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1 Introdutory notions on interval equationsIn this work we deal with the often ourring problem of �nding reliably andwith ertainty all zeros of the equationf(x) = 0; (1.1)for a ontinuously di�erentiable funtion f : R! R, where R denotes the setof all real numbers.In many �elds of siene (e.g. hemial engineering: [2℄, omputer graphis:[3℄, robotis: [12℄, ontrol theory: [16℄, et) the determination of all zeros of(1.1) remains a ruial and well-timed issue. Interval methods have shown aEmail addresses: nikas�math.upatras.gr (I.A. Nikas),grapsa�math.upatras.gr (T.N. Grapsa).Preprint published in AppliedMathematis and Computation - doi:10.1016/j.am.2009.03.041



great performane in solving it, resulting with guaranteed sharp bounds foreah zero. However, sine experimental measurements are not aurate, a greatneessity arises to express them by quantities that ontain the atual values ofproblem's parameters. For this reason, we enable the use of interval numbersto enlose and bound those inaurate measurements. Thus, we an restatethe problem de�nition (1.1), employing interval parameters: Find reliably andwith ertainty all zeros of equationf(x; p) = 0; (1.2)for all p 2 [p℄, with [p℄ 2 IR, where IR denotes the set of real intervals.Now, if we onsider the natural interval extension of f(x; p) with respet tothe parameter vetor p, we arrive to f(x; [p℄). So, we an de�ne the notion ofinterval equation.De�nition 1.1 Let f : R�IR! IR be a ontinuously di�erentiable funtion,[x℄0 a searh interval and [p℄ an interval vetor ontaining all the parametersinvolved in f . The equation of the formf(x; [p℄) = 0 (1.3)will be alled interval equation by the meaning of (1.2).The set of all zeros of (1.3) will be the union of the zeros of all equations(1.2). The solution formulation of the above equation will be either the emptyinterval (no zero ase), or a degenerate interval (a point-zero ase - e.g. multiplezero), or a non-degenerate interval. Apparently, for the last ase, the numberof point-zeros that have to be enlosed are of in�nite number. But, sine theparameters of (1.3) are varied ontinuously (losed and ompat intervals) thepoint-zeros of f(x; [p℄) = 0 will vary ontinuously too and the number of thoseontinuum of zeros will be of �nite number. Thus, instead of searhing for allthe in�nite point-zeros of (1.3), we searh for intervals where point-zeros arevaried ontinuously in them.Remark 1.2 From now on, for onveniene and without misunderstandingwe will denote an interval equation as f(x) = 0 instead of f(x; [p℄) = 0.De�nition 1.3 Every ontinuous set of point-zeros of f(x; p) = 0, for everyp 2 [p℄ 2 IR onstitutes a solution of the orresponding interval equationf(x) = 0 and will be alled interval zero. If the interval zero ontains a singlepoint-zero will be alled degenerate interval zero.The �rst attempt in solving (1.3) was at the origin of interval analysis, in thebook of Ramon Moore \Interval Analysis" ([8, pp. 60{61℄), where a simpleexample of interval equation is given and it is treated as in most equations,applying an early sheme of interval Newton method to enlose its zeros.2 Nikas-Grapsa 2009



In 1992, Hansen ([6, pp. 73{74℄) proposed a heuristi stopping riterion tosolve interval equations using interval Newton method, by aepting parts ofsearh interval as enlosures of interval zeros.Reently, Nikas et al. ([11℄) proposed a method whih is oneptualized on aboundary approah in solving interval equations, with promising results.In this work we propose an interval Newton-based method for solving intervalequations. In order to provide and derive the proposal idea we state and provean equivalent formulation of interval arithmeti utilizing the interval hull op-erator. Some theoretial results are provided, while the algorithm of the newmethod is proposed. The main onept of our proposal onsists in the isola-tion of the endpoints of interval zeros, exluding guaranteed inner parts of it.The immediate result is the shrinking of the searh interval, and the method,�nally, provides sharp bounds on every interval zero. The presented numerialresults verify our expetations.Briey, in x2 we give some neessary prerequisites and de�nitions, while inx3 we desribe the \lassi" interval Newton method, stating some seriousdrawbaks in solving (1.3). In x4 we derive our method and in x5 we establishour proposal in a theoretial manner. In x6 we propose an algorithm for ourmethod and in x7 we present some numerial results. Finally, in x8 we onlude,disussing our results.2 On intervalsIn the following, we give some basi de�nitions on intervals and related terms.A more thoroughly study an be found in [1℄, [6℄ and [10℄.2.1 Elementary de�nitions and notationA losed, ompat interval is a set of the form[x℄ = [x; x℄ = fx 2 R j x � x � xg ;where x; x 2 R denote the lower and upper bound of interval [x℄, respetively.The set of all losed and ompat intervals is denoted by IR, while [=℄ denotesthe empty interval: [=℄ � [x℄ for all [x℄ 2 IR.An interval [x℄ is said to be ontained in the interior of interval [y℄ if y < xand y > x. It is written [x℄ Æ� [y℄ and it is alled inner inlusion relation.3 Nikas-Grapsa 2009



