

which are characterized by their remarkable ability to learn the internal representation of their187

inputs. This is performed by applying convolutional operations between the input data and the188

use of convolution kernels, called “filters”, for developing new feature values.189

• Pooling layer: Pooling layers [21] are utilized to reduce the spatial dimensions, aiming on190

reducing the number of operations required for all following layers. Notice that less spatial191
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Figure 1. Architecture of Multiple-Input Cryptocurrency Deep Learning (MICRL) model

information implies less weights, so less chance to overfit the training data and less computional192

effort. In more detail, these layers are utilized to downsample the output of a previous layer,193

which is usually a convolutional layer, attempting to pass only valid and useful information.194

Probably, max pooling and average pooling layers constitute the most widely utilized choices,195
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which use the maximum value and the average value from each cluster of outputs of the previous196

layer, respectively [22].197

• LSTM layer: LSTM layers [23] belong to the class of recurrent neural network layers, enhanced198

with a separate memory cell and adaptive gate units (input, forget and output) for controlling the199

information flow. The utilization of gates in each cell implies that data can be filtered, discarded200

or added therefore maintaining useful information in the memory cell for longer periods of time.201

The advantage of LSTM layers are their ability to identify both short and long term correlation202

features within time series and considerably address the vanishing gradient problem [23].203

• Dense layer: Dense layers constitute the most popular and widely utilized choice for composing204

the hidden layer of a deep neural network [24]. In particular, each dense layer is composed by205

neurons, which are connected with all neurons of the previous layer. Generally, dense layers add206

a non-linearity property and theoretically a neural network composed by dense layers is able to207

model any mathematical function [25].208

• Batch-normalization layer: Batch normalization constitutes an elegant technique for training209

deep neural networks which focuses on stabilizing the learning process by standardizing the210

inputs of the next layer for each mini-batch [21]. Batch normalization significantly reduces211

the problem of coordinating updates across many layers. and usually accelerates training by212

considerably reducing the number of epochs.213

• Dropout layer: Dropout constitutes one of the most famous regulization methods for preventing214

neural-networks from overfitting. The dropout layer is a non-learnable layer which is added215

between existing layers of a neural network model. It is applied to outputs of the prior layer and216

temporary sets a random set of outputs to zero with a pre-defined probability p, called dropout217

rate, which are fed to the next layer. The key idea in dropout and its motivation is to make each218

layer less sensitive to statistical fluctuations in the inputs [26].219

4. Data220

The data utilized in this research, concern daily historical data from Jan-01, 2017 to Oct-31,221

2020 of BTC, ETH and XRP in USD, which constitute the cryptocurrencies with the highest market222

capitalization. Moreover, the data for all cryptocurrencies were collected from the website https:223

//coinmarketcap.com.224

For evaluation purposes, the cryptocurrency data were divided in training set, validation set and225

testing set. More analytically the training set comprised of daily data from Jan-01, 2017 to Feb-18,226

2020 (1153 datapoints), the validation set from Mar-01, 2020 to May-31, 2020 (94 datapoints) while227

the testing set consisted of data from Jun-01, 2020 to Oct-31, 2020 (152 datapoints) which ensured a228

considerable amount of unseen out-of-sample datapoints for testing. Finally, it is worth noticing that229

all utilized datasets contained values that include the recent COVID-19 crisis in the beginning of 2020,230

which are characterized by considerable volatility and deviations from the regular behavior as well as231

structural breaks.232

Figure 2 presents the daily price of the cryptocurrencies BTC, ETH, and XRP. The interpretation233

of Figure 2 reveals that Ripple does not have large variability as Bitcoin and Etherium. It is worth234

mentioning that Ripple constitutes a different cryptocurrency, from the point of view that it is not235

mineable, it is pre-mined and it has small variability compared to the other two cryptocurrencies.236

