Αριθμητική Ανάλυση ΙΙ Ιούλιος 2005

Θέμα 10: Δίδεται η ακολουθία:

(1)
$$x_{\nu+1} = \frac{(\lambda x_{\nu} + \eta \mu x_{\nu} + 1)}{1 + \lambda}, \quad \lambda \in \mathbb{R} - \{-1\}$$

και ζητείται:

- (α) Να εξετασθεί η (1) ως προς τη σύγκλιση, με κατάλ
ληλο προσδιορισμό της παραμέτρου $\lambda.$
- (β) Να εξετασθεί εάν το όριο της (1) είναι η μόνη ρίζα της εξίσωσης:

$$x + \eta \mu x = 1.$$

(γ) Υπάρχει βέλτιστη τιμή του λ που να εξασφαλίζει υψηλή ταχύτητα σύγκλισης της
(1); Ποια είναι;

Θέμα 20: Στο γραμμικό σύστημα:

$2x_1$	—	x_2			=	2
$-x_1$	+	$2x_2$	—	x_3	=	-1
$-x_2$	+	$2x_3$	—	x_4	=	0
$-x_3$	+	$2x_4$	_	x_5	=	0.
$-x_4$	+	$2x_5$	—	x_6	=	0
$-x_{5}$	+	$2x_6$	_	x_7	=	-1
$-x_6$	+	$2x_{7}$			=	2

Να αποδειχθεί:

(α) Ο πίναχας των συντελεστών των αγνώστων είναι θετικά ορισμένος.

(β) Να εφαρμοσθεί σ' αυτόν, η ανάλυση Choleskii για την εύρεση της λύσεώς του με βέλτιστο τρόπο.

(γ) Εσείς, μόνοι σας, πώς θα λύνατε το σύστημα; Δικαιολογήσατε την απάντησή σας.

Θέμα 3ο:

(α) Δώσατε τον ορισμό και την έκφραση του σφάλματος της Ερμιτιανής Προσέγγισης (Hermitian Approximation)

(β) Αποδείξατε τον τύπο του σφάλματος που δώσατε.

(γ) Τέλος, αποδείξατε το μονοσήμαντο του προσεγγιστικού πολυωνύμου Hermite.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