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Abstract  
 Fluid-structure interaction (FSI) has important applications in biomedical engineering such as invasive 
drug delivery in the human brain, mechanics of fluid flow in distensible blood vessels and intracranial dynamics. 
Intracranial dynamics concerns the study of force interactions between soft tissues and fluid flows inside the 
brain. Many existing fluid-structure interaction approaches such as Immersed Boundary Method and Volume of 
Fluid do not satisfy conservation principles: conservation of mass and momentum and do not provide accurate 
resolution of the interfaces. This paper presents a physical and mathematical framework derived from first 
principles to solve a fluid-structure interaction (FSI) problem that satisfies both momentum and continuity 
balances and sharply tracks the interfaces between soft tissues and fluid. 
 The fluid and solid transport equations of mass and momentum are transformed into a moving, body-fitted 
reference frame. We present the motion of the conformal reference coordinate system using generalized 
curvilinear coordinates transformations. The proposed model accurately tracks the deformable interfaces 
between fluid and solid. 
 The equations describing fluid-structure interaction are coupled and consist of a nonlinear system of partial 
differential equations (PDEs). The governing PDEs are discretized using the finite volume method with both 
structured and unstructured meshes. Simultaneous solution approach using Newton-like methods was used 
instead of fixed-point iteration methods like SIMPLE algorithm due to strong coupling and inclusion of non-
linear reactions terms in the governing equations. In addition, a comparison of the direct solutions approach 
against fixed-point iteration methods is provided. 
  
 
1 INTRODUCTION 
 The brain is a complex organ composed of a porous parenchyma (gray and white matter) and fluids (CSF, 
blood). The CSF is contained in cavities within the brain, the ventricles, and in the subarachnoid space (SAS) 
that surrounds the brain. The CSF is produced in a pulsating manner from the choroid plexuses which are located 
on the walls of the ventricles. The ventricles are interconnected through the foramina and connected to the SAS 
through the foramina of Magendie and Luschke. The CSF is reabsorbed to venous blood through the arachnoid 
villi, located at the sagittal sinus [1]. A small portion of the CSF, two thirds of the constant production, seeps at 
each cardiac cycle from the porous brain parenchyma into the ventricular system. This seepage causes a pressure 
difference between the parenchyma and the lateral ventricles of the order of 1 mm Hg – transmural pressure [2]. 
The problems discussed in this study concern the understanding of intracranial dynamics and the mechanics of 
tissue deformation related to the enlargement of the brain ventricles and leading to a condition known as 
hydrocephalus. This pathological condition, affecting 70,000 people every year in US, causes symptoms such as 
headache, gait, dementia and if untreated may be fatal in both infants as well as adults [3]. 
 Understanding intracranial dynamics. Abnormal CSF flow dynamics is responsible for a number of brain 
disorders [4], [5] but variations in intracranial pressure (ICP) and CSF flow patterns in the brain under 
pathological conditions such as hydrocephalus are still poorly understood. Despite numerous detailed studies on 
the pattern and timing of CSF motion with MRI techniques [6]-[8] the causes and mechanical principles 
underlying intracranial dynamics of hydrocephalus are still controversial. Early studies suggested that large ICP 
differences between the ventricles and the subarachnoidal space are responsible for the development of 
hydrocephalus [4]. However, more recent studies show that communicating hydrocephalus is inconsistent with 
large transmantle pressure differences [9], [10] and this result was also obtained with CFD approaches [11]-[13]. 
 Complex geometry of human brain. This controversy is partially due to structural complexity of the human 
brain which is composed of porous tissue (gray and white matter) as well as fluid compartments (ventricles, 
subarachnoidal space, blood vessels). Most of the existing mathematical models studying the CSF flow consider 
a simplified one-dimensional motion of the fluid that interacts with the brain parenchyma [14]-[16]. 
Unfortunately, these models are inadequate to accurately quantify the intracranial dynamics of the cerebral 
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circulation since they do not address the complex structure of the human brain. Other studies that take into 
consideration the complex brain structure are limited to describing the flow in the narrow aqueduct of Sylvius 
[17], [18] or to apply relatively simple tank models [19]. Other CSF flow models are describing the brain as an  
electrical analogy [20]. For any work concerning the study of 
dynamics of CSF flow it is imperative to address the complexity of 
the brain structure and not oversimplify the problem. The complexity 
of the brain forces us to work with unstructured grids as the one 
constructed from a coronal section of a human brain depicted in 
Figure 1, because this is the only way to accurately represent its 
geometry. 
 ICP measurements from fluid mechanics simulations. Magnetic 
Resonance Imaging (MRI) is a widely used, non-invasive method to 
characterize the CSF volumetric flow rate in normal and 
pathophysiological conditions. This analytical technique allows us to 
quantify the velocity field in vivo very accurately. However, this 
technique cannot provide information about the intracranial pressure 
(ICP), which is critical for the evaluation of the patient’s status. Invasive techniques are required, involving the 
insertion of catheters in the brain [21]. We propose an alternative approach involving accurate MR 
measurements of the CSF flow field and the computational analysis of this flow by integrating MR images, 
image reconstruction tools and Computational Fluid Dynamics (CFD) software [12], [13]. 
 The brain is a complex organ with gyrations and arbitrary boundaries. Therefore, it is imperative to develop 
a methodology that is applicable in domains with complex shapes. The application of generalized curvilinear 
coordinates (GCC) provides the ability to model complex structures such as the brain. Section 2 presents the 
fluid and solid transport equations of mass and momentum transformed into a moving, body-fitted coordinate 
system using GCC. Section 3 describes the discretization of equations using the finite volume method in 
structured meshes. The solution approach used is a direct approach based on the inexact Newton method instead 
of the fixed-point iteration methods such as SIMPLE algorithm. A comparison of the direct solutions approach 
against fixed-point iteration method is presented in section 3. Section 4 presents the quantification of 
cerebrospinal fluid (CSF) flow field in the brain and the deformation of soft tissues of the human brain under the 
influence of the pulsatile flow. 
 
