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Magnetohydrodynamic compressible
laminar boundary-layer adiabatic
flow with adverse pressure gradient
and continuous or localized mass
transfer

M. Xenos, N. Kafoussias, and G. Karahalios

Abstract: The problem of magnetohydrodynamic compressible boundary-layer flow over a
flat plate, in the presence of an adverse pressure gradient, is studied numerically. The fluid
is assumed to be Newtonian, electrically conducting and the magnetic field is constant and
applied transversely to the direction of the flow. The fluid flow is subjected to a constant
velocity of suction and (or) injection, continuous or localized, and there is no heat transfer
between the plate and the fluid (adiabatic flow). The system of partial differential equations,
describing the problem under consideration, is solved numerically by applying a modification
of the Keller box technique. Numerical calculations are carried out for different values of the
free-stream Mach number and the magnetic parameter for continuous or localized suction
and (or) injection imposed at the wall. The results obtained are shown in the figures and their
analysis shows that the flow field can be controlled by the application of a magnetic field as
well as by continuous or localized suction and (or) injection.

PACS Nos.: 51.00, 52.00

Résumé: On étudie numériquement le problème de la couche limite compressible magnéto-
hydrodynamique sur une plaque plane en présence d’ un gradient de pression adverse. Le
fluide est supposé être Newtonien, conducteur électrique et le champ magnétique est constant
et appliqué perpendiculairement à la direction de l’écoulement. L’écoulement du fluide est
sujet à une vitesse constante de succion/injection qui peut être continue ou localisée et il
n’existe pas de transfert de chaleur entre la plaque et le fluide (écoulement adiabatique). Le
système d’équations différentielles partielles qui décrit le problème est résolu numériquement
en utilisant une modification de la méthode « box » de Keller. Des calculs numériques ont
été effectués pour différentes valeurs du nombre de Mach d’écoulement libre et du paramètre
magnétique pour des conditions de succion/injection continues ou localisées imposées à
la surface de la plaque. Les résultats obtenus sont reportés sur des figures et leur analyse
a montré que le champ d’écoulement pourrait être contrôlé par l’application du champ
magnétique aussi bien que par une suction/injection de fluide continue ou localisée.
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1. Introduction

In the past three decades, there has been enormous progress in the study of compressible boundary-
layer flow, which is of fundamental importance in many devices encountered in mechanical and
aerospace engineering. Because of friction effects, compressible boundary-layer flow tends to have
an unpredictable behavior with respect to the designer’s ideas about flow around bodies of a given
shape, and this unpredictability leads to the general problem of flow control [1]. The flow-control prob-
lem becomes more difficult when an adverse pressure gradient is acting on the boundary-layer flow. In
such a case, the boundary layer increases its thickness considerably, in the downstream direction, and
the flow in it becomes reversed. The term “adverse pressure gradient” means that the pressure increases
in the direction of the flow (e.g., dP/dx > 0) and it may be reversed. Owing to the reversal of the
flow, there is considerable thickening of the boundary layer, and associated with it, there is a flow of
boundary-layer material into the outside region. When a region with an adverse pressure gradient exists
along a wall, the retarded fluid particles cannot, in general, penetrate too far into the region of increased
pressure owing to their small kinetic energy. Thus, the boundary layer is deflected sideways from the
wall, separates from it, and moves into the main stream. A short distance downstream from the point of
separation, the boundary layer becomes so thick that the assumptions that are made in the derivation of
the boundary-layer equations no longer apply. So, the boundary layer equations are only valid as far as
the point of separation. Separation is mostly an undesirable phenomenon because it entails large energy
losses and some representative experimental and numerical studies of a boundary layer with pressure
gradients have been presented in refs. 2–4.

It is well recognized that the very effective method for the prevention of separation is boundary-layer
suction. It is used in the design of aircraft wings and is also applied to reduce drag [5]. A numerical
study of a two-dimensional laminar boundary-layer compressible flow with pressure gradient and heat
and mass transfer is presented in ref. 6. It was found that the separation of the boundary layer can
be controlled by these techniques because application of suction, or cooling the wall, stabilizes the
boundary layer and delays separation.

On the other hand, in recent years, the study of flow and heat transfer for an electrically conducting
fluid under the influence of an applied magnetic field has received the attention of many researchers.
This is due to its wide application in aerodynamics and in many engineering problems such as MHD
(magnetohydrodynamic) generators, plasma studies, nuclear reactors, and those dealing with liquid
metals.