Nevertheless, since Ripple is highly ranked in market capitalization, it is traditionally included in237

most research works in cryptocurrency market. Furtermore, Table 1 illustrates the descriptive statistics238

including Mean, Median, Maximum, Minimum, Standard Deviation (Std. Dev.), Skewness and Kurtosis239

for each cryptocurrency and CCi30 index while Table 2 summarizes the up and down movements in240

the prices and the corresponding percentages.241

Next, following the novel framework, which was originally proposed by Livieris et al. [2] all242

cryptocurrency data are initially transformed based on the returns transformation in order to satisfy243

the stationarity property and to be “suitable” for fitting a deep neural network model.244

https://coinmarketcap.com
https://coinmarketcap.com
https://coinmarketcap.com
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(a)Bitcoin

(b)Etherium

(c)Ripple

Figure 2. Daily price of cryptocurrencies BTC, ETH and XRP in USD from Jan-01, 2017 to Oct-31, 2020
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Data Minimum Maximum Mean Std. Dev. Median Skewness Kurtosis

BTC Training set 777.76 19497.40 6459.19 3496.35 6588.31 0.44 0.26
Validation set 4970.79 9951.52 7810.27 1358.18 7801.33 -0.25 -1.08
Testing set 9045.39 13780.99 10663.35 1178.23 10680.84 0.47 -0.46

ETH Training set 8.17 1396.42 291.33 240.22 217.05 1.71 3.03
Validation set 110.61 243.53 181.16 35.93 192.09 -0.35 -1.12
Testing set 222.96 477.05 328.80 71.57 353.21 -0.26 -1.44

XRP Training set 0.01 3.38 0.39 0.36 0.30 3.68 19.98
Validation set 0.14 0.24 0.19 0.02 0.20 -0.23 -0.26
Testing set 0.18 0.31 0.24 0.04 0.24 0.15 -1.00

Table 1. Descriptive statistics for BTC, ETH and XRP data

Data Up Down

BTC Training set 630 54.74% 521 45.26%
Validation set 50 53.76% 43 46.24%

Testing set 87 57.24% 65 42.76%

ETH Training set 577 50.22% 572 49.78%
Validation set 51 54.84% 42 45.16%

Testing set 85 55.92% 67 44.08%

XRP Training set 538 46.74% 613 53.26%
Validation set 52 55.91% 41 44.09%

Testing set 80 52.63% 72 47.37%

Table 2. The number of up and down movements of BTC, ETH and XRP data

Table 3 reports the t-statistics and the associated p-values of the Augmented Dickey-Fuller (ADF)245

test [27,28] performed on the level (Levels) of the cryptocurrency series as well as of the corresponding246

transformed time-series. Notice that (∗) denotes statistical significance at the 5% critical level. The247

interpretation of Table 3 reveals that BTC, ETH and XRP time-series possess a unit root which implies248

that these series are non-stationary. Additionally, the corresponding p-value of the transformed series249

are practically zero, which denotes that they satisfy the stationarity property and are “suitable” fitting250

a deep learning model.251

Time-series t-statistic p-value

Levels
BTC -1.831855 0.364765
ETH -2.058319 0.261601
XRP -3.880291 0.002185

Transformed
BTC -36.832969 0.000000∗

ETH -36.832969 0.000000∗

XRP -36.832969 0.000000∗

Table 3. ADF unit root test of all cryptocurrency time-series

Finally, it is worth noticing that all deep learning models were trained using the transformed252

series and the inverse transformations were applied for calculating the prediction for the levels of the253

original time-series.254

5. Numerical experiments255

In this section, we conducted an extensive experimental analysis to examine and evaluate the256

performance of proposed multi-input deep learning model in forecasting the cryptocurrency prices of257