2 METHODOLOGY AND MATHEMATICAL FORMULATION 
 In this section we present the fundamental fluid and solid conservation laws. The governing equations for 
both phases are transformed to a moving, body-fitted coordinate system using the concept of generalized 
curvilinear coordinates (GCC) [22]. 
 Mathematical formulation for the fluid equations in generalized coordinates. The governing equations 
(continuity and Navier-Stokes equations) in Cartesian coordinates for a two-dimensional, Newtonian and 
incompressible fluid can be written in dimensional form as: 
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It is advantageous to build a sharp interface tracking method for moving objects or phase boundaries by 
expressing the motion of both phases (fluid and solid) with the help of an Eulerian-Langrangian technique. Early 
researchers proposed mathematical relations for temporal changes of a transport property within “moving” 
reference frames [23], [24]. We implemented such a body-fitted moving grid by extending the generalized 
curvilinear transformation as depicted in Figure 2. Using the Eulerian-Langrangian approach, the continuity and 
momentum equations in Cartesian coordinates, Eqs. (1)-(3), can be transformed in a moving body-fitted 
approach [23]. In two-dimensions, the continuity and fluid transport equations in curvilinear coordinates 
( ( , , ),x y tξ ξ= ( , , )x y tη η= ) for an incompressible fluid in a moving frame can be written as in Eqs. (4)-(6): 
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Figure 1. Unstructured grid of a 
coronal human brain section. 
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Here u, v are the components of the velocity vector of the fluid, p the static pressure of the fluid, , , ,x x y yξ η ξ η  
are the metrics of the transformation, J  is the determinant of the inverse Jacobian of the transformation from the 
physical moving domain to the normalized reference domain (Eq. (7)), 2 2

1q x yη η= + , 2q x x y yξ η ξ η= +  and 
2 2

3q x yξ ξ= + . ,U V are the contra-variant velocity components as defined in Eq. (7) and µ  is the viscosity of the 
fluid. 
 If we adjust the grid movement to accurately track the interface between solid tissue and fluid flow, the fluid 
and solid phase are separated sharply even when their interface boundary is moving. The arbitrary “Eulerian-
Langrangian” grid motion is made possible by considering the Jacobian of the transformation, J(t), as a function 
of time and the transformed (contra-variant) velocities as a function of the current physical u, v velocities of the 
fluid and the velocities of the grid motion, x , y . 
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Figure 2. Moving reference frame   