The width of an interval is given by a real-valued funtion w : IR! R, whihis de�ned by w([x℄) = x� x:Similarly, the midpoint of an interval [x℄ is given by a real-valued funtionm : IR! R, de�ned by m([x℄) = x+ x2 :An interval vetor [a℄ 2 IRn is a vetor whose omponents are, in general,intervals.The hull of a non-empty subset S � R, denoted by the unary operator �,is de�ned as the tightest interval enlosing S. Thus, if S = fa1; a2; : : : ; ang,n 2 N, then� fa1; a2; : : : ; ang = [minfa1; a2; : : : ; ang ;max fa1; a2; : : : ; ang℄Now, for the ase of intervals, a binary operator is de�ned, the hull of twointervals, as it is given in [4℄:[x℄ t [y℄ = hminnx; yo ;max fx; ygi ;where [x℄; [y℄ 2 IR.The range of a real ontinuously di�erentiable funtion f over a losed andompat interval [x℄ � R is de�ned as:frg([x℄) = � ff(x) j x 2 [x℄g = ff(x) j x 2 [x℄g ;but, through the ontinuity of [x℄ we result tofrg([x℄) = hf; fi ;where f and f denote the minimum and maximum value in the range off . Sometimes, a suÆient tight range may be adequate by using an intervalextension F of f , in onjuntion with interval arithmeti. Interval extensionsprovide enlosures of the range of a real funtionfrg([x℄) � F ([x℄):Finally, an interval funtion F : IR ! IR is alled inlusion isotone if for all[x℄; [y℄ 2 IR [x℄ � [y℄) F ([x℄) � F ([y℄):4 Nikas-Grapsa 2009



2.2 Interval arithmetiThe elementary operations Æ 2 f+;�; �; =g an be extended to the intervaloperands under the following de�nition:[a℄ Æ [b℄ = � fa Æ b j 8a 2 [a℄; 8b 2 [b℄g = fa Æ b j 8a 2 [a℄; 8b 2 [b℄g ; (2.1)where [a℄; [b℄ 2 IR. However, the above de�nition is equivalent to the followingfour rules ([13℄),[a℄ + [b℄ =[a + b; a+ b℄[a℄� [b℄ =[a� b; a� b℄[a℄ � [b℄ = hminnab; ab; ab; abo ;maxnab; ab; ab; aboi[a℄[b℄ = �min�ab ; ab ; ab ; ab� ;max�ab ; ab ; ab ; ab�� ; 0 62 [b℄ (2.2)
Theorem 2.1 The elementary operations Æ 2 [+;�; �; =℄ are inlusion iso-toni.PROOF. The proof is in [14℄. 2Let us now introdue a new formulation of interval arithmeti as well as aproof of its inlusion isotoniity. We suppose that Æ 2 [+;�; �; =℄ denotes theelementary operations. Similarly, as above, we an extend them to operandswhere the �rst one is real number and the seond one an interval:a Æ [b℄ = � fa Æ b j 8b 2 [b℄g = fa Æ b j 8b 2 [b℄g ;where [b℄; a Æ [b℄ 2 IR. Using this de�nition we an rewrite (2.1) obtaining,[a℄ Æ [b℄ = � fa Æ [b℄ j 8a 2 [a℄gwhere [a℄ 2 IR. The endpoints of the interval [a℄ Æ [b℄ will be ontained eitherin a Æ [b℄ or in a Æ [b℄. Consequently, we have[a℄ Æ [b℄ = � fa Æ [b℄ j 8a 2 [a℄g = fa Æ [b℄g t fa Æ [b℄g ; (2.3)whih onstitutes an alternative de�nition of interval arithmeti utilizing theinterval hull operator (for the needs of this work we will refer to this expressionof interval arithmeti as Hull Interval Arithmeti). Now, we an easily onvert5 Nikas-Grapsa 2009



de�nition (2.3) to its implementable form as it follows:[a℄ + [b℄ = fa+ [b℄g t fa+ [b℄g ;[a℄� [b℄ = fa� [b℄g t fa� [b℄g ;[a℄ � [b℄ = fa � [b℄g t fa � [b℄g ;[a℄[b℄ =( a[b℄) t ( a[b℄) ; 0 62 [b℄: (2.4)Lemma 2.2 Interval arithmeti de�ned in (2.2) and interval arithmeti de-�ned in (2.4) are equivalent.PROOF. The proof of the above lemma is trivial and it is omitted.Proposition 2.3 The elementary operations Æ 2 f+;�; �; =g as de�ned in(2.4) are inlusion isotoni.PROOF. The proof omes easy from Lemma 2.2.Remark 2.4 In this paper, we will use the hull interval arithmeti only in atheoretial point of view, sine its numerial study onsists a part of a futurework.3 Classi interval Newton method and drawbak issuesThe derivation of lassi interval Newton arise from the appliation of MeanValue Theorem in ombination with the Fundamental Theorem of IntervalArithmeti ([8℄), resulting in the following relation:x� 2 m� F (m)F 0([x℄) =: N([x℄); (3.1)with x� 2 [x℄, being a zero of f(x) = 0, m 2 [x℄, F and F 0 interval extensionsof f and f 0, respetively, and N([x℄) denoting the interval Newton operatorover interval [x℄. The orresponding iterative sheme of (3.1) is given bymk = m([x℄k);N([x℄k) = mk � F (mk)F 0([x℄k) ;[x℄k+1 = [x℄k \N([x℄k): (3.2)Many theoretial aspets of interval Newton methods, onerning, mostly, is-sues of zero existene and uniqueness of f(x) = 0 and the auray sharpness6 Nikas-Grapsa 2009