Historically, Rossow [7] was the first to study the hydrodynamic behavior of the boundary layer
on a semi-infinite flat plate in the presence of a uniform magnetic field. Since then a large amount of
literature has been developed on this subject. A review of this topic up to the early eighties can be found
in ref. 8.

Boundary-layer models in MHD channels is an attractive research field, with publications of de-
scriptions of a similarity method involving application of a geometric transformation for describing the
boundary layer in a flow over an insulating wall [9]. The same models are also used for the study of the
unsteady flow of an incompressible, electrically conducting fluid over a porous plate [10] and a convex
surface [11]. Calculations of velocity and temperature profiles and heat-transfer rates for a MHD radial
wall jet is presented in ref. 12. The effects of Joule heating and viscous dissipation in liquid-metal
sliding contacts for high-current applications is discussed in ref. 13. Measurements of the increase in
heat flux from a supersonic, high-temperature inert-gas flow to the electrodes of a disk MHD generator,
with increasing magnetic fields, is described in ref. 14.

The problem of boundary-layer flow, under the action of an applied magnetic field, has been exten-
sively studied in the case of an incompressible fluid [15–26]. However, in the literature, there seems to
be much less documentation of adverse-pressure-gradient effects on the separation of the MHD bound-
ary layer in the presence of mass transfer in the case of a compressible fluid. This is one of the most
important problems in boundary-layer theory because in many designs as, for example, in the design of
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Fig. 1. Flow configuration and co-ordinate system.

fan blades or airfoils, it is necessary to prevent flow separation to reduce the drag and to produce high
lift [1].

The aim of this work is the numerical study of the magnetohydrodynamic, compressible two-
dimensional laminar boundary-layer flow, over a permeable flat plate, in the presence of an adverse
pressure gradient and mass transfer under adiabatic conditions. The formulation of the problem is pre-
sented in Sect. 2, whereas the numerical solution of the problem, for different values of the dimensionless
parameters entering the problem under consideration, is given in Sect. 3. Finally, in Sect. 4, an extensive
analysis of the results obtained, shown in graphs, is presented.

2. Mathematical formulation of the problem

We consider the steady two-dimensional adiabatic compressible MHD laminar boundary-layer flow
over a smooth flat permeable surface. In a Cartesian coordinate systemOxyz the surface is located at

y = 0, 0 6 x 6 L, −∞ < z < +∞
and is parallel to the free-stream of a heat-conducting perfect gas flowing with velocityu∞ in the
positivex-direction (see Fig. 1). The fluid is assumed to be Newtonian and electrically conducting,
and the plate is thermally and electrically an insulator or nonconductor. A magnetic field of uniform
strengthB = (0, B0,0) is applied transversely to the direction of the flow. The magnetic field is
assumed to be fixed with respect to the plate and the magnetic Reynolds number of the flow is also
assumed to be small enough so that the induced magnetic field can be neglected. This is, generally, the
case in normal aerodynamic applications. Since no external electric field is applied and the effect of
polarization of the ionized fluid is negligible [20], it is also assumed that the electric fieldE = 0. Under
the above assumptions, the MHD boundary-layer equations, relevant to the problem, are the continuity,
momentum, and energy equations, which, in the absence of body forces, can be written as [27,28]

∂

∂x
(ρu)+ ∂

∂y
(ρυ) = 0 (1)

ρu
∂u

∂x
+ ρυ

∂u

∂y
= −dp

dx
+ ∂

∂y

(
µ
∂u

∂y

)
+ (Jc × B)x (2)

ρcp

(
u
∂T

∂x
+ υ

∂T

∂y

)
= ∂

∂y

(
k
∂T

∂y

)
+ u

dp

dx
+ µ

(
∂u

∂y

)2

+ q · (Jc × B) (3)

It is apparent that, according to the boundary-layer theory, the equation of motion normal to the flat
plate, they-momentum equation, has been dropped completely in the above system of equations (1)–(3).
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In such a case, the pressure is said to be “impressed” on the boundary layer by the outer potential flow.
It may, therefore, be regarded as a known function as far as boundary-layer flow is concerned and it
depends only on the coordinatex [27]. On the other hand, the termDp

Dt
, in the energy equation (3) for

compressible fluids in ref. 27, is represented for the case under consideration by the termu(dp/dx).
The boundary conditions of the problem, including a transpiration velocityυw at the plate, are

y = 0 : u = 0, υ = υw(x),
∂T

∂y
= 0 (q̇w = 0) , y → δ : u = ue(x), T = Te(x)