Eqs. (4)-(6) describe the motion of a fluid in a complex geometry that can arbitrarily change its shape and this is 
possible with the introduction of the above described formulation. In the next subsection we will present the 
constitutive equations that describe the displacement of a linear elastic body of an arbitrary shape. The coupling 
of the fluid and solid equations in generalized coordinates will help us to solve problems describing the 
interaction of fluid and solid phases. 
 Mathematical formulation for the solid equations in generalized coordinates. The governing equations 
(Newton’s Law and incompressibility condition) in Cartesian coordinates for a two-dimensional, linear elastic 
incompressible isotropic solid can be written in dimensional form as: 
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where α, β are the displacements in x and y directions and G is the shear modulus ( / 2(1 )G Eν ν= + , where E is 
the Young modulus and ν is Poisson’s ratio). If we consider the brain parenchyma as an incompressible material 
we have to take under consideration that 0q∇⋅ =  (where q  is the vector of displacement) and to replace the 
term ( ) ( )G qλ + ∇ ∇⋅  by −∇Ω  [25]. The term 0q∇⋅ =  means that the volume remains the same as the shape of 
the elastic body changes; this implies that the Poisson’s ratio (ν) remains constant and equal to 0.5. In order to 
evaluate stresses and strains we will use the relations shown below that combine stresses with strains and 
displacements. 

2 2x xG G
x
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∂

, (11) 
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xy xyG G
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Where xσ  is the normal stress in x-direction yσ  is the normal stress in y-direction and xyτ  is the shear stress. 
The system of equations for the linear elastic solid is written in generalized coordinates as: 
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Eqs. (14)-(16) describe the displacements of a two-dimensional linear elastic body with an arbitrary geometry. 
These solid equations are to be coupled with the fluid flow (e.g. blood or CSF) by kinematic and force boundary 
conditions that will be described further. Specifying appropriate boundary conditions at the interface between 
fluid and solid we can predict the displacement and stress fields that the solid experiences under the influence of 
the fluid. The appropriate boundary conditions for the fluid-solid interaction are presented in the next subsection. 
 Boundary conditions of the problem. At the lower structure (AFEB), an incompressible viscous and 
Newtonian fluid is flowing and the boundary conditions for the fluid are shown in Figure 3 (bottom). More 
precisely, at the Inflow (AB), we impose 
a time dependent condition 

in ( ) (1.0 0.5sin(2 ))u t a tπ= +  that 
describes the pulsatile motion of the 
blood into the vessels or the CSF in the 
ventricles of the human brain. The wall 
(AF) is rigid and we impose no slip 
boundary condition ( 0u v= = ). The 
wall (BE) is flexible and we impose that 
the fluid velocity is equal to the velocity 
of the surface ( ,surface surfaceu u v v= = ). 
Finally for the outflow (FE) we impose 
zero derivatives, / / 0u x v x∂ ∂ = ∂ ∂ =  meaning that the velocity of the fluid has obtained the parabolic profile. 
 At the upper structure (BEDC) we consider a linear elastic and incompressible solid, the boundary 
conditions for the solid structure are shown in Figure 3 (top). More precisely, at the left (CB) and right (ED) 
boundary surfaces of the solid we impose a wall boundary condition for the solid, namely the displacements are 
zero at these surfaces ( )0α β= =  and the pressure remains constant on the wall ( )/ 0x∂Ω ∂ = . On the other two 
surfaces we impose a free surface boundary conditions, namely the normal stresses ( ,x yσ σ ) on the surfaces has 
to be zero, this boils down to the imposed boundary conditions, ( )/ 0, / 0,x y outx y pε α ε β= ∂ ∂ = = ∂ ∂ = Ω = . 
 
3 NUMERICAL SOLUTION 
 Finite volume discretization in curvilinear coordinates. When using Finite Differences or Finite Volumes 
methods to calculate partial derivatives it would be natural to place all state variables (p, u, v, ρ, T, etc.) in an 
equidistant grid, represent all variables on the grid points, and then use centered differences as an approximation 
to the derivatives. Unfortunately this approach does not work well especially in convective dominated flows 
( ( / ) 1Peclet uLρ µ= >> . A common solution to this is using a staggered grid approach [26]. This means that 