of the obtained enlosures of those zeros, have been disussed widely in liter-ature (see mainly [1℄, [5℄, [6℄, [8℄, [10℄).Hansen in [5℄ used the extended interval arithmeti to de�ne an extension ofinterval Newton method, to handle, in general, the ase where 0 2 F 0([x℄).The main defetion of the method arises when, the midpoint of the searhinterval [x℄ is a zero of the equation f(x) = 0 and at the same time 0 2 F 0([x℄).The only, so far, eÆient treatment onsists in the adoption of heuristis, e.g.a bisetion sheme ([8℄).It is known that, if we apply the interval Newton method to an interval equa-tion f(x) = 0 we will get some wider results, as it would be expeted. Forexample, suppose we have a simple quadrati interval equation,f(x) � x2 � [�1; 1℄ = 0; (3.3)and we want to isolate all interval zeros of (3.3) over the searh interval [�3; 3℄,aepting intervals as solution with tolerane " = 10�3 (w([x℄ � "). Taking a
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Fig. 1. Interval equation x2 � [�1; 1℄ over [-3,3℄.short look to Figure 1 we an dedue that interval equation (3.3) has a uniqueinterval zero ([x℄� = [�1; 1℄) over [�3; 3℄. Applying one the iterative sheme(3.2), we get:N([x℄) = m([x℄)� F (m([x℄))F 0([x℄) = 0� 0[�26; 26℄ = [�1;+1℄:As we an see, the algorithm needs only one iteration, revealing its weaknessto redue the initial searh interval to a smaller one.If we adopt Hansen's termination riterion (given in [6℄) the algorithm willreturn the initial interval [�3; 3℄ as an interval zero, whih is too overestimatedwith respet to the atual interval zero ([x℄� = [�1; 1℄).7 Nikas-Grapsa 2009



The hoie of a bisetion sheme ([9, pp. 77{81℄), to overome the aforemen-tioned impasse result, will make the algorithm to return 3072 result intervals!Furthermore eah result interval will ontain at least a point zero of (3.3).However, the union of the resulted intervals gives an interval that enlosessharply the interval zero [�1; 1℄. From a theoretial point of view, the unionof these intervals is not with ertainty an interval zero, but an interval ontain-ing at least 3072 point zeros of (3.3). The omputational e�ort of the methodomes up to 9254 funtion evaluations, 3091 derivative evaluations and 3071bisetions.Interesting and important onlusions may be arisen, regarding the behaviorof lassi interval Newton method in solving an interval equation:� It is not able to �nd reliably and with ertainty an interval zero.� It is not able to guarantee the ontinuity of a found interval zero.� There is no suÆient and eÆient termination riterion dediated to intervalzeros.� The existent heuristi tehniques are either ine�etive or prohibitively ex-pensive.Our numerial experiments show that things are getting worse in solving in-terval equations with several interval zeros and/or with wide interval zeros.The basi idea of interval Newton method in solving a non-interval equationis to redue the initial searh interval to almost degenerate intervals. Thisresults to the redution of range overestimation and �nally to sharp boundsfor every point-zero. Generally, in interval equations we have interval zeros ofnon-zero width. Thus, we are able to redue the initial searh interval only tothe bounds of interval zero, whih means that we have a serious amount ofoverestimation in our alulations and, therefore, loosely bounds on the foundinterval zeros.Proposition 3.1 Let f be a ontinuously di�erentiable interval funtion asde�ned in De�nition 1.1, [x℄ the searh interval and [x℄� � [x℄ the intervalzero of interval equation f(x) = 0. If N([x℄) � [x℄ and w([x℄�) > 0 thenjw(N([x℄))� w([x℄�)j = O(w([x℄)):PROOF. The proof omes easy:jw(N([x℄))� w([x℄�)j � w(N([x℄)) + w([x℄�) < 2w([x℄):The above result strengthens our assertion that we should not hope for sharpbounds of [x℄�, sine we always have w([x℄) > 0.8 Nikas-Grapsa 2009