(4)

In the above equationsρ is the density of the gas;u, υ are the velocity components along thex- and
y-axis, respectively (q = (u, υ)); p is the pressure;T is the temperature of the gas in the boundary
layer;µ is the viscosity;k is the coefficient of thermal conductivity;cp is the specific heat;δ is the
boundary-layer thickness;ue, Te are the fluid velocity component and temperature at the edge of the
boundary layer, respectively;σ is the electrical conductivity and is assumed to be constant;Jc is the
conduction current; andB is the magnetic field strength. The conduction current in our case is defined
as

Jc = σ (q × B) (E = 0) (5)

whereq = (u, υ) is the velocity field. So, the last term in (2) is the Lorentz force, which for the problem
under consideration becomes

(Jc × B)x = −σ uB2
0 (6)

whereas the last term in (3) is the Joule-heating term, which becomes

Jc · Jc

σ
= σ u2B2

0 (7)

In MHD, the current, which depends on the strength of the magnetic field, produces Joule heating
in the fluid and is, in general, of the same order as the viscous dissipative heat. The last two terms on
the right-hand side of (3) signify, respectively, heat generated by friction (or viscous dissipative heat)
and Joule heating [28–30].

Under the above assumptions, the equations of the problem under consideration can now be written
as

∂

∂x
(ρu)+ ∂

∂y
(ρυ) = 0 (8)

ρu
∂u

∂x
+ ρυ

∂u

∂y
= −dp

dx
+ ∂

∂y

(
µ
∂u

∂y

)
− σB2

0u (9)

ρ cp

(
u
∂T

∂x
+ υ

∂T

∂y

)
= ∂

∂y

(
k
∂T

∂y

)
+ u

dp

dx
+ µ

(
∂u

∂y

)2

+ σB2
0u

2 (10)

whereas the boundary conditions (4) remain the same.
IntroducingH as the sum of the thermal and kinetic energy (total energy) per unity mass of the fluid

defined, for a perfect gas, by the expressionH = cpT + 1
2u

2, we add (9) multiplied byu to (10). Then
the system of equations for the problem becomes

∂

∂x
(ρu)+ ∂

∂y
(ρυ) = 0 (11)
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ρu
∂u

∂x
+ ρυ

∂u

∂y
= −dp

dx
+ ∂

∂y

(
µ
∂u

∂y

)
− σB2

0u (12)

ρu
∂H

∂x
+ ρυ

∂H

∂y
= ∂

∂y

[
µ

Pr

∂H

∂y
+ µ

(
1 − 1

Pr

)
u
∂u

∂y

]
(13)

wherePr is the Prandtl number defined asPr = µcp/k.
The boundary conditions (4) can be written now as

y = 0 : u = 0, υ = υw(x),
∂H

∂y
= 0, y → δ : u = ue(x), H = He(x) (14)

where

Hw(x) = cpTw(x) and He(x) = cpTe(x)+ 1

2
u2

e(x) (15)

By using Bernoulli’s equation, for the case of magnetohydrodynamic flow [28],

−dp

dx
= ρeue

due

dx
+ σ B2

0ue (16)

where the subscript “e ”refers to the conditions at the edge of the boundary layer, (12) can be now
written as

ρu
∂u

∂x
+ ρυ

∂u

∂y
= ρeue

due

dx
+ σ B2

0ue + ∂

∂y

(
µ
∂u

∂y

)
− σ B2

0u (17)

The steady two-dimensional compressible MHD laminar boundary-layer flow, of the problem under
consideration, is finally described by the following equations:

∂

∂x
(ρu)+ ∂

∂y
(ρυ) = 0 (18)

ρu
∂u

∂x
+ ρυ

∂u

∂y
= ρeue

due

dx
+ ∂

∂y

(
µ
∂u

∂y

)
− σ B2

0 (u− ue) (19)

ρu
∂H

∂x
+ ρυ

∂H

∂y
= ∂

∂y

[
µ

Pr

∂H

∂y
+ µ

(
1 − 1

Pr

)
u
∂u

∂y

]
(20)

and the boundary conditions

y = 0 : u = 0, υ = υw(x),
∂H

∂y
= 0, y → δ : u = ue(x), H = He(x) (21)

The system of equations (18)–(21) constitutes a coupled and nonlinear system of partial differential
equations with the unknown functionsu = u(x, y), υ = υ(x, y), andH = H(x, y) defined in the
rectangular domainD = {(x, y)/0< x < L,0< y < ∞}. So, to solve the system numerically, it is
useful to express it in transformed variables. For this purpose, the compressible version of the Falkner–
Skan transformation is introduced, defined by

