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Abstract

In this paper, we review our work on a time series forecasting method-

ology based on the combination of unsupervised clustering and artificial

neural networks. To address noise and non–stationarity, a common ap-

proach is to combine a method for the partitioning of the input space into

a number of subspaces with a local approximation scheme for each sub-

space. Unsupervised clustering algorithms have the desirable property of

deciding on the number of partitions required to accurately segment the

input space during the clustering process, thus relieving the user from

making this ad hoc choice. Artificial neural networks, on the other hand,

are powerful computational models that have proved their capabilities on

numerous hard real–world problems. The time series that we consider are

all daily spot foreign exchange rates of major currencies. The experimental

results reported suggest that predictability varies across different regions

of the input space, irrespective of clustering algorithm. In all cases, there

are regions that are associated with a particularly high forecasting per-

formance. Evaluating the performance of the proposed methodology with

respect to its profit generating capability indicates that it compares fa-

vorably with that of two other established approaches. Moving from the

task of one–step–ahead to multiple–step–ahead prediction, performance

deteriorates rapidly.

Keywords: Time Series Modeling and Prediction, Unsupervised Clus-

tering, Neural Networks

1



1 Introduction

One of the central problems of science is forecasting; “Given the past how can
we predict the future?” The classic approach is to build an explanatory model
from first principles and measure initial data [12]. In the field of high frequency
exchange rate forecasting we still lack the first principles necessary to build
models of the underlying market dynamics that can generate reliable forecasts.
Foreign exchange rates are among the most important monetary indicators.

Among the various financial markets the foreign exchange (FX) market
stands out, being the largest and most liquid in the world. It is a twenty fourth
hour market with an impressive breadth, depth and liquidity. Currently, aver-
age daily trading volume in traditional FX markets (non–electronic broker) is
estimated at $ 1.2 trillion [29]. Although the precise scale of speculative trading
on spot markets is unknown it is estimated that only around 15% of the trading
is driven by non–dealer/financial institution trading. Approximately, 90% of all
foreign currency transactions involve the US Dollar [29]. It is widely accepted
that exchange rates are affected by many highly correlated economic, political,
and psychological factors, that interact in a highly complex manner. The fact
that accurate forecasts of currency prices are of major importance in the decision
making process of firms, in the determination of optimal government policies
and, last but not least, for speculation makes exchange rate prediction one of
the most challenging applications of modern time series forecasting method-
ologies. Following the inception of floating exchange rates in the early 1970s,
economists have attempted to explain and predict their movements based on
macroeconomic fundamentals. Empirical evidence suggests that these models
appear to be capable of explaining the movements of major exchange rates in
the long run and in economies experiencing hyperinflation. Their performance
is poor, however, when it comes to the short run and out-of-sample forecast-
ing [13, 25, 26]. Forecasting foreign exchange rates, therefore, poses numerous
theoretical and experimental challenges [54].

At present assume knowledge of only the scalar time series. A scalar time
series is a set of observations of a given variable z(t) ordered according to the
parameter time, and denoted as z(1), z(2), . . . , z(N), where N is the size of the
time series. In this context, time series prediction and system identification are
embodiments of the old problem of function approximation [37]. Conventional
time series models rely on global approximation, employing techniques such
as linear regression, polynomial fitting and artificial neural networks. Global
models are well suited to problems with stationary dynamics. In the analysis
of real–world systems two of the key problems are non–stationarity (often in
the form of switching between regimes) and overfitting (which is particularly
serious for noisy processes) [51]. Non–stationarity implies that the statistical
properties of the data generator vary over time. This leads to gradual changes
in the dependency between the input and output variables. Noise, on the other
hand, refers to the unavailability of complete information from the past behavior
of the time series to fully capture the dependency between the future and the
past. Noise can be the source of overfitting, which implies that the performance
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of the forecasting model will be poor when applied to new data [6, 27].
Although global approximation methods can be applied to model and fore-

cast time series characterized by the aforementioned propertied, it is reasonable
to expect that forecasting accuracy can be improved if regions of the input space
exhibiting similar dynamics are identified and subsequently a local model is con-
structed for each of them. A number of researchers have proposed methodologies
to perform this task effectively (see for example [6, 27, 32, 33, 37, 43, 51]). In
principle, these methodologies are formed by the combination of two distinct
approaches; an algorithm for the partitioning of the input space and a function
approximation model. Evidently the partitioning of the input space is critical
for the successful application of these methodologies.