4 The proposed methodWe onsider the interval equation f(x) = 0 and we want to �nd all intervalzeros over a given searh interval [x℄. If we write F (m) = [fm; fm℄ and F 0([x℄) =[d; d℄, where m 2 [x℄, the lassi interval Newton method beomesN([x℄) := m� hfm; fmihd; di : (4.1)The onstant m is usually set to be the midpoint of searh interval [x℄. If wemake use of the proposed hull interval arithmeti (2.4), the relation (4.1) takesthe following form:N([x℄) := m� 0� fmhd; di t fmhd; di1A = 0�m� fmhd; di1A t 0�m� fmhd; di1A (4.2)Thus, we an restate interval Newton iterative sheme (3.2) as:mk = m([x℄k);H([x℄k) = NL([x℄k) tNU([x℄k);[x℄k+1 = [x℄k \H([x℄k);where NL and NU denote the left and right operand in relation (4.2) and Hdenotes the proposed operator (the \Hull" of intervals produed by intervalsNL and NU ).4.1 Interior part of interval zeroThe main onept of this new approah is the isolation of the endpoints of aninterval zero. The hull of these enlosures will derive an interval ontainingthe whole interval zero. Aording to Proposition 3.1 we are not able to boundsharply an interval zero. In order to overome the arisen overestimation issueswe propose a tehnique of reduing the urrent searh interval, providing at thesame time better enlosures for the interval zeros. The following statementsprove the existene of an interior part of an interval zero whih is used toprodue the above mentioned better enlosures.Proposition 4.1 Let f be a ontinuously di�erentiable interval funtion asde�ned in De�nition 1.1, [x℄ the searh interval, and [x℄� � [x℄ an intervalzero of f(x) = 0. If 0 2 f(m([x℄)) the interval [r℄, de�ned by[r℄ = hminnNL; NUo ;max fNL; NUgi (4.3)9 Nikas-Grapsa 2009



always exists and is ontained in the interval zero [x℄�.
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Fig. 2. Example graphs in Proposition 4.1 - Monotone funtions.PROOF. We will prove the existene of interval [r℄ examining the followingthree ases:d > 0 (Left part of Figure 2): Sine 0 2 F (m), we haveNL = "m� fmd ;m� fmd # and NU = "m� fmd ;m� fmd # :We alulate the bounds of interval (4.3):minnNL; NUo = NU and max fNL; NUg = NL:But, NU = m� fmd < m� fmd = NL;that is, NU � NU < NL � NL , NU \NL = [=℄;whih proves that interval [r℄ as de�ned in (4.3) always exists for d > 0.d < 0 (Right part of Figure 2): Similarly, we an onlude to the existene of[r℄ for d < 0: NL � NL < NU � NU , NL \NU = [=℄;0 2 [d; d℄ (Figure 3): For the ase where 0 2 [d; d℄ either the fL boundary
 m

 f
L
(m)

 f
U

(m)

 [r] N
L

1

([x])  N
L

2

([x])

 m

 f
L
(m)

 f
U

(m)

 [r] N
U

1

([x])  N
U

2

([x])

Fig. 3. Example graphs in Proposition 4.1 - Non monotone funtions.funtion or the fU boundary funtion will enlose both the endpoints of [x℄�.10 Nikas-Grapsa 2009