Bitcoin, Etherium and Ripple.258
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The proposed model was evaluated against two CNN-LSTM models: Model1 and Model2. Model1259

is trained with only one cryptocurrency data(i.e. BTC, ETH or XRP), Model2 is trained with all three260

cryptocurrency data, as well as the proposed MICDL model.261

• Model1 consists of a convolutional layer of 16 filters of size (2; ), followed by an average pooling262

layer of size 2, a LSTM layer of 50 units, a batch normalization layer a dropout out layer with263

p = 0.4, a dense layer of 64 neurons, a batch normalization layer a dropout out layer with p = 0.2264

and an output layer of one neuron.265

• Model2 consists of a convolutional layer of 32 filters of size (2; ), followed by an average pooling266

layer of size 2, a LSTM layer of 50 units, a batch normalization layer a dropout out layer with267

p = 0.5, a dense layer of 128 neurons, a batch normalization layer a dropout out layer with p = 0.2268

and an output layer of one neuron.269

• MICDL model consists of 3 convolutional layers with 16 filters of size (2; ), each one takes as270

input a unique cryptocurrency time-series data, i.e. BTC, ETH and XRP. Each convolutional layer271

is followed by a Average pooling layer of size (2; ) and a LSTM layer with 50 units. The outputs272

of the LSTM layers are merged by a concatenate layer which is followed by a dense layer of 256273

neurons, a batch normalization layer, a dropout layer with p = 0.3 a dense layer of 64 neurons, a274

batch normalization layer, a dropout layer with p = 0.2 and a final output layer of one neuron.275

Each cryptocurrency prediction model was trained utilizing two different Lag values i.e 7 (1 week)276

and 14 (2 weeks) while their hyper-parameters were optimized under exhaustive experimentation277

(used various number of filters in convolutional layers, units in LSTM layers, neurons in dense layers,278

values of dropout rate).279

For evaluating the regression performance of all forecasting models we utilized the performance280

metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination281

R2, which are respectively defined by282

MAE =
1
N

N

∑
t=1
|yt − ŷt|

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)2

R2 = 1−

N

∑
t=1

(yt − ŷt)
2

N

∑
t=1

(yt − ȳ)2

where N is the number of forecasts, yt is the actual value, ŷt is the predicted value and ȳ = 1
n ∑N

t=1 yt is283

the mean of the actual values.284

Furthermore, for the binary classification problem of directional movement (price increasement or285

decreasement on the following day with respect to the today’s price), we utilized the metrics: Accuracy286

(Acc), Geometric Mean (GM), Sensitivity (Sen) and Specificity (Spe), which are respectively defined by287

Acc =
TP + TN

TP + FP + FN + FP

GM =
√

TP · TN

Spe =
TP

TP + FN

Spe =
TN

TN + FP
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where TP stands for the number of values which were correctly identified to be increased, TN stands288

for the number of values which were correctly identified to be decreased, FP (type I error) stands for289

the number of values which were misidentified to be increased and FN (type II error) stands for the290

number of values which misidentified to be decreased.291

Moreover, the performance metric Area Under Curve (AUC) was included in our experimental292

analysis which is presented using the Receiver Operating Characteristic (ROC) curve. Notice that ROC293

curve is created by plotting the true positive rate (Sensitivity) against the false positive rate (Specificity)294

at various threshold settings.295

All models were trained with Root Mean Square Propagation (RMSProp) [29]. Rectifier Linear296

Unit (ReLU) activation function was utilized as activaton function except for the output layer where297

linear activation was used. In all layers, kernel and bias initializer were set as default as well as the298

recurrent initializer in the LSTM layers. Additionally, in order to avoid overfitting we used the early299

stopping technique based on “validation loss”.300

At this point, it is worth mentioning that the performance metrics AUC and GM as well as the301

balance between Sen and Spe present the information provided by a confusion matrix in compact form;302

hense, they constitute the proper metrics to evaluate the ability of model of not overfitting the training303

data.304

Tables 4, 5 and 6 summarize the performance of all forecasting models, based on BTC, ETH and305

XRP data, respectively. Clearly, all model exhibited similar performance, regarding the performance306

metrics MAE, RMSE and R2. By comparing the performance of Model2 and MICDL with the307

performance of Model1, we can easily conclude that the utilization of all three series in the training308

data did not developed a forecasting model with better regression performance. More specifically, all309

models reported almost identical regression performance.310

In contrast, regarding the classification problem of forecasting the price movement both MICDL311

and Model2 considerably outperformed Model1, regarding all Lag values and cryptocurrencies. More312

specifically, for Lag value 7, Model1 reported 20.058, 25.77 and 22.031 GM score for BTC, ETH and XRP313

while Model2 reported 26.567, 23.961 and 22.274 and MICDL reported 30.886, 29.582 and 25.053 in the314

same situations. Regarding Lag value 14, Model1 exhibited 27.962, 27.888 and 22.418 GM score for BTC,315

