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Abstract. 
 The effects of blowing and suction on the steady compressible boundary-layer flow with adverse pressure 
gradient and heat transfer over a wedge are numerically examined. The fluid is considered to be a compressible, 
viscous and Newtonian ideal gas (air) and it is subjected to a constant velocity of suction/injection applied 
globally to the wedge or locally to specific slots on the surface. 
 The Reynolds-Averaged Boundary-Layer (RABL) equations and their boundary conditions are transformed 
using the compressible Falkner-Skan transformation. The resulting coupled and nonlinear system of PDEs is 
solved using the Keller box method. For the eddy-kinematic viscosity the turbulent models of Cebeci-Smith and 
Baldwin-Lomax are employed. For the turbulent Prandtl number the extended model of Kays-Crawford is used. 
 Numerical calculations are carried out for the case of an adiabatic, cooled or heated wall and for different 
values of the dimensionless pressure-gradient parameter (m). The obtained results show that the flow field can 
be controlled by the suction/injection velocity for different values of the parameter m. 
 

1 INTRODUCTION 

A common area of interest in the field of aerodynamics is the investigation of compressible two-dimensional 
steady turbulent flows. One of the characteristic flow configuration, which is of fundamental importance, is that 
of the flow over a wedge. This type of flow constitutes a general class of problems in fluid mechanics in which 
the free stream velocity is proportional to a power of the length co-ordinate measured from the stagnation point.  

The wedge flow investigated for the first time in 1931 by Falkner and Skan [1] which considered two-
dimensional incompressible wedge flow. The incompressible laminar heat transfer of wedge flow was studied in 
[2] using a differential transformation method, whereas, the transient heat transfer boundary layer flow on a 
wedge with sudden change of thermal boundary conditions of uniform wall temperature and heat flux was 
investigated in [3]. The effect of the variable viscosity on the Falkner-Skan flow with constant wall temperature 
was investigated in [4]. The laminar compressible MHD flow over a wedge with suction or injection has been 
investigated in [5].    

As far as the aerodynamics is concerned, the suction/injection has very often been used as an active 
aerodynamic flow control technique to prevent transition from laminar to turbulent flow as well as turbulent flow 
separation [6]. The combined influence of localized injection and localized suction retains the boundary-layer 
flow, reducing skin friction [7], [8]. Many passive and active techniques have been developed for the prevention 
or delay of flow separation. Passive techniques are currently employed via blown flaps on the tip of the aircraft 
wings or leading edge extensions and strakes on the nose of the wings (slats) or via vortex generators on various 
points on the wings [9]. Another means of boundary-layer control is by heating or cooling the wall [10]. 

The numerical investigation of the two–dimensional turbulent boundary-layer compressible flow, over a 
finite smooth and permeable flat surface, with an adverse pressure gradient and heat and mass transfer, was 
studied in [11]. It was found that the continuous suction/injection applied on the wall modulates the flow field 
and the separation point. The MHD incompressible laminar boundary-layer flow over a wedge with suction or 
injection was studied in [12]. 

As far as it could be investigated, the compressible turbulent boundary-layer flow over a wedge, has not been 
yet investigated. Hence, the aim of this work is the investigation of the classical wedge flow problem from the 
aerodynamics point of view. Thus, in the present paper the compressible turbulent boundary-layer flow, over a 
permeable wedge, in the presence of an adverse pressure gradient is numerically studied. The effects of localized 
suction, applied to the region of the separation point, are also examined. The boundary-layer flow is considered 
turbulent and two turbulent models are employed, those of Cebeci- Smith (C-S) and Baldwin-Lomax (B-L). 
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From the analysis of the obtained results it is concluded that localized suction influences the flow field and the 
separation point, rendering the above application a flow control technique. 
 
 
2 MATHEMATICAL FORMULATION 

The steady two-dimensional compressible turbulent boundary-layer flow over a permeable wedge is 
considered. The wedge is submerged in a heat-conducting perfect and Newtonian fluid (air) flowing with 
velocity u∞ towards the wedge (Figure 1). The fluid on the wedge is subjected to suction or blowing through the 
entire surface or locally from slots on various locations on the surface of the wedge whereas the temperature of 
the surface of the wedge is wT (x) .  