That is, interval Newton method will result a union of intervals and eahoperand of the union will bound an endpoint of interval zero. Thus,NL = NL1 [NL2 or NU = NU1 [NU2 ;and the existene of interval [r℄ is emerged by the next relations,NL1 \NL2 = [=℄ or NU1 \NU2 = [=℄: (4.4)For the seond part of the proposition we work as follows:d > 0: x� 2 NUx� 2 NL 9>=>; ) x� � NU = r < r = NL � x� ) [r℄ � [x℄�d < 0: x� 2 NLx� 2 NU 9>=>; ) x� � NL = r < r = NU � x� ) [r℄ � [x℄�0 2 [d; d℄: The proof for this ase omes easy from (4.4).x� 2 NL1x� 2 NL2 9>=>; ) x� � NL1 = r < r = NL2 � x� ) [r℄ � [x℄�;or x� 2 NU1x� 2 NU2 9>=>; ) x� � NU1 = r < r = NU2 � x� ) [r℄ � [x℄�:The question that arises from the above proposition is what is happening withthis interval [r℄ when 0 62 F (m). The answer to this question follows.Proposition 4.2 Let the assumptions of Proposition 4.1 hold. If 0 62 f(m([x℄))and 0 62 F 0([x℄), and if interval [r℄, as de�ned in (4.3), exists then it is on-tained in [x℄�.PROOF. Firstly we will deal with the matter of existene of interval [r℄.Thus we distinguish the following four ases:d > 0 and fm > 0: Sine 0 2 F (m), we haveNL = "m� fmd ;m� fmd # and NU = "m� fmd ;m� fmd # :11 Nikas-Grapsa 2009
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Fig. 4. Example in Proposition 4.2: The left �gure shows a ase where the [r℄ intervaldoes not exist, while the right one the opposite ase.We alulate the bounds of interval [r℄:minnNL; NUo = NU and max fNL; NUg = NL:But, we must have NU �NL < 0, thusNU �NL = m� fmd �  m� fmd ! = fmd � fmd ;for whih it is not able to deide whether NU�NL is greater or less than zero.In similar way, the same results are proved for the rest of the ases:d > 0 and fm < 0 : minnNL; NUo�max fNL; NUg = fmd � fmdd < 0 and fm > 0 : minnNL; NUo�max fNL; NUg = fmd � fmdd < 0 and fm < 0 : minnNL; NUo�max fNL; NUg = fmd � fmdFor all three ases it is not able to deide whether the formulated interval [r℄exists or not.If interval [r℄ exists (minfNL; NUg �maxfNL; NUg < 0) then NL \NU = [=℄always holds, and intervals NL and NU will enlose the endpoints of intervalzero. Thus, the derived interval [r℄ will be ontained in [x℄�.For the ase of 0 62 f(m) and 0 2 F 0([x℄), method's behavior is the same withthe non-interval ase: the gap reated by the appliation of the method onthe upper boundary funtion (the left part of Figure 5) or the lower boundaryfuntion (the right part of Figure 5) of the interval funtion is exluded forfurther onsideration.The existene of an interior part of interval zero allow us to arry out anabstration of this part, resulting in the redution of searh interval. So, we an12 Nikas-Grapsa 2009
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Fig. 5. The ase where 0 62 F (m) and 0 2 F 0([x℄).summarize the above observations and propositions to the following iterativesheme of interval Newton method for interval equations:mk = m([x℄k);H([x℄k) = NL([x℄k) tNU([x℄k) = NL([x℄k) [ [r℄ [NU([x℄k);[x℄k+1 = [x℄k \ (NL([x℄k) [NU([x℄k)) ; (4.5)where NL, NU denote the left and right operand in (4.2), [r℄ is de�ned in (4.3)and k = 0; 1; 2; : : :.In general, the appliation of the above proposed iterative sheme will resultin three intervals: NL and NU intervals that aim to bound the endpoints ofan interval zero and interval [r℄, an inner part of interval zero, that will beexluded from the searh proedure. In partiular, intervals that guaranteeto be ontained in an interval zero or to ontain no zero of the equation areexluded.The exlusion proedure used in this work is running in the literature as "prun-ing step", and is de�ned as an exlusion mehanism of parts of searh intervalthat, in general, ontain no solution. Our purpose is to extend this pruningproperty to intervals with existene guarantee. Spei�ally, we prune intervalsthat are ontained with ertainty in an interval zero. In addition, we do notdisard the pruned intervals that are assigned as zero setors, but we keep themto build the interval zeros.For the ase of non-interval funtions, that is, equations with simple or multi-ple point-zeros, we an easily prove that the proposed method is similar withinterval Newton method.Proposition 4.3 Let f : R! R be a ontinuously di�erentiable funtion and[x℄ the initial searh interval. For the funtion f the proposed iterative sheme(4.5) and the lassi interval Newton sheme (3.2) are equivalent.13 Nikas-Grapsa 2009



PROOF. The funtion f an be onsidered as degenerate interval funtion.Thus, f(m) = [fm; fm℄, with fm = fm. So, we have:H([x℄) = NL([x℄) tNU([x℄) = 0�m� fmhd; di1A t 0�m� fmhd; di1A == 0�m� f(m)hd; di1A t 0�m� f(m)hd; di1A = m� f(m)hd; di = N([x℄):
4.2 Pathologial aseA zero in a denominator onsists an important stage in interval alulationsand needs speial treatment. In our proposal, a pathologial situation withzero denominator ours and it does need a speial treatment too. Spei�ally,when we have a non-monotone interval funtion and the midpoint of searhinterval is either a zero of the lower boundary funtion fL of f (the left part ofFigure 6) or a zero of the upper boundary funtion fU of f (the right part ofFigure 6), the proposed method results the real line. In mathematial terms,
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Fig. 6. Pathologial ases when fm = 0 and fm = 0.when 0 2 F 0([x℄) and fm = 0 or fm = 0 then we have no improvement to thesearh interval. For these ases, a heuristi tehnique is adopted. Partiularly,we adopt a bisetion sheme in order to make an arti�ial improvement of thesearh interval, aiming to avoid the onditions ausing this pathologial ase.5 Theoretial ResultsIn this setion, we state and prove some important properties of the proposedmethod. Firstly we prove the existene of an interval zero in the intervalderived by the proposed operator.14 Nikas-Grapsa 2009



