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Abstract

Artificial intelligence has enabled the development of moresophisticated and more efficient stu-
dent models which represent and detect a broader range of student behavior than was previously
possible. In this work, we describe the implementation of a user-friendly software tool for pre-
dicting the students’ performance in the course of ”Mathematics” which is based on a neural
network classifier. This tool has a simple interface and can be used by an educator for classifying
students and distinguishing students with low achievements or weak students who are likely to
have low achievements.
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1. Introduction

During the last few years, the application of artificial intelligence in education has grown
exponentially, spurred by the fact that it allows us to discover new, interesting and useful knowl-
edge about students. Educational data mining (EDM) is an emerging discipline, concerned with
developing methods for exploring the unique types of data that come from educational context.
While traditional database queries can only answer questions such as”find the students who
failed the examinations”, data mining can provide answers to more abstract questionslike ”find
the students who will possibly succeed the examinations”. One of the key areas of the applica-
tion of EDM is the development of student models that would predict student characteristics or
performances in their educational institutions. Hence, researchers have begun to investigate var-
ious data mining methods to help educators to evaluate and improve the structure of their course
context (see [17, 18] and the references therein).

The academic achievement of higher secondary school education (Lyceum) in Greece is a
deciding factor in the life of any student. In fact, Lyceum acts like a bridge between school edu-
cation and higher learning specializations that are offered by universities and higher technologi-
cal educational institutes. Limiting the students that fail in the final examinations is considered
essential and therefore the ability to predict weak students could be useful in a great number of
different ways. More specifically, the ability of predicting thestudents’ performance with high
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accuracy in the middle of the academical period is very significant for an educator for identify-
ing slow learners and distinguishing students with low achievements or weak students who are
likely to have low achievements. By recognizing the students’ weaknesses the educators are able
to inform the students during their study and offer them additional support such as additional
learning activities, resources and learning tasks and therefore increase the quality of education
received by their students. Thus, a tool which could automatically recognize in time students’
performance and especially students with learning problems is really important for educators.

However, the idea of developing an accurate prediction model based on a classifier for auto-
matically identifying weak students is a very attractive and challenging task. Generally, datasets
from this domain skewed class distribution in which most cases are usually located to the one
class. Hence, a classifier induced from an imbalanced dataset has typically a low error rate at the
majority class and an unacceptable error rate for the minority classes.

In this work, we propose the application of an artificial neural network for predicting student’s
performance at the final examinations in the course of ”Mathematics”. Our aim is to identify the
best training algorithm for constructing an accurate prediction model. We have also evaluated
the classification accuracy of our neural network approach by comparing it with other well-
known classifiers such as decision trees, Bayesian networks, classification rules and support
vector machines. Moreover, we have incorporated our neuralnetwork classifier in a user-friendly
software tool for the prediction of student’s performance in order to making this task easier for
educators to identify weak students with learning problemsin time.
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