In this paper we review our work on a time series modeling and forecast-
ing methodology that relies on principles of chaotic time series analysis, un-
supervised clustering, artificial neural networks and evolutionary optimization
methods [31, 32, 33]. The methodology can be outlined in the following four
steps:

1. determine the minimum, appropriate, embedding dimension for phase-
space reconstruction [21];

2. identify regions of the reconstructed phase-space that exhibit similar dy-
namics, through unsupervised clustering;

3. for each such region train a different artificial neural network using pat-
terns belonging to the particular region solely;

4. to perform out-of-sample forecasting:

(a) assign the input pattern to the appropriate region using as criterion
the Euclidean distance;

(b) use the corresponding neural network to generate a prediction;

(c) in the case of multiple-step-ahead forecasting, use the prediction to
formulate the next input pattern, and return to step (a).

The remaining paper is organized as follows: in the next section we present
the various methods employed in this study. In Section 3 experimental results
regarding the spot exchange rate of the German Mark against the US Dollar are
presented. The paper ends with a short discussion of the results and concluding
remarks.

2 Methods

In this section we briefly describe the components of the proposed methodology.
In particular, we outline (a) the algorithm employed to determine an appropriate
embedding dimension, (b) three unsupervised clustering algorithms, and (c) the
supervised training of feedforward neural networks.
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2.1 Determining an Appropriate Embedding Dimension

State space reconstruction is the first step in nonlinear time series analysis of
data from chaotic systems including estimation of invariants and prediction.
The observations z(n), are a projection of the multivariate state space of the
system onto the one–dimensional axis of z(n)’s. Utilizing time–delayed versions
of the observed scalar quantity: z(t0 + n∆t) = z(n) as coordinates for phase
space reconstruction, we create from the set of observations, multivariate vectors
in d–dimensional space:

y(n) = [z(n), z(n + T ), . . . , z(n + (d − 1)T )] . (1)

In this manner, we expect that the points in R
d form an attractor that preserves

the topological properties of the unknown original attractor. The fundamental
theorem of reconstruction, introduced first by Takens [46], states that when
the original attractor has fractal dimension dA, all self-crossings of the orbit
will be eliminated when one chooses d > 2dA. These self–crossings of the or-
bit are the outcome of the projection and embedding seeks to undo that. The
theorem is valid for the case of infinitely many noise–free data. Moreover, the
condition that d > 2dA is sufficient but not necessary. In other words it does
not address the question: “Given a scalar time series what is the appropriate
minimum embedding dimension, dE?” This is a particularly important ques-
tion when computational intelligence techniques like neural networks are used,
since overspecification of input variables is very likely to cause sub–optimal per-
formance. To determine the minimum embedding dimension we employ the
popular method of false nearest neighbors [21].

In an embedding dimension that is too small to unfold the attractor of the
system not all points that lie close to each other will be neighbors because of
the dynamics. Some will actually be far from each other and simply appear as
neighbors because the geometric structure of the attractor has been projected
down onto a smaller space (d < dE). In going from dimension d to (d + 1) an
additional component is added to each of the vectors y(n). A natural criterion
for catching embedding errors is that the increase in distance between y(n) and
its closest neighbor y(1)(n) is large when going from dimension d to (d + 1).
Thus the first criterion employed to determine whether two nearest neighbors
are false is:

[
R2

d+1(n) − R2
d(n)

R2
d(n)

]1/2

=

∣∣z(n + Td) − z(1)(n + Td)
∣∣

R2
d(n)