Lemma 5.1 Let a; b be real numbers suh that a; b 2 [x℄ 2 IR. If a � b then[a; b℄ � [x; x℄.PROOF. The proof of the above lemma is trivial and it is omitted.Theorem 5.2 Let f be a ontinuously di�erentiable interval funtion as de-�ned in De�nition 1.1 and [x℄ 2 IR the searh interval. Moreover, let fL andfU be boundary funtions of f , and NL, NU the orresponding interval New-ton operators over fL, fU , respetively, as they dei�ned in (4.2). If an intervalzero [x℄� � [x℄ of interval equation f(x) = 0 exists, then it is also a subset ofinterval H([x℄).PROOF. Suppose that an interval zero [y℄�, with [y℄� 6� H([x℄) exists. Then,y� 2 NL or NU and y� 2 NL or NU too. That is, y�; y� 2 NL t NU and fromLemma 5.1 [y�; y�℄ � NLtNU = H([x℄), whih does not hold and the theoremis proved.The next theorem proves that the method is able to prove automatially thenonexistene of an interval zero.Theorem 5.3 Let the assumptions of Theorem 5.2 hold. If [x℄\H([x℄) = [=℄,there exists no interval zero of f(x) = 0 in [x℄.PROOF. Suppose the existene of an interval zero [x℄� � [x℄. From Theorem5.2 we have [x℄� � H([x℄) and onsequently [x℄ \ H([x℄) 6= [=℄, whih is nottrue and the theorem is proved.Proposition 5.4 Let the assumptions of Theorem 5.2 hold. The endpoints ofinterval zero [x℄� � [x℄ an be bounded to arbitrary auray.PROOF. The proof of the above statement omes easy if we onsider thatthe NL and NU operators are applied on the non-interval funtions fL and fU ,respetively, to isolate the bounds of interval zero. Hansen in [6℄ proved thata point zero of a non-interval funtion an be bounded to arbitrary auray.Therefore, both the endpoints an be bounded to arbitrary auray.Furthermore, as it is proved in [8℄ the rate of onvergene in the ase ofmonotone boundary funtions is quadrati.15 Nikas-Grapsa 2009



Corollary 5.5 Let the assumptions of Theorem 5.2 hold. An interval zero[x℄� � [x℄ an be bounded to arbitrary auray.PROOF. Sine we are able to bound sharply the endpoints of an intervalzero, we are able to bound sharply an interval zero too.Theorem 5.6 Let the assumptions of Theorem 5.2 hold. Furthermore we sup-pose that w([x℄�) > 0. If H([x℄) Æ� [x℄ and 0 2 F ([x℄), then there exists a uniqueinterval zero of f(x) = 0 in interval [x℄.PROOF. Hansen in [6℄ proved the existene of an interval zero for intervalequations. We suppose, here, the existene of a seond one over the same searhinterval. This means that f is a non monotone funtion, that is 0 2 F 0([x℄). Theappliation of the proposed iteration sheme will answer a union of intervals,[�1; ℄[ [d;+1℄, where ; d 2 R. This is not true sine we have H([x℄) Æ� [x℄and therefore the original assumption 0 2 F 0([x℄) does not hold. Consequently,we have a monotone funtion and a unique interval zero of f(x) = 0 in [x℄.6 Algorithmi formulationIn this setion, we will present an algorithmi formulation of the method,desribed in the previous setions. The following algorithm, alled HIN (HullInterval Newton) takes as input the interval natural extension of interval fun-tion f , the searhing interval [x℄0, the tolerane " and returns a result list Lontaining the found interval zeros. At the following lines a brief desriptionof the proposed algorithm is given. Firstly, in Step 2 we initialize the resultlist L to be the empty list, and the working list S with the initial searh in-terval [x℄0. The main iterative sheme of the method is proessed in Steps 3to 32, while the working list S stays non-empty. In partiular, in Step 4 the�rst item of the working list is popped and removed from it, and is assignedwith [x℄. As onerns the working list, a LIFO sheme (stak) is adopted andimplemented.Sine an interval estimation of the range of f over the interval [x℄ is evaluated,it is feasible to examine whether 0 2 F ([x℄) or not (Step 5). In ase where0 62 F ([x℄), the non-existene of a zero in [x℄ is proved and the urrent searhinterval is disarded, proeeding to the next andidate interval. In the oppositease, a termination riterion on searh interval is applied (Steps 6, 7), and ifit is ful�lled we push the searh interval to the result list. If this does not holdwe proeed with evaluation of f on the midpoint of [x℄ and the evaluation of16 Nikas-Grapsa 2009