ETH and XRP while Model2 exhibited 23.727, 27.930 and 23.351 and MICDL exhibited 29.173, 30.461316

and 26.157 in the same situations. Additionally, both MICDL and Model2 reported better balance317

between Sen and Spe metrics compared to Model1, regarding all cryptocurrencies and Lag values.318

Finally, it is worth mentioning, that Model1 and Model2 reported better classification performance for319

Lag value 14, while MICDL reported similar performance for both Lag values.320

The interpretation of Tables 4-6 show that Model1 has overfitted the training data and it is not able321

to make reliable price movement predictions which implies that the utilization of all cryptocurrencies322

in the training data has benefitted the development of prediction models with better classification323

performance. Additionally, by comparing the performance of the proposed model MICDL with that324

of Model2, we point out that the special architecture of MICDL has better exploited the training325

data and is able to predict price movements with higher accuracy and reliability. Finally, it is worth326

mentioning that MICDL considerably outperformed both Model1 and Model2 reporting 12.5%-54%327

and 4.33%-22.95% higher GM score for Lag values 7 and 14, respectively as well as presenting the best328

balance between Sen and Spe metrics.329

Based on the previous analysis, we are able to conclude that the utilization of all cryptocurrencies330

in the training data but most significantly the multi-input architecture of the proposed MICDL has331

developed a forecasting model with the best regression and classification performance. Although the332

R2 metric presents that all models have equally fitted the training data and are able to exhibit accurate333

cryptocurrency predictions, the metrics GM, Sen and Spe reveal that the utilization of all series in334

the training data, provided models with improved performance regarding the directional movement335

problem. This indicates that although Model1 is able to predict a value close to the next value, it cannot336

provide any reliable information if the cryptocurrency price will increase or decrease the next day.337
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Moreover, the architecture of MICDL model developed a model which has efficiently exploited the338

information provided in the training set and is able to provide accurate and reliable price movement339

prediction without degradating its regression performance.340

Model Lag MAE RMSE R2 Accuracy AUC GM Sen Spe

Model1 169.817 256.688 0.953 55.03% 0.494 20.058 0.881 0.108
Model2 7 169.604 256.318 0.953 53.64% 0.497 26.567 0.770 0.224
MICDL 170.761 257.728 0.952 53.04% 0.502 30.886 0.698 0.306

Model1 171.292 262.339 0.950 53.53% 0.504 27.962 0.720 0.288
Model2 14 170.105 256.849 0.952 52.60% 0.506 23.727 0.645 0.367
MICDL 171.147 257.847 0.952 51.88% 0.508 29.173 0.582 0.434

Table 4. Performance of the evaluated models for all BTC data.

Model Lag MAE RMSE R2 Accuracy AUC GM Sen Spe

Model1 9.172 13.517 0.964 51.51% 0.495 25.770 0.666 0.324
Model2 7 9.302 13.591 0.964 48.85% 0.498 23.961 0.419 0.576
MICDL 9.233 13.551 0.964 50.86% 0.504 29.582 0.483 0.526

Model1 9.309 13.657 0.964 49.57% 0.482 27.888 0.596 0.369
Model2 14 9.196 13.539 0.964 50.38% 0.503 27.930 0.513 0.492
MICDL 9.146 13.492 0.964 51.11% 0.495 30.461 0.628 0.363

Table 5. Performance of the evaluated models for all ETH data.