η =
y∫

0

(
ue(x)

νe(x) x

)1/2
ρ(x, y)

ρe(x)
dy , ψ(x, y) = (ρeµeuex)

1/2f (x, η) (22)

whereve(x) is the kinematic viscosity at the edge of the boundary layer andf(x,η) is the dimensionless
stream function.
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The Falkner–Skan transformation, defined by the above relations, can be used to reduce the boundary-
layer equations to ordinary differential equations for similar flows. It can also be used for nonsimilar
flows for convenience in numerical work, because it reduces, if it does not eliminate, dependence onx

[31].
Defining the dimensionless total energy ratioS asH/He and by using the definition of the stream

functionψ , for a compressible flow, that satisfies the continuity equation (18), with the relations

ρu = ∂ψ

∂y
, ρυ = −∂ψ

∂x
(23)

the system of equations (19)–(21) becomes

(bf ′′)′ +m1ff
′′ +m2[c − (f ′)2] = x

[
m3

(
f ′ − 1

) + f ′ ∂f ′

∂x
− f ′′ ∂f

∂x

]
(24)

(e S′ + d f ′ f ′′)′ +m1f S
′ = x

(
f ′ ∂ S
∂ x

− S′ ∂ f
∂ x

)
(25)

η = 0 : f ′ = 0, fw = f (x,0) = − 1

(ueµeρex)1/2

∫ x

0
ρwυw(x)dx, S′

w = 0

η = ηe : f ′ = 1, S = 1 (26)

whereηe is the dimensionless thickness of the boundary layer; primes denote partial differentiation with

respect toη
(
()′ = ∂()

∂η

)
; and the quantitiesb,m1,m2,m3 etc. are defined as follows:

b = C, C = ρµ

ρeµe
, c = ρe

ρ
, d = Cu2

e

He

(
1 − 1

Pr

)
, e = b

P r
, S = H

H e

m1 = 1

2

[
1 +m2 + x

ρeµe

d

dx
(ρeµe)

]
, m2 = x

ue

due

dx
, Rx = uex

νe
, m3 = m0c

ρeue
, m0 = σ B2

0 (27)

So, the problem under consideration is described by the system of equations (24) and (25), subjected to
the boundary condition (26), whereas the various coefficients entering into these equations are defined
by the expressions (27).

The coefficientm3 is called the “magnetic parameter” and it is worth mentioning that in the absence
of an applied magnetic field(m0 = 0) the first term on the right-hand side of the momentum equation
(24) disappears, enabling us to make a comparative study with the aerodynamic case that has already
been studied in ref. 6.

3. Numerical solution of the problem

The aim of this work is to investigate the effect of an applied magnetic field on the steady two-
dimensional adiabatic compressible MHD laminar boundary-layer flow over a smooth flat permeable
surface in the presence of an adverse pressure gradient. To show this effect on the flow field in the
presence of an adverse pressure gradient we consider, as in ref. 6, the linearly retarded flow, known as
Howarth’s flow, in which the external velocity varies linearly withx, that is,

ue(x̄) = u∞(1 − x̄) (28)

whereu∞ is the free-stream velocity;̄x = x/L, andL is the length of the boundary porous plate. This
flow model can be interpreted, for instance, as representing the potential flow along a flat wall that starts
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at x̄ = 0 and that abuts on to another infinite wall at right angles to it atx̄ = 1 (x = L) [27]. This is
a usual pattern of flow in modern aerospace engineering and aerodynamics devices that improves the
aircraft’s performance over a wide range of speed [32]. In such a case, the adverse pressure gradient
−dp

dx , defined by (16), is a function ofx. For the numerical calculations the length,L is taken equal to
8 m so thatx varies betweenx = 0 and 8 m.

The numerical scheme used to solve the system of equations (24)–(27) is a modified version of the
Keller-box method described in detail in ref. 6.

Numerical calculations were carried out for air, at aboutT∞ = 300 K (P r = 0.708), for S′
w = 0,(

S′(0) = 0
)
, thus covering the case in which there is no heat transfer between the plate and the fluid

(adiabatic). It is worth mentioning here that the case in which the dimensionless heat-transfer parameter
S′

w 6= 0 corresponds to a flow with heat transfer between the plate and the fluid, whereas the requirement
S′

w = 0 corresponds to a flow with no heat transfer between the wall and the fluid (adiabatic flow). So,
to examine exclusively the influence of the applied magnetic field on the flow field, in the presence of
mass transfer, we study only the case whereS′

w = 0 (adiabatic).