Under the above assumptions, the equations governing this type of flow are the Reynolds-Averaged 
Boundary-Layer (RABL) equations [10], [11]. Using the Bernoulli equation, the pressure term in the x-
momentum equation can be substituted by 

 

 

Figure 1. Flow configuration and coordinate system for the wedge. 
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where the subscript e refers to the conditions at the edge of the boundary layer. In the flow over the wedge the 
velocity at the edge of the boundary layer can be written as [12] 
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where u∞  is the free stream velocity and β is the Hartree pressure-gradient parameter that corresponds to 
/β ω π=  for a total angle ω  of the wedge. Using the abbreviation ρυ  for ρυ ρυ+  and omitting, for 

simplicity, the overbars on the basic time-average variables u, υ, ρ, p and T the equations of the problem can now 
be written as in [11]: 
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(5) 

It is worth mentioning here that the total enthalpy H for a perfect gas is defined by the expression: 

21

2pH c T u= +  (6) 

Due to the parabolic nature of the above equations, boundary conditions must be provided on two sides of the 
solution domain in addition to the initial conditions at x = x0. So, the boundary conditions of the problem under 
consideration are  
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w w0 : 0,  = ( ),  H=H ( )y u x xυ υ= = , 

)(),(: xHHxuuy ee = = = δ . 
(7) 

In the above boundary conditions (7) δ is a distance sufficiently far away from the wall where the u velocity and 
total enthalpy H reach their free-stream values and υw(x) is the mass transfer velocity at the wall. In the case of 
an impermeable wall υw(x) is equal to zero, for the case of suction υw(x) < 0 and for the case of injection υw(x) > 
0. Defining the eddy kinematic viscosity εm and turbulent Prandtl number Prt  by the expressions 
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the equations describing the problem can be written as 
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(11) 

and the boundary conditions are 

)(),(,0:0 xHHxuy ww = = =   = υυ , 

)(),(: xHHxuuy ee = = = δ . 
(12) 

The above system of equations (9)-(12) consists by a coupled and nonlinear system of partial differential 
equations (PDEs). In order to solve the system of PDEs numerically, the compressible version of the Falkner-
Skan transformation for a wedge is introduced, defined by 
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where f(x,y) is the dimensionless stream function. Using the definition of the stream function ψ, for a 
compressible flow, that satisfies the continuity equation (9), with the relations 
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and defining the dimensionless total energy ratio S as H/He, the system of the PDEs (9)-(12) becomes 
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where ηe is the dimensionless thickness of the boundary layer and primes denote partial differentiation with 
respect to η. The quantities b, C, c, d, e, m1, m2, etc. are defined as follows: 
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Finally, the problem under consideration is described by the system of equations (15) and (16), subjected to 
the boundary conditions (17), whereas the coefficients entering into the equations are defined by the expressions 
(18). 

3 TURBULENCE MODELS 

In this study two algebraic turbulence models, Cebeci-Smith (C-S) and Baldwin-Lomax (B-L), are employed 
for the calculation of the eddy–viscosity εm and a model for the turbulent–Prandtl number Prt. The C-S turbulent 
model [10], [13] is one of the simplest turbulence models and its accuracy has been explored for a wide range of 
experimental data. It is one of the “Zero–equation PDE models”, using only PDEs for the mean velocity field, 
and no turbulence PDEs [15]. It has been used for a wide range of engineering problems giving sufficiently 
accurate results [11], [16]. The C-S turbulent model is a two-layer algebraic eddy viscosity model. According to 
the above, the turbulent boundary–layer is treated as a composite layer consisting of inner and outer regions with 
separate expressions for the eddy-kinematic viscosity in each region. For the inner region (viscous sublayer) the 
Prandtl–Van Driest formulation is used while for the outer region the Clauser formulation [10]. 

Baldwin and Lomax improved the C-S turbulent model avoiding the necessity for finding the edge of the 
boundary–layer. B-L is an algebraic turbulent model that also treats the turbulent boundary–layer as a composite 
layer consisting of inner and outer regions. For the inner region the Prandtl–Van Driest formulation is used. For 
the outer region, Baldwin and Lomax introduced a new formulation according to which the product MAX MAXy F   
replaces *

euδ  in the Clauser formulation of the Cebeci–Smith model and the combination  2 /MAX DIF MAXy U F   
replaces DIFUδ  in the wake formulation [17]. 