Model Lag MAE RMSE R2 Accuracy AUC GM Sen Spe

Model1 0.005 0.007 0.960 48.97% 0.497 22.031 0.348 0.646
Model2 7 0.005 0.007 0.958 49.61% 0.497 22.274 0.475 0.520
MICDL 0.005 0.007 0.958 49.07% 0.498 25.053 0.366 0.630

Model1 0.005 0.007 0.962 49.34% 0.499 22.418 0.391 0.607
Model2 14 0.006 0.009 0.936 49.23% 0.501 23.351 0.340 0.662
MICDL 0.007 0.009 0.953 49.23% 0.495 26.157 0.442 0.549

Table 6. Performance of the evaluated models for all XRP data.

Next, we attempt to provide statistical evidences about the efficiency and reliability of the341

proposed MICDL model’s forecasts. In more detail, for rejecting the hypothesis H0 that all342

cryptocurrency models performed equally well for a given level, we utilized the non-parametric343

Friedman Aligned Ranking (FAR) [30] test. In addition, in order to examine if the differences in the344

performance of the models are statistically significant, we applied the post-hoc Finner test [31] with345

significance level α = 5%.346

Tables 7, 8 and 9 report the statistical analysis, performed by nonparametric multiple comparison,347

relative to MAE, RMSE, and R2 performance metrics. Regarding the regression performance of the348

evaluated models similar conclusions can be made with the previous analysis. More specifically, the349

interpretation of Tables 7-9 reveals that all models performed equally well, since the differences in350

their regression performance is not significantly significant.351

In sequel, for examining the superioty of MICDL, regarding the problem of predicting future352

cryptocurrency directional movement, we conduct a nonparametric multiple comparison relative to353

AUC and GM metrics. Additionally, to measure the difference in the balance of Sen and Spe metrics,354

we utilize a new metric defined as the product of these two metrics, i.e. Sen×Spe. It is worth noticing355

that AUC, GM and Sen×Spe metrics evaluate the ability of model of not overfitting the training data;356

hence, presenting the information provided by a confusion matrix in compact form.357
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Series Friedman Finner post-hoc test
Ranking p-value H0

MICDL 11.5 − −
Model2 7.167 0.29398 accepted
Model1 9.833 0.38694 accepted

Table 7. FAR test and Finner post hoc test based on MAE metric

Series Friedman Finner post-hoc test
Ranking p-value H0

Model2 8.4167 − −
MICDL 9.4167 0.745603 accepted
Model1 10.667 0.71420 accepted

Table 8. FAR test and Finner post hoc test based on RMSE metric

Series Friedman Finner post-hoc test
Ranking p-value H0

Model1 8.0833 − −
MICDL 9.5 0.587788 accepted
Model2 10.9167 0.645784 accepted

Table 9. FAR test and Finner post hoc test based on R2 metric

Tables 10, 11 and 12 present the statistical analysis, performed by nonparametric multiple358

comparison, relative to AUC, GM, and Sen×Spe metrics. More specifically, the interpretation of359

Tables 10-12 provides statistical evidence that MICDL outperformed both Model1 and Model2 and360

provides more reliable forecasts.361

Series Friedman Finner post-hoc test
Ranking p-value H0

MICDL 6.917 − −
Model2 8.250 0.66531 accepted
Model1 13.333 0.07332 reject

Table 10. FAR test and Finner post hoc test based on AUC metric

Series Friedman Finner post-hoc test
Ranking p-value H0

MICDL 3.500 − −
Model2 12.500 0.006989 reject
Model1 12.500 0.006989 reject

Table 11. FAR test and Finner post hoc test based on GM metric

Series Friedman Finner post-hoc test
Ranking p-value H0

MICDL 3.500 − −
Model1 11.833 0.006857 reject
Model2 13.167 0.003419 reject

Table 12. FAR test and Finner post hoc test based on Sen×Spe metric
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6. Discussion, conclusions & future research362

In this research, we proposed a deep neural network model based on a multi-input archtecture363

for the prediction of cryptocurrency price and movement. The proposed prediction model uses364

as inputs cryptocurrency data which handles them independently in order each cryptocurrency365

information to be initially exploited and processed, separately. More specifically, each cryptocurrency366

data consists of inputs to different convolutional and LSTM layers which are utilized for learning the367

internal representation and identifying short-term and long-term dependencies of each cryptocurrency,368

respectively. Next, the model merges the processed data obtained from the output vectors of LSTM369

layers and further process them for making the final prediction. It is worth noticing that all utilized370

cryptocurrency time-series were transformed based on returns transformation in order to satisfy the371

stationarity property and be “suitable” for fitting the proposed model.372

We conducted a coprehensive experimental analysis using a sufficient amount of cryptocurrency373

data from the three cryptocurrencies with the highest market capitalization i.e. Bitcoin , Etherium and374