> Rtol, (2)

where R2
d(n) is the squared Euclidean distance between point y(n) and its near-

est neighbor in dimension d, and Rtol is a threshold whose default value is set
to 10 [21]. If the length of the time series is finite, as it is always the case
in real–world applications, a second criterion is required to ensure that near-
est neighbors are in effect close to each other. More specifically, if the nearest
neighbor to y(n) is not close [Rd(n) ' RA] and it is a false neighbor, then the
distance Rd+1(n) resulting from adding an extra component to the data vectors
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will become Rd+1(n) ' 2RA. That is even distant but nearest neighbors, if
they are false neighbors, they will be stretched to the extremities of the attrac-
tor when they are unfolded from each other. This observation gives rise to the
second criterion used to identify false neighbors:

Rd+1(n)

RA
> Atol. (3)

As a measure for RA the value:

R2
A =

1

N

∑
[z(n) − z̄]2

, is suggested. In the literature [21] Atol it is recommended to set Atol to 2. If
the time series is not contaminated with noise, then the appropriate embedding
dimension is the one for which the number of false neighbors, as estimated by
applying jointly the two criteria (2) and (3), drops to zero. If the data is con-
taminated with noise, as is the case for foreign exchange rate time series, then
the appropriate embedding dimension corresponds to an embedding dimension
with a low proportion of false neighbors. Once the minimum embedding dimen-
sion sufficient for phase space reconstruction is identified, time–delayed state
space vectors are subjected to unsupervised clustering.

2.2 Unsupervised Clustering Algorithms

Clustering can be defined as the process of “grouping a collection of objects into
subsets or clusters, such that those within one cluster are more closely related
to one another than objects assigned to different clusters” [18]. A critical issue
in the process of partitioning the input space for the purpose of time series
modeling and forecasting is to obtain an appropriate estimation of the number of
subsets. Over– or under–estimation of this quantity can cause the appearance of
clusters with little or no physical meaning, and/or clusters containing patterns
from regions with different dynamics, and/or clusters with very few patterns
that are insufficient for the training of a artificial neural network.

This is a fundamental and unresolved problem in cluster analysis, indepen-
dent of the clustering technique applied. For instance, well–known and widely
used iterative techniques, including Self–Organizing Maps (SOMs) [23], the k–
means algorithm [17], as well as, the Fuzzy c–means algorithm [5], require from
the user to specify the number of clusters present in the dataset prior to the
execution of the algorithm.

On the other hand, algorithms that have the ability to approximate the
number of clusters present in a dataset belong to the category of unsuper-

vised clustering algorithms. The proposed methodology relies solely on unsuper-
vised algorithms. In particular, we consider the Growing Neural Gas [15], the
DBSCAN [11], and the unsupervised k-windows [47, 49] clustering algorithms.
Next, the three aforementioned unsupervised algorithms are briefly presented.
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2.2.1 Growing Neural Gas Clustering Algorithm

The Growing Neural Gas (GNG) clustering algorithm [15] is an incremental
neural network. It can be described as a graph consisting of k nodes, each
having an associated weight vector, defining the node’s position in the data
space, and a set of edges connecting it with its neighbors. During the clustering
procedure, new nodes are added to the network until a maximal number of
nodes is attained. GNG starts with two nodes, randomly positioned in the data
space, connected by an edge. Adaptation of weights, i.e. the nodes’ positions, is
performed iteratively. For each data object the closest node (called the winner

node), s1, and the closest neighbor of the winner node, s2, are identified. These
two nodes are connected by an edge. An age variable is associated with each
edge. When the edge between s1 and s2 is created its age is set to zero. At
each learning step the age variable of all edges emanating from the winner node
is increased by one. By tracing the changes of the age variable it is possible
to detect inactive nodes. Edges exceeding a maximal age, R, and any nodes
having no emanating edges are removed. The neighborhood of the winner is
limited to its topological neighbors. The winner and its topological neighbors
are moved in the data space toward the presented object by a constant fraction
of the distance, defined separately for the winner and its topological neighbors.
There is no neighborhood function, or ranking concept and thus, all topological
neighbors are updated in an identical manner.