In recent years, suction has very often been used as an aerodynamic flow control technique to
prevent laminar to turbulent boundary-layer transition as well as turbulent flow separation. Application
of suction along the leading edge of a wing stabilizes the boundary layer and prevents transition from
laminar to turbulent flow over the wing [5]. Small amounts of suction are very efficient for transition
control because this technique increases the stabilizing properties of the laminar boundary layer by
changing the shape of the mean velocity profiles [33]. However, if the suction velocityυw is too large
the boundary layer could be very thin and the roughness effects could be enhanced. As a result, negative
effects in terms of drag reduction could be recovered [1]. In our case, the suction and (or) injection
velocity at the wall,υw, was taken as constant and equal toυw = ∓10−5u∞, which is a valid assumption
to ensure that the flow with suction or injection at the wall satisfies the simplifying conditions that form
the basis of the boundary layer theory [27]. Also,υw represents the velocity of suction or injection at
the wall according asυw < 0 orυw > 0, respectively. The caseυw = 0 corresponds to an impermeable
wall (no suction and (or) injection).

On the other hand, it is known that a large suction volume is uneconomical because a large proportion
of the savings in power, due to the reduction in drag or to the removal of the separation point downstream,
is then used to drive the suction pump. It is, therefore, important to determine the minimum suction
volume or the location of the suction zone, in the case of localized suction, that is required to control
the boundary-layer flow. Interesting information concerning the influence of the suction location on the
stability in the boundary layers has been obtained using the nonlinear parabolized stability equations
(PSE) approach [5]. The results obtained were related to a flat plate flow with a free stream velocity of
50 m/s. Suction was applied over a streamwise extent of 10 cm with a vertical suction velocityυw equal
to−1 cm/s. Also, fundamental wind tunnel experiments performed by Reynolds and Saric [5] indicated
that suction is more effective when applied at Reynolds numbers close to the lower branch of the neutral
curve, in qualitative agreement with previous theoretical results. Finally, measurements carried out on
an 8% thick symmetrical aerofoil showed that continuous suction is most effective when it is confined
to the upper side of the wing and when it extends over a region of 0.15L approximately [27]. So, to
examine the influence of localized suction and (or) injection on the laminar boundary layer in our study,
we also applied continuous suction and (or) injection in a region confined betweenx = α = xs − s

andx = b = xs + s wherexs is the stream wise location of the center of the slot and 2s is the width of
the slot [34]. To avoid difficulties associated with discontinuities in the region of the boundary surface,
simple smoothing functions can be introduced for the suction and (or) injection velocityυw(x) at the
wall, which can be written as [31]

υw(x) = 1

2
υ0[1 + tanhβ (x − a)], 0< x 6 a + b

2
= xs (29)
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and

υw(x) = 1

2
υ0[1 − tanhβ (x − b)], x >

a + b

2
= xs (30)

whereβ = 10 andυ0 is a constant suction and (or) injection velocity depending on whetherυ0 < 0 or
υ0 > 0, respectively. It is also possible to apply a Gaussian distribution for the suction and (or) injection
velocity given by the expression

υw(x) = ∓As e−(x−xs)
2/s2 (31)

whereAs is the suction and (or) injection strength. In such a case, the fluid volume flux through the
slot is

√
π s2As. In our study, for the case of localized suction and (or) injection we applied (31) for the

velocityυw(x) with As = 5 × 10−5u∞, s = 0.1 for different values ofxs.
The free-stream valuesµ∞, u∞, ρ∞, andH∞ were calculated from the formulas [31]

µ∞ = 1.45× 10−6T
3/2∞

(T∞ + 110.33)
(Sutherland′s law) (32)

u∞ = 20.04M∞
√
T∞ (33)

ρ∞ = p∞
287T∞

(34)

H∞ = 1005.7T∞ + 1

2
u2∞ (cp = 1005.7) (35)

for different values of the free-stream Mach numberM∞(M∞ = 0.375, 0.75, 1.5), whereas the edge
valuesTe andpe were calculated using the formulas

Te = T∞

{
1 − γ − 1

2
M2∞

[(
ue

u∞

)2

− 1

]}
, pe = p∞

(
Te

T∞

)γ /(γ−1)

(36)

whereγ = cp/cv = 1.4.
The edge valuesµe, ρe, andHe were calculated by using formulas identical to those given by (32),

(34), and (35), respectively, except that free stream values (∞) of temperature, pressure, and velocity
were replaced by their edge values (e). It is worth mentioning here that Sutherland’s law is an adequate
approximation for the variation of viscosityµ with temperatureT , for air [35].