instead of placing all variables in one grid, different variables are placed on different grids, which are shifted half 
a grid point. On this stagger grid we use differential operators that return the result shifted half a point up or 
down along the grid. These operators use adjacent grid points instead of alternate grid points. 
 In our approach a grid system is generated numerically at the positions marked with triangles. The scalar 
variables (p, ρ, k etc.) are located in the arithmetic center of the four adjacent grids marked by the circle. Both u 
and U are located at the midpoint of the east and west faces of the control volume. Both v and V are located at 
the midpoint of the north and south faces of the control volume (Figure 4). For a typical grid node P the finite-
difference approximation to the conservation laws (x, y-momentum, continuity, etc.) can be performed by taking 
the integral of the equation (Eqs. (4)-(6) and (14)-(16)) over the control volume and discretizing it [23], [24]. 
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Figure 3. Boundary conditions of the problem 
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 The upwind scheme is also introduced to our formulation in order to overcome problems concerning the 
high convection terms in the momentum equations. With this 
formulation we minimize the influence of the convection 
terms retaining the diffusion terms unchanged as the velocity 
increases in the flow field. For the convection terms we have 
to make some assumptions, discretizing them with first order 
accuracy instead of the second order that the diffusion terms 
will retain. When the local velocity gradients are large the 
solution is inaccurate. More accurate solution is obtained if 
higher order upwind scheme are utilized [27] or with the use 
of the power law scheme [26]. 
 If an analytical relationship for converting the (x,y) 
domain into the (ξ,η) domain does not exist, we can use the 
concept of the approximate metrics of the transformation as 
shown in Eq. (17). We use finite differences to describe the 
metrics of the transformation for a point P (Figure 5) using a centered difference evaluation [27]: 

Accordingly, the determinant of the inverse Jacobian of the transformation becomes:  

1, 1, , 1 , 1 , 1 , 1 1, 1,1 1det .j k j k j k j k j k j k j k j kx x y y x x y y
J J x y x yξ η η ξ ξ η η ξ

+ − + − + − + −− − − − − −
= = − = −

∆ ∆ ∆ ∆
 (18) 

Without loss of generality we arbitrarily choose 1ξ η∆ = ∆ =  [23] (the size of the generalized grid), a uniform 

grid is assumed for ( , )ξ η . 

 Direct and Iterative solution approaches to Navier-Stokes Equations. Many problems in transport processes 
and fluid dynamics require solution of a coupled system in which the dominant variable of each equation occurs 
in other equations too (momentum and continuity). In the simultaneous approach, all equations are considered 
part of a single system and the discretized equations have a block-banded structure [28]. Solving a 
multidimensional problem on a very fine grid with governing equations that are non-linear, using direct solution 
of these equations would be expensive and time consuming. In addition, the computational effort involved for 
the calculation of Jacobians (N3 x N3) is expensive especially when the discretization is too fine. However, when 
the governing equations are non-linear and tightly coupled, the direct solution approach would be the best 
solution strategy. 
 For solving non-linear equations, non-linear solvers like Newton-like methods and global methods can be 
used. The path to a solution will depend on good initial guess values and the actual path to the solution. Newton-
like methods are much faster with a good initial guess and with a good estimate of the solution but may suffer 
from local minima. Global methods are more robust and offer security for convergence. There exists a trade-off 
in using local and global methods. 
 Iterative methods employ a guess-correct philosophy that gradually improves the guessed solution by 
repeated use of the discrete governing equations. The governing partial differential equations in fluid dynamics 
tend to be solved iteratively [29], [30]. When the governing equations are non-linear, it is preferable to treat each 
equation considering it to have one unknown, temporarily treating other variables as known using the current 
values. For instance, SIMPLE like methods approximate to Gauss-Siedel method in which the unknowns 
(velocity and pressure correction) are solved sequentially. In semi-implicit methods, is hard to analyze the 
convergence of these methods and the selection of under relaxation factors is specific to the system being 
analyzed [28]. In contrast to the simultaneous approach, the calculation of the Jacobians (N x N) required for 
each sub-system is not so expensive when using a non-linear solver thus making the method convenient to use 
for very fine grid sizes. Figure 6 illustrates the time that the direct solution approach and the fixed-point iteration 
methodology need to converge to the solution for the same grid volumes. It can be observed that the direct 
solution approach converges faster for small number of grid volumes but as the size of the grid increases the 
computational time increases exponentially. On the other hand, the solution of the fixed-point iteration method 
converges slower than the direct methodology for smaller grids. 