2.2.2 The DBSCAN Clustering Algorithm

The DBSCAN clustering algorithm [42] relies on a density–based notion of clus-
ters and is designed to discover clusters of arbitrary shape and to distinguish
noise. More specifically, the algorithm relies on the idea that for each point in a
cluster at least a minimum number of objects, MinPts, should be contained in
a neighborhood of a given radius, Eps, around it. Thus, by iteratively scanning
all the points in the dataset DBSCAN forms clusters of points that are con-
nected through chains of Eps–neighborhoods, each containing at least MinPts

points.

2.2.3 Unsupervised k-windows

The unsupervised k-windows clustering algorithm [47, 48, 49] uses a windowing
technique to discover the clusters in a dataset. More specifically, if we suppose
that the dataset lies in d dimensions, the algorithm initializes a number of d–
dimensional windows over the dataset. At a next step it iteratively moves and
enlarges these windows to enclose all the patterns that belong to one cluster
in a single window. The movement and enlargement procedures are guided
by the points that lie within the window at each iteration. As soon as the
movement and enlargement procedures do not alter significantly the number
of points within a window they terminate. The final set of windows defines
the clustering result of the algorithm. The unsupervised k–windows algorithm
(UKW) applies the k–windows algorithm using a “sufficiently” large number of
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initial windows. The windowing technique of the k–windows algorithm allows
for a large number of windows to be examined without any significant overhead
in time complexity. At the final step, the windows that contain a high percentage
of common points from the dataset are considered to belong to the same cluster.
Thus, an estimation of the number of clusters is obtained [1, 2, 47].

2.3 Supervised Training of Feedforward Neural Networks

Artificial Neural Networks (ANNs) have been widely employed in numerous
fields and have shown their strengths in solving real–world problems. ANNs are
parallel computational models comprised of interconnected adaptive processing
units (neurons), characterized by an inherent propensity for storing experiential
knowledge. They resemble the human brain in two fundamental respects; firstly,
knowledge is acquired by the network from its environment through a learning
process, and secondly, interneuron connection strengths (known as weights) are
employed to store the acquired knowledge [19].

ANNs are characterized by properties that are highly desirable in the context
of time series forecasting, most notably: (i) freedom from statistical assump-
tions, (ii) resilience to missing observations, (iii) ability to cope with noise, and
(iv) ability to account for nonlinear relationships [38]. The price of this freedom
is the reliance on empirical performance for validation due to the lack of sta-
tistical diagnostics and understandable structure. Much recent work has been
devoted on strengthening the statistical foundations of neural model identifica-
tion procedures (see [38] and the references therein).

Numerous neural network models have been proposed, but FNNs are the
most common. In FNNs neurons are arranged in layers and there are connections
between neurons in one layer to the neurons of the following layer. The learning
rule typically used for FNNs is supervised training. Two critical parameters for
the successful application of FNNs are the appropriate selection of the network
architecture and the training algorithm. For the general problem of function
approximation, the universal approximation theorem, proved in [52] states that:

Theorem 2.1 Standard Feedforward Networks with only a single hidden layer

can approximate any continuous function uniformly on any compact set and any

measurable function to any desired degree of accuracy.

An immediate implication of the above theorem is that any lack of success in
applications must arise from inadequate learning and/or an insufficient number
of hidden units and/or the lack of a deterministic relationship between the input
patterns and the desired response (target).

In the context of time series modeling the inputs to the FNN typically consist
of a number of delayed observations, while the target is the next value of the
series. The universal myopic mapping theorem [40, 41] states that any shift–

invariant map can be approximated arbitrarily well by a structure consisting of

a bank of linear filters feeding an FNN . An implication of this theorem is that,
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in practice, FNNs alone can be insufficient to capture the dynamics of a non–
stationary system [19]. This is also verified by the results presented in this
paper.