In MHD boundary-layer problems the “magnetic parameter”m3, defined asm3 = m0c
ρeue

, where

c = ρe
ρ

andm0 = σ B2
0, plays an important role and represents the influence of the applied magnetic

field on the flow field. Defining the local Hartmann number asHax =
(
σ B2

0
µe

)1/2

x, it can be shown

that themagnetic parameterm∗ = m3x is related to the viscous local Reynolds numberRx and the
local Hartmann numberHax by the relation

m∗ = m3x = c
Ha2

x

Rx
(37)

and is, actually, the ratio of the electromagnetic forces to the inertial forces acting on the fluid elements.
So, the results of this work, concerning the velocity field, the temperature field, and coefficient of skin
friction (wall-shear parameter), are obtained forPr = 0.708 (air), for different values of Mach number
M∞, and for the magnetic parameterm∗ (m0) for the case of localized as well as continuous suction
and (or) injection.
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Fig. 2. Variations of the dimensionless velocity profilesf ′(η) for M∞ = 0.5; υw = 0;m0 = 0, 4, and 8.

Fig. 3. Variations of the dimensionless velocity profilesf ′(η) for M∞ = 0.5 and 1.5,υw = 0,m0 = 0 and 8.

In our case we consider thatσ = 1 mho/m, which is an acceptable value for the electrical conductivity
of air, and for the applied magnetic fieldB0 we assume values up to 3.0 Wb/m2, which is also an
acceptable value, since the magnetic field is considered fixed with respect to the plate [7]. Under these

assumptions, the quantitym0 = σ B2
0 can vary from 0.0 to 9.0

(
mho
m

Wb
m2

)
and these values have been

given in our problem.

4. Results and discussion

The numerical results obtained, concerning the dimensionless velocity profilesf ′(x, η), the di-
mensionless total energy (temperature) profilesS(x, η), and especially the dimensionless skin friction
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Fig. 4. Variations of the dimensionless velocity profilesf ′(η) for M∞ = 0.5;m0 = 4.0; andυw = 0,<0,>0.

Fig. 5. Variations of the dimensionless velocity profilesf ′(η) forM∞ = 0.5;m0 = 0 and 8; andυw = 0,<0,>0.

coefficientf ′′
w(x) = f ′′(x,0), are shown in the figures for different values of the dimensionless param-

eters entering the problem under consideration. These results are presented for the case of suction and
(or) injection, continuous or localized, as well as for the case of an impermeable wall(υw = 0) in the
case of air(P r = 0.708) and for different values of the free stream Mach numberM∞ = Minf and the
magnetic parameterm3 orm0 = σ B2

0. The casem0 6= 0 corresponds to magnetohydrodynamic flow
whereas the casem0 = 0 corresponds to the hydrodynamic one. To examine the influence of the suction
and (or) injection and the magnetic field on the flow field, we consider only the case of an adiabatic flow(
S′

w = 0
)
, e.g., of a flow in which there is no heat transfer between the plate and the fluid. However,

similar results can be obtained for the case of heating the wall(Sw > 1) or for the case of cooling the
wall (Sw < 1).
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Fig. 6. Variations of the dimensionless temperature profilesS(η) for M∞ = 0.5; υw = 0;m0 = 0, 4, and 8.

It is worth mentioning here that the dimensionless total energy ratioS is defined by the expression
S = H/He, whereH is the total energy of the fluid, e.g.,H = cpT + 1

2u
2. It is apparent then that the

caseSw = Hw
He

> 1 (heating of the wall) actually means thatcp (Tw − Te) >
1
2u

2
e, whereas the case

Sw < 1 (cooling of the wall) means thatcp (Tw − Te) <
1
2u

2
e. The caseSw = 1, or more precisely,

S′
w = 0 corresponds to an adiabatic flow.