 
Figure 4. Configuration of a stagger grid 
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Figure 5. Equivalent computational grid in the 
physical domain  
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 In the proposed methodology, we are solving the linear subsystem of equations simultaneously by applying 
a direct numerical approach as described in the previous paragraphs. In order to solve the non-linear system of 
equations specifically developed solver algorithms based 
on inexact Newton method and high-speed sparse matrix 
solution techniques are used [31], [32]. We have refined 
these techniques for the solution of large-scale systems of 
algebraic equations in a reasonable amount of time. The 
current developed methodology is using the finite volume 
method in generalized curvilinear coordinates in both 
fluids and solids. This approach makes the numerical 
solution of the system easier especially due to the fact that 
no special interpolation is needed at the interface between 
the two media. Finally the conservation of mass and 
momentum for both phases is satisfied at least to the 
power of the accuracy of the solver. In the next section we 
present results that illustrate the described fluid-structure 
interaction methodology. These results provide the proof 
of concept that our approach is applicable to biomedical 
applications as the interactions of soft brain tissues with the pulsating CSF. 
 
4 RESULTS AND DISCUSSION 
 In this study we present two-dimensional results from the fluid-structure interaction model that can describe 
the interaction of soft tissue (brain parenchyma) with viscous fluid (CSF, blood). The quantities that usually are 
studied in fluid-solid interactions are the velocity of the fluid, the displacement of the solid structure and the 
pressure in both media. In this study we will also present results that concern normal and shear stresses on the 
two phases due to the motion of the fluid.  
 Fluid-structure interaction on a simple geometry. Figure 7 displays the two-dimensional velocity field for 
the fluid (bottom) and the displacement for the solid (top) at four different time steps during the cardiac cycle (1 
sec). The pressure field for the viscous fluid and the linear elastic body is also presented in Figure 7 at four 

different time steps during the cardiac cycle (1 sec). It is observed that as the inflow velocity of the fluid 
increases the solid displacement increases. The inflow velocity is considered as a plug flow and due to viscous 
forces the flow obtains the parabolic profile after a small distance from the inflow. The highest displacement of 
the solid occurs in the center of the media due to the fact that the solid cannot be displaced near the fixed walls 
(see boundary conditions).The pressure field in the fluid is higher at the inflow and an almost linear pressure 
drop occurs throughout the fluid. The solid experiences this pressure drop and the highest pressure in the solid 
structure occurs near the free surface that it is in immediate interaction with the fluid near the fluid inflow. The 
pressure in the linear elastic body exhibits a drop in the y-direction, with highest pressure at the interface with 
the fluid and lower at the top free surface. 
 Figure 8 displays the stresses acting on fluid and solid structure at the peak velocity of the fluid occurring at 
t = 0.2 sec. It is observed that the highest normal stresses occur near the inflow of the fluid for both structures, 
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Figure 6. Comparison of direct solution approach 
vs. the iterative solution approach (SIMPLE). 
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solid and fluid. The highest shearing stresses occur near the wall for the solid structure because the solid is fixed 
on the wall and cannot experience a motion. 

 Unstructured grids for the human brain. In the previous subsection, we presented the proof-of-concept for 
the developed FSI methodology on simplified geometry using structured grids. A future step would be to apply 
the developed mathematical FSI model to complex human brain structures constructed with unstructured grids. 
We have already modeled the complex structures of the human brain that include the ventricular system, the 
subarachnoid space (SAS) and the parenchyma using static unstructured grids [13]. Figure 9 illustrates the 
velocity field of the CSF in the ventricular and SAS structures on static unstructured grids. In these simulations, 
we were able to predict velocities very close to 
experimental MRI velocities and predict the pressure 
field, which is very difficult to be obtained otherwise 
non-invasively. Future directions include the application 
of the FSI model on these unstructured grids and the 
consistent representation of the human brain physiology 
and quantification of the soft brain tissues interactions 
with the biological fluids (CSF, blood). 
 Closing the presentation of the fluid-structure 
interaction model, we summarize the most important 
findings from the mathematical analysis and the 
advantages of the proposed model for the prediction of 
pathophysiological conditions without use of invasive 
techniques. The application of first principles models of 
fluid and solid mechanics provides the medical 
community with a computational tool to quantify tissue displacements in normal and pathological conditions in 
the human brain. 
 
5 CONCLUSIONS 
• A two-dimensional fluid-solid interaction model was presented for the prediction of the fluid-tissue 

interactions in normal and pathological conditions (hydrocephalus). 
• The proposed model can accurately predict the velocity field of the fluid, the total displacement of the solid 

and the pressure field in both phases (fluid and solid). 
• The extraction of normal and shearing stresses provide information for the forces acting on both structures. 
• This model gives the opportunity to design new treatments and predict pathologies without the need of in 

vivo testing of the patients. 
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