The Baldwin–Lomax turbulence model was developed for use in two, or three, dimensional Navier–Stokes 
machine codes [18], [19] and the results from it are in a good agreement with experimental data. Many 
researchers have adopted the Baldwin–Lomax algebraic model for its simplicity, although many modifications to 
its basic form have been employed [20]. In order to investigate the mass transfer through the plate, in the 
Baldwin–Lomax model of this study, a formula for the suction/injection velocity, it is adopted from the Cebeci–
Smith model. So, the “damping–length” parameter +A  is not considered as a constant taking the value 26, but as 
a function of the local density and viscosity values [10]. Finally for the turbulent–Prandtl number Prt a 
modification of the extended Kays and Crawford’s model is used [8], [21]. 

 

4 NUMERICAL SOLUTION 

The numerical scheme used to solve the parabolic system of PDEs (15)-(18) is a version of the Keller–box 
method [10], [11], [13], [22]. The scheme is unconditionally stable, and second–order accuracy is achieved with 
arbitrary x and η spacing [23]. The governing equations are written as a first–order system and derivatives of the 
unknown functions f(x, η), S(x, η) with respect to η are introduced as new functions. Using central–difference 
derivatives for the unknown functions at the midpoints of the net rectangle, the resulting difference equations are 
implicit and nonlinear. The box–differencing scheme with Newton linearization is then applied to the first–order 
PDEs, giving rise to a block tridiagonal system, which is solved by the block elimination method [24].  

The derivative of the dimensionless heat-transfer parameter wS′  is considered to be equal to zero, 0wS′ = , 
describing no heat transfer between the plate and the fluid (adiabatic flow). For the heated/cooled of the wall the 
dimensionless heat-transfer parameter is considered 1, ( 2)> =w wS S  and 1, ( 0.25)< =w wS S . For determining 
the specific heat under constant pressure pc , the Prandtl number Pr and the density ρ of the fluid (air) for 
temperatures varying from 100 to 2500 K, an interpolation formula is used. The data for the pc , Pr and ρ were 
taken from tables [10], [25]. The values of each quantity, for every value of temperature, is calculated by the 
successive linear interpolation approach known as Neville’s algorithm [26]. 

The code is proven to be grid independent and provides similar results for different grid realizations [27]. 
However, in this study a grid of 1001×81 points was used, where 81 points were used on the η-direction and 
1001 on the x-direction. 

For the numerical solution of the equations describing the problem the program is divided in two parts. The 
first is a dynamic link library (DLL) which contains all the algorithms for the numerical solution of the problem. 
The second part is a graphical user interface (GUI), where the user can review or alter the initial data, as, for 
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instance, the free stream Mach number, the temperature of the plate and the fluid, the suction/injection velocity, 
etc. The program was written in FORTRAN 90 utilizing OpenGL for the visualization of the data [28]. 
 
 
 
5 RESULTS AND DISCUSSION 

The results of this study concern dimensionless as well as dimensional quantities of the problem under 
consideration. It is very important to present results on the dimensionless local skin friction coefficient ( xCf ) 

and the local Stanton number ( xSt ) for the heated and cooled walls. It is also imperative to present results for 
dimensional quantities that will provide information for the shape of the compressible turbulent boundary layer 
under the adverse pressure gradient and the velocity and temperature fields throughout the boundary layer. 

Figure 2a presents the velocity field on the upper wall of a wedge for m = 0.05 (β = 17.2o). The boundary 
layer is always attached to the plate and never separates from the surface for Mach number 1.0M∞ = . The figure 

also depicts the temperature field over the upper surface of the wedge for adiabatic wall (Figure 2b, 0wS′ = ), 

heated (Figure 2c, 2wS = ) and cooled wall (Figure 2d, 0.25wS = ). The increase of temperature in the boundary 
layer for the adiabatic case is 18 degrees and this increase is due to viscous forces acting on the flow field and 
the inclination of the wall. The maximum temperature for the adiabatic case is 318 K, for the heated wall is 634 
K and occurs near the heated wall. Finally, the maximum temperature for the cooled wall is 316 K and occurs 
near the edge of the boundary layer of the wedge as shown in Figure 2d. 

 

(a)  
(b)   

(c)   

(d)  

 

Figure 2. (a) Velocity field over a wedge, (b) Temperature field for an adiabatic wall, (c) Temperature field 
for a heated wall, (d) Temperature field for a cooled wall. 