The variations of the dimensionless velocity profilesf ′(x, η), at a typical distancex = 0.7 m from
the leading edge of the wall, are shown in Figs. 2–5. Figure 2 shows the variations off ′(η) forM∞ = 0.5
for the case of an impermeable wall(υw = 0) and for different values of the magnetic parameterm0. It
is observed that application of the magnetic field accelerates the air motion inside the boundary layer.
This influence of the magnetic field on the velocity field decreases as the free-stream Mach number
increases (Fig. 3). Quantitatively, whenη = 3 andM∞ = 0.5 application of the magnetic field helps in
increasingf ′(η) by 5.17% , whereas the corresponding increase in the caseM∞ = 1.5 is only 3.92% .
Also, application of suction(υw < 0) increases the velocity of the fluid inside the boundary layer and
modifies the shape of the velocity profile (Fig. 4). This modification is such that, as we shall see later
in the case of skin friction coefficient (Figs. 10–14), the separation pointx∗ moves down the plate.
However, the opposite is true in the case of injection(υw > 0). The combined influence of the magnetic
field and of the suction and (or) injection technique for the control of the boundary layer is shown in
Fig. 5. It is worth mentioning here that whenη = 3,m0 = 0, andυw > 0 (curve (3)) there is a 10.68%
reduction in the fluid velocity with respect to the corresponding one (curve (5)) for the case of suction
(υw < 0) in the presence a of magnetic field(m0 = 8).

The variations of the total energy ratio or the dimensionless “temperature”S = H/He, for a typical
distancex = 0.7 m from the leading edge of the plate, are plotted against the dimensionless distanceη

through the boundary layer in Figs. 6–9 for different values of the magnetic parameterm0, the free-stream
Mach numberM∞, for the case of suction and (or) injection, and of an impermeable plate(υw = 0).
Since the flow is assumed to be adiabatic and there is no heat transfer between the plate and the fluid(
S′

w = 0
)

the temperature increase inside the thermal boundary layer is exclusively due to friction and
Joule heating. It is observed in all these figures that initially the fluid temperature rises and attains the
maximum value in the thermal boundary layer and then decreases approaching asymptotically to its
limiting value at infinity. This variation of the fluid temperature is more evident for higher values of
the free-stream Mach number (Fig. 7). It is apparent that in the neighbourhood of the wall and in the
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Fig. 7. Variations of the dimensionless temperature profilesS(η) for M∞ = 0.5 and 1.5,υw = 0,m0 = 0 and 8.

Fig. 8. Variations of the dimensionless temperature profilesS(η) for M∞ = 0.5;m0 = 4.0; andυw = 0,<0,>0.

free-stream, the presence of a magnetic field decreases the temperature of the fluid but the opposite
is true in the interior of the boundary layer. The influence of suction and (or) injection on the thermal
boundary layer is shown in Figs. 8 and 9. In the neighbourhood of the wall, the temperature of the fluid
is greater in the case of suction(υw < 0) than the corresponding one in the case of an impermeable
wall (υw = 0) or in the case of injection(υw > 0). However, the converse holds true approaching the
free stream. The combined influence of suction and (or) injection and the applied magnetic field on
the temperature field is exhibited in Fig. 9. It is observed that in the case of suction(υw < 0) and
whenη = 3 andm0 is increased from 0. to 8. there is a 0.033% increase in the value ofS, whereas
under similar circumstances the corresponding increase in the case of injection(υw > 0) is 0.053%.
Therefore, the percentage change in the value ofS (0.7, 3.0) between the casesm0 = 0., υw > 0
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Fig. 9. Variations of the dimensionless temperature profilesS(η) for M∞ = 0.5;m0 = 0 8; andυw = 0,<0,>0.

andm0 = 8., υw < 0 is 0.109% . We should be reminded here that the total energyH is defined as
H = HeS

(
He(x) = cpTe(x)+ 1

2u
2
e(x)

)
. So, although the percentage changes inS are very small this

does not mean that the corresponding changes inH are small.
The most important quantities in aerodynamics are the skin friction coefficient and the rate of heat-

transfer coefficient. In our case the flow is adiabatic. So, the skin friction coefficient can be defined
as

Cfx = τw
1
2ρeu2

e

where τw =
[
µ
∂u

∂y

]
y=0

(38)

Using (22), (23), and (27), these quantities can be written as

Cfx = 2Cw√
Rx
f ′′

w (39)

wheref ′′
w = f ′′(x,0) is the wall-shear parameter.