The selection of the optimal network architecture for a specific task remains
up to date an open problem. An upper bound on the architecture of an FNN
designed to approximate a continuous function defined on the unit cube in R

n

is given by the following Theorem [34]:

Theorem 2.2 On the unit cube in R
n any continuous function can be uniformly

approximated, to within any error by using a two hidden layer network having

2n + 1 units in the first layer and 4n + 3 units in the second layer.

The FNN supervised training process is an incremental adaptation of the
weights that propagate information between the neurons. Learning in FNNs is
achieved by minimizing the network error using a batch, also called off–line, or
an on–line training algorithm.

Batch training is considered as the classical machine learning approach. In
time series applications, a set of patterns is used for modeling the system, before
the network is actually used for prediction. In this case, the goal is to find a
minimizer w∗ = (w∗

1 , w∗

2 , . . . , w∗

n) ∈ R
n, such that:

w∗ = min
w∈Rn

E(w),

where E is the batch error measure of the FNN, whose l-th layer (l = 1, . . . , M)
contains Nl neurons:

E =
1

2

P∑

p=1

NM∑

j=1

(
yM

j,p − tj,p
)2

=

P∑

p=1

Ep. (4)

In the above relation, the error function is based on the squared difference
between the actual output value at the jth output layer neuron for pattern p,
yM

j,p, and the target output value, tj,p. Ep is the error of the p-th pattern and p

is the index over the input–output pairs. To predict the next value of the time
series, there is only one output neuron (NM = 1). On the other hand, when the
problem is formulated as a classification task the value of NM can vary according
to the number of classes. The error function of Eq. (4) is not the only possible
choice for the objective function. A variety of distance functions are available
in the literature, such as the Minkowsky, Mahalanobis, Camberra, Chebychev,
Quadratic, Correlation, Kendall’s Rank Correlation and Chi-square distance
metrics; the Context-Similarity measure; the Contrast Model; hyperectangle
distance functions and others [53].

Supervised training is, in general, a difficult task since the dimension of
the weight space is typically very high, and the error function E generates
a complicated surface, characterized by multiple local minima and broad flat
regions adjoined to narrow steep ones.

In on–line training, the FNN weights are updated after the presentation
of each training pattern. On–line training may be the appropriate choice for
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learning a task either because of the very large (or even redundant) training
set, or because of the slowly time–varying nature of the task. Although batch
training seems faster for small–size training sets and networks, on–line training
is probably more efficient for large training sets and FNNs. Furthermore, it
often helps to avoid local minima and provides a more natural approach for
learning non–stationary tasks, such as time series modeling and prediction. On–
line methods seem to be more robust than batch methods as errors, omissions,
or redundant data in the training set can be corrected, or ejected during the
training phase.

In this paper we have employed and compared four algorithms for batch
training and one on–line training algorithm. The batch training algorithms
were the well–known Resilient Propagation (RPROP) [39], a Scaled Conjugate
Gradient (SCG) [28] and two population based algorithms that do not require
the gradient of the error function, namely the Differential Evolution algorithm
(DE) [44] and the Particle Swarm Optimization (PSO) [10]. We also tested
the recently proposed Adaptive On–line BackPropagation training algorithm
(AOBP) [24, 35]. Next, we briefly describe the AOBP, the DE, as well as, the
PSO algorithms.

2.3.1 The Online Neural Network Training Algorithm

Despite the abundance of methods for learning from examples, there are only
a few that can be used effectively for on–line learning. For example, the clas-
sic batch training algorithms can not straightforwardly handle non–stationary
data. Even when some of them are used in on–line training the problem of
“catastrophic interference” appears, in which training on new examples inter-
feres excessively with previously learned examples, leading to saturation and
slow convergence [45].

Methods suited to on–line learning are those that can handle time–varying
data, while at the same time, require relatively little additional memory and
computation in order to process one additional example. The AOBP method
proposed in [24, 35] belongs to this class of methods.

The key features of this method are the low storage requirements and the
inexpensive computations. At each iteration, the d-dimensional weight vector
is evaluated using the following update