Algorithm 1 Hull Interval Newton1: funtion HIN(F; [x℄0; ";L)2: L = fg; S = f[x℄0g;3: while (S 6= fg) do4: [x℄ := Pop(S); S := S � f[x℄g5: if (0 2 F ([x℄)) then6: if (w([x℄) � ") then7: L := L ℄ f[x℄g8: else9: Fm := F (m([x℄))10: H := (NL([x℄) t NU ([x℄)) \ [x℄11: [r℄ = �min�NL; NU	 ;max fNL; NUg�12: if (0 2 F 0([x℄)) then13: if �Fm = 0 _ Fm = 0 _ H � [x℄� then14: biset([x℄; [x℄1; [x℄2)15: S := S ℄ f[x℄1; [x℄2g16: Pik the next item from S:17: else if (0 62 Fm) then18: [r℄ = [=℄19: end if20: end if21: [x℄1 := NL \ [x℄22: [x℄2 := NU \ [x℄23: if [r℄ is de�ned then24: [r℄ := [r℄ \ [x℄25: else26: [r℄ := [=℄27: end if28: S := S ℄ f[x℄1; [x℄2g29: L := L ℄ f[r℄g30: end if31: end if32: end while33: return L34: end funtioninterval H (Steps 9, 10), while in Step 11 we onstrut interval [r℄ (De�nition(4.3)).For the monotone ase, an interior part [r℄ of interval zero is always resulted. Inthe opposite, if a non-monotone ase is ourred then either a bisetion shemeis adopted (pathologial ases desribed in paragraph 4.2 as well as the asewhere no improvement is ahieved) or an empty interval [r℄ is onsidered (when0 62 F (m([x℄))). These exeptions are formulated in algorithmi form through12-20. In the next Steps 21, 22 and 23-27, the new intervals [x℄1, [x℄2 and[r℄ are formulated, while in Steps 28 and 29 [x℄1, [x℄2 are pushed to workinglist S and interval [r℄ is pushed to the result list L, respetively. Finally, the17 Nikas-Grapsa 2009



algorithm answers the result list L ontaining all (interval and point) zeros off(x) = 0.7 Numerial ResultsTable 1Test FuntionsNo f(x)1. x3 + [p℄2x2 + [p℄1x+ [p℄0, [p℄0 = [1; 1:8907℄, [p℄1 = [2:8749; 4:2501℄, [p℄2 = [1:2499:2:2501℄2. x2 � [p℄, [p℄ = [�2; 2℄3. sin([p℄2 + 2x2)e�[p℄2�x2 , [p℄ = [�0:5; 0:5℄4. x6 � p5x5 + p4x4 + [p℄3x3 � p2x2 + [p℄1x+ [p℄0[p℄0 = 16:1024, [p℄1 = [15:8448; 16:52℄, p2 = 7:872, [p℄3 = [�4:0388;�3:875℄, p4 = 1:0256, p5 = 25. P7i=1i6=4 [p℄2i4000 + x24000 ��Q7i=1i6=4 os� [p℄ipi �+ x2�, [p℄i=1;:::;7 = [1; 2℄6. x4 + [p℄31[p℄2x3 + [p℄21[p℄22[p℄3x2 + [p℄1[p℄32[p℄23x+ [p℄3,[p℄1 = [1:15; 1:65℄, [p℄2 = [1:3; 1:7℄, [p℄3 = [0:6; 1:0℄7. 8Pi=1 fYi (1+ 10Zi+1)g+ Y9 (1+ 10 � sin2(�x)) +Z1 + �x�14 �2 � ,Yi = ([p℄i � 1)2 ; Zi = sin2(�[p℄i), [p℄i=1;:::;9 = [0:9; 1:1℄,  = 0:53416152784158. P5j=1 fjsin((j + 1)[p℄ + j)g �P5i=1 fi � sin((i+ 1)x + i)g � 10 [p℄ = [�0:1; 0:2℄9. [(x+ 10 � [p℄0)2 � 5 � (x� [p℄1)2 � (x� 2 � [p℄2)4)℄ � e�x4 + 4,[p℄0 = [�1; 0℄, [p℄1 = [0; 0:5℄, [p℄2 = [�0:25; 0:25℄10. 5Pj=1 j [sin ((j + 1)x+ j) + xjsin ((j + 1)[p℄ + j)℄, [p℄ = [�0:1; 0:2℄11. 100 � ([p℄� x2)2 + (x � 1)2, [p℄ = [�5; 5℄12. � 5�x� 5:14�2 x2 + [p℄� 6�2 + 10�1� 18� � osx, [p℄ = [�2; 0℄Fig. 7. The graphs of test funtions
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Through the literature, aording to our knowledge, there exist plenty of testproblems onerning the problem of solving a non-interval equation, but a18 Nikas-Grapsa 2009