Hence, the dragD on the plate, can be defined by the relation

D =
∫ b

0

∫ x∗

0

[
µ
∂u

∂y

]
y=0

dx dz (40)

whereb denotes the width of the plate andx∗ the distance of the point of separation from the leading edge
of the plate. Consequently, the dragD, per unit width of the plate, can be calculated by the expression

D =
∫ x∗

0

Cwf
′′
w(x,0)√
Rx

ρe(x)ue(x)dx (41)

whereCw = ρwµw/ρeµe and is a function ofx.
So, Figs. 10 and 11 show the variations of the dimensionless wall-shear parameterf ′′

w against the
distancex for different values of the magnetic parameterm0 and free-stream Mach numberM∞ for
the case of an impermeable wall and for continuous suction and (or) injection imposed at the wall. The
corresponding variations for the case of continuous or localized suction and (or) injection are shown in
Figs. 12–14. The values ofD for each case are also shown in these figures.
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Fig. 10. Variations of the wall-shear parameterf ′′
w for M∞ = 0.5;m0 = 0 and 8; andυw = 0,>0,<0.

Fig. 11. Variations of the wall-shear parameterf ′′
w for υw = 0;m0 = 0 and 8; and forM∞ = 0.375, 0.75, and 1.5.

From Fig. 10, we can conclude that the presence of a magnetic field always helps in increasing
frictional drag from the plate either in the case of suction and (or) injection or in the case of an
impermeable plate. Also, application of suction moves the separation point towards the tail of the plate
whereas the opposite is true in the case of injection. We can also conclude from Fig. 11 that in the
hydrodynamic case(m0 = 0), the separation pointx∗ always moves towards the tip of the plate as
the free-stream Mach number increases and that this displacement is greater for higher values ofM∞.
This is also true in MHD(m0 = 8) but this displacement is higher for small values ofM∞. It is worth
emphasizing here that for every value of the free-stream Mach number application of the magnetic field
moves the separation point towards the tail of the plate.

Figure 12 presents the variations of the wall-shear parameterf ′′
w for an impermeable wall as well
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Fig. 12. Variations of the wall-shear parameterf ′′
w for M∞ = 0.5,m0 = 0 and 8, andυw = 0 and forυw < 0

continuous or localized atxs = 0.7.

Fig. 13. Variations of the wall-shear parameterf ′′
w for M∞ = 0.5; m0 = 0; υw = 0; and localized suction at

xs = 0.4, 0.6, 0.8, and 0.9.

as for the case of continuous or localized suction form0 = 0 andm0 = 8.0 at x = 0.7 m. It is
observed that application of localized suction instead of continuous suction helps in decreasing the drag
D and in moving the separation pointx∗ towards the tip of the plate; this fact is more evident in the
magnetohydrodynamic case(m0 = 8). It is worth emphasizing here the difference in the values of the
fluid volume flux, through the plate, between the case of continuous and localized suction. According to
(31), in the case of localized suction the fluid volume flux through a slot of width 2s, isQ` = √

π s2As.
In the case of continuous suction, the corresponding fluid volume flux isQc = υwx

∗. To be more
specific, fors = 0.1 m andAs = 5 × 10−5u∞, Q` is equal to 8.86× 10−7u∞, whereas in the case
of continuous suction withυw = 10−5u∞ and forx∗ = 1 m the corresponding fluid volume flux
Qc is equal to 10−5u∞. Figure 13 shows that application of localized suction at different locationsxs
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Fig. 14. Variations of the wall-shear parameterf ′′
w for M∞ = 0.5,m0 = 0 and 8,υw = 0, and localized suction

and localized injection atxs = 0.9 and 0.3, respectively.

from the leading edge of the plate moves the separation pointx∗ downstream and reduces the frictional
dragD. Finally, Fig. 14 shows the combined influence of the magnetic field and localized suction and
(or) injection on the wall-shear parameterf ′′

w. It is concluded that application of localized suction and
localized injection at the locationsxs = 0.9 m andxs = 0.3 m, respectively, moves the separation
point towards the tail of the plate and reduces frictional drag. The above analysis confirms the assertion
that the technique of localized suction and (or) injection is still an effective method for boundary-layer
control [5,33] and becomes more effective when the fluid is subjected to an applied magnetic field.

5. Concluding remarks

We summarize the important results concerning the wall-shear parameter and frictional drag as
follows.

The presence of a magnetic field always increases frictional drag on the wall either in the case of
suction and (or) injection or on an impermeable wall but moves the separation point towards the
tail of the plate.

Application of magnetic field moves the separation point towards the tail of the plate for every
value of the free-stream Mach number. This displacement is greater for small values ofM∞.

Localized suction at different locations from the leading edge of the plate helps in decreasing the
drag and in moving the separation point towards the tail of the plate. This is more evident in the
MHD case.

The combined influence of the magnetic field, localized injection, and localized suction moves
the separation point towards the tail of the plate reducing frictional drag.
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