 
The flow over a flat plate at zero incidence, with constant external velocity, is known as Blasius flow and 

corresponds to the dimensionless pressure gradient m = 0. The dimensionless parameter m plays an important 
role in the problem under consideration because it denotes the shape factor of the velocity profiles [12]. It has 
been shown that when m < 0 (increasing pressure), the velocity profiles have a point of inflexion whereas when 
m > 0 (decreasing pressure), there is no point of inflexion for the laminar boundary layer [13]. In order to 
quantify the boundary layer over a wedge important dimensionless quantities, like the dimensionless local skin 
friction coefficient ( xCf ), the local Stanton number ( xSt ) and the total drag (D) over the wedge, are presented. 
Eq. (19) shows the relationship that connects these important quantities with the dimensionless shear parameter 
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on the wall ( ,0)wf f x′′ ′′= , the dimensionless heat transfer parameter ( ,0)wS S x′ ′=  and the dimensionless total 
energy ratio Sw = Hw/He on the wall of the wedge [11], [22]. 
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where *x  is the distance of the separation point from the leading edge and /w w w e eC ρ µ ρ µ= . Figure 3 shows 
the skin friction coefficient Cfx against the distance x for various values of the parameter m, (m = 0.0, 0.05, 
0.095), 1.0M ∞ =  and for the two turbulence models (C-S, B-L) for the case of an adiabatic wall. For larger 

values of the dimensionless parameter m ( 0.1m ≥ ) the model predict instant separation of the turbulent 
compressible boundary layer. Both turbulent models give similar results and as the angle of the wedge is 
increased the total drag D and the skin friction coefficient Cfx increase in both C-S and B-L models.  
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Figure 3. Skin friction coefficient Cfx against the distance x for various values of the parameter m, 1.0M ∞ =  

for the case of  adiabatic wall (C-S - left, B-L - right). 

 
The same behavior is shown for smaller ( 0.5M ∞ = ) or larger ( 1.5M ∞ = ) Mach numbers. The results for the 

total drag D for various Mach numbers M ∞ , for both turbulent models and for m = 0.0, 0.05, 0.095 and for an 
adiabatic wall are summarized in Table 1. 

 
 C-S model B-L model 

0.5M ∞ =  m = 0.0, D = 256.7 
m = 0.05, D = 289.0 
m = 0.095, D = 324.4 

m = 0.0, D = 261.8 
m = 0.05, D = 292.6 
m = 0.095, D = 322.9 

1.0M ∞ =  m = 0.0, D = 886.3 
m = 0.05, D = 949.8 
m = 0.095, D = 994.4 

m = 0.0, D = 910.7 
m = 0.05, D = 967.0 
m = 0.095, D = 1004.0 

1.5M ∞ =  m = 0.0, D = 1670.0 
m = 0.05, D = 1718.3 
m = 0.095, D = 1738.7 

m = 0.0, D = 1701.0 
m = 0.05, D = 1754.0 
m = 0.095, D = 1798.6 

 
When the dimensionless pressure parameter m becomes 0.1 an instant separation of the compressible 

turbulent boundary layer occurs. One of the control methods that can retain the turbulent compressible boundary 
layer over the wedge for larger dimensionless pressure coefficients m > 0.1 is the application of continuous or 
localized suction/injection. Figure 4 shows the skin friction coefficient Cfx against the distance x for m = 0.095 

Table 1: Total drag D for various Mach numbers M ∞  and dimensionless pressure parameter m for 
adiabatic wall. 
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with no suction/injection and for m = 0.1 with the application of localized suction, near the tip of the wedge 
( wv (x) =-2.0×10-4) and continuous suction at the whole length of the upper wall of the wedge ( wv (x) =-1.0×10-

4). It is apparent that the boundary layer can be retained with the application of suction/injection, but the total 
drug D increases especially in the case of continuous suction/injection. Finally, in Figure 5 the local Stanton 
number ( xSt ) is presented for heated and cooled walls and different values of the dimensionless pressure 
parameter m. 
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Figure 4. Skin friction coefficient Cfx against the 
distance x for various values of the parameter m, 

1.0M ∞ =  for the case of a cooled wall and application 

of suction (C-S turbulent model). 

Figure 5. Local Stanton number ( xSt ) for heated and 
cooled walls and different values of the dimensionless 
pressure parameter m (C-S turbulent model). 

 

6 CONCLUSIONS 

• A mathematical formulation for the turbulent compressible boundary layer over a wedge was presented. 
• Different values of the dimensionless pressure parameter m were examined. When m increases, the 

dimensionless skin friction coefficient Cfx and the total drag D increase. 
• An instant separation of the turbulent compressible boundary layer over the wedge occurs when 

0.1m ≥ . 
• Application of suction retains the boundary layer for larger values of the dimensionless pressure 

parameter m. Localized suction are more desirable due to smaller total drag D.   
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