Ripple. The detailed experimental analysis highlighted that the proposed model has the ability to375

efficiently exploit mixed cryptocurrency data, reduce overfitting and secure lower computational cost376

compared to a traditional fully-connected deep neural network in terms of lower number of weights377

(and consequently less computational time).378

Based on the experimental analysis, we are able to conclude that the utilization of all379

cryptocurrencies in the training data but most significantly the multi-input architecture of the proposed380

MICDL has developed a forecasting model with the best regression and classification performance.381

It is worth taking into consideration that although the regression metrics reported that all models382

are equivalent based on their performance which has been also statistically confirmed, in practice383

they are not. The classification metrics, especially GM and Sen×Spe, highlighted that the utilization384

of all cryptocurrency data, can assist the development of prediction models which exhibit better385

directional movement prediction; and that the architecture of proposed model has efficiently exploited386

the information provided in the training data and it is able to provide accurate and reliable price and387

movement predictions.388

A common limitation of traditional approaches is that they focused on achieving better389

forecasting performance by exploiting more sophisticated models and techniques, usually ignoring390

the development of a sophisticated training dataset containing more useful information. In more391

detail, they do not treat each cryptocurrency independently, ignoring its conceivable relations with392

other cryptocurrencies and they don’t take into consideration the complexity and non-stationarity of393

cryptocurrency time-series data. In this research, we proposed a different approach and also presented394

a new methodology for the development of accurate and reliable forecasting models.395

It is worth mentioning that cryptocurrency investors and financial researchers are more interested396

in the future cryptocurrency price movements rather than knowing the exact future price for making397

proper investment decisions [2,11].By taking into consideration that directional movement prediction398

problem is of higher significance than the price prediction problem, we can conclude that the proposed399

model is generally preferable for supporting policy decision-making and cryptocurrency markets400

behavior.401

During the last decade, machine learning and deep learning have been widely adopted for402

assisting financial researchers and cryptocurrency investors in decision support and portfolio403

management. Nevertheless, a natural question which rises is “how the widespread adoption of prediction404

models would feedback into future predictions?” Currently, cryptocurrencies follow a random walk process405

[2,11,12]; however, the increasing usage of prediction models may possibly change the behavior of406

cryptocurrencies in the future. In other words, the increasing dependency of investors on forecasting407

models’ predictions for portfolio optimization will ultimately result in affecting investors’ decisions408

and cryptocurrencies’ fluctuations and prices.409

In addition, the utilized cryptocurrencies in this research were selected because they constitute410

the cryptocurrencies with the highest market capitalization. As a result, the proposed work should411
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be considered as a first approach for obtaining better forecasting performance, regarding future412

cryptocurrency prediction. Clearly, the proposed methodology could be extended with the adoption413

of more cryptocurrencies. Such an extension with more cryptocurrencies could introduce new criteria,414

which may conceivably influence and improve the forecasting performance; thus more experiments415

are certainly needed and this is our major concern for future research. Moreover, one significant416

issue which we should also be thoroughly investigated in the future is the adoption of cryptocurrency417

information such as average daily price, open daily price, close daily price, high and low daily prices as418

well as the daily volume of trades or even economic and technical trading indicators [32,33]. However,419

the rising questions: "which cryptocurrencies are more correlated" and "which features have greater impact420

in price prediction" are still under consideration. Furthermore, another interesting direction for future421

research could be the evaluation of the proposed model on high-frequency data.422

Finally, since our experiments are quite encouraging, a promising idea is to enhance the propose423

MICDL model with sophisticated pre-processing techniques based on moving average and exponential424

smoothing.425
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