very small sample of interval equations either in the form of examples or inappliation problems. Thus, we put out a set of interval funtions to over themost important ases of the proposed method, as well as interval equationsourring in appliations. In Table 1 we present a set of twelve interval fun-tions with their orresponding graphs in Figure 7 (funtions 3, 5, 7, 8, 9, 10,11 and 12 are modi�ations of optimization problems found in [7℄, funtions 1,4 and 6 are modi�ations of interval polynomial problems found in [16℄, whilefuntion 2 is a simple quadrati funtion).Table 2Numerial Results, " = 10�14No SI IT F F 0 B Z Zeros1. [-3,2℄ 45 88 43 0 1 [r℄ = [�1:173264124091346;�0:249991803609978℄2. [-2,3℄ 15 28 13 0 1 [r℄ = [�1:414213562373095; 1:414213562373095℄3. [-2.5,2.5℄ 317 606 289 1 9 [r℄1 = [�2:500000000000000;�2:481569121983017℄[r℄2 = [�2:170803763674813;�2:141819082085289℄[r℄3 = [�1:772453850905517;�1:736834089252561℄[r℄4 = [�1:253314137315509;�1:202412710675869℄[r℄5 = [�0:000000000000008; 0:000000000000008℄[r℄6 = [1:202412710675869; 1:253314137315509℄[r℄7 = [1:736834089252561; 1:772453850905517℄[r℄8 = [2:141819082085289; 2:170803763674812℄[r℄9 = [2:481569121983017; 2:500000000000000℄4. [-1.5,2.5℄ 55 103 48 0 1 [r℄ = [�1:094076044826967;�0:908642763062733℄5. [-20,20℄ 151 268 117 0 7 [r℄1 = [�20;�16:395305380213230℄[r℄2 = [�15:253283748005453;�9:610838776749120℄[r℄3 = [�9:201957555406935;�3:181124303417352℄[r℄4 = [�3:111967834374116; 3:111967834374116℄[r℄5 = [3:181124303417352; 9:201957555406935℄[r℄6 = [9:610838776749120; 15:253283748005453℄[r℄7 = [16:395305380213230; 20℄6. [-10,5℄ 69 134 65 0 1 [r℄ = [�7:599154609171094;�0:074548001830275℄7. [-3,4℄ 216 416 200 0 4 [r℄1 = [�2:672990110994471; 0:056902762968949℄[r℄2 = [0:065000000092365; 0:735991988918098℄[r℄3 = [1:264008011081902; 1:934999999907636℄[r℄4 = [1:943097237031067; 4:000000000000000℄8. [-2.5,2.5℄ 231 423 192 0 7 [r℄1 = [�2:467152980553360;�2:087460254410815℄[r℄2 = [�1:958922899620498;�1:519342768690696℄[r℄3 = [�1:436949439757614;�0:802257350337060℄[r℄4 = [�0:729786967029618;�0:225747585941954℄[r℄5 = [�0:120747964752167; 0:313580544722099℄[r℄6 = [0:871714388244534; 1:280704105726763℄[r℄7 = [1:858301514255557; 2:244666313984733℄9. [-2,2℄ 325 594 269 0 2 [r℄1 = [�1:251045232674226;�0:111978757770101℄[r℄2 = [0:484522198663111; 1:195334431624846℄10. [-2.5,2.5℄ 145 279 134 0 6 [r℄1 = [�2:5;�1:920875742833900℄[r℄2 = [�1:527234382559722;�1:258339862758130℄[r℄3 = [�0:912042992031484;�0:755713118472338℄[r℄4 = [�0:156163369857502;�0:120811879307023℄[r℄5 = [0:321729033785959; 0:951474079195070℄[r℄6 = [1:150136547412020; 2:5℄11. [-5,5℄ 101 151 50 0 1 [r℄ = [0:999999999999996; 1:000000000000005℄12. [1,11℄ 62 118 56 0 2 [r℄1 = [2:528141250340096; 4:488909517022945℄[r℄2 = [8:122294734375085; 9:909824008961696℄19 Nikas-Grapsa 2009



In the Table 2 we show the performane of the proposed method, where SIindiates the searh interval, IT the number of iterations, F the number ofinterval funtion evaluations, F 0 the number of interval derivative evaluations,B the total number of required bisetions, and Z the number of found zeros,using tolerane " = 10�14. In olumn Zeros the found interval zeros are stated.The numerial performane of our method was measured on a Laptop PC withIntel Dual Core�2GHz proessor, 2GB RAM, OS Ms Windows Vista, usingIntlab pakage for veri�ed omputing [15℄. The graphs were drawn using aplot-funtion, dediated to interval equations, written in Matlab 1 .Remark 7.1 An important task onerning the taken parameters of the aboveequations is arisen. The amount of overestimation in interval parameters af-fets seriously the width of resulted interval zeros. This does not suggest anydefetion of our proposal (the found interval zeros orrespond to the given pa-rameters), but implies a great neessity for writing them in suitable intervalform. However, this is an issue beyond the sope of this work and onsists astudy ase of a future work.8 Conlusions, Results and Future WorkIn this work, we state the weaknesses of the existing methods and algorithms insolving, generally, the problem of �nding reliably and with ertainty all zeros ofan interval equation. Even though the proposed method is, essentially, basedon interval Newton method for non-interval equations, ahieves to produeeÆient solutions to the problem of solving interval equations.The most signi�ant result of our work is foused in generating an interval[r℄ whih onsists a guaranteed interior part of the searh interval zero. Thisformulation guide us to adopt a di�erent approah in using interval methods.In partiular, instead of disarding intervals that ontains with ertainty nozeros of f(x) = 0, we searh for intervals that are interior parts of a solution(part of an interval zero). This seems to be a di�erent aspet in using intervalmethods that requires further onsideration and investigation.Referenes[1℄ G. Alefeld, J. Herzberger, Introdution to interval omputations, Computersiene and applied mathematis series, Aademi Press, New York, 1983,translated by Jon Rokne.1 http://www.math.upatras.gr/~nikas/soft/20 Nikas-Grapsa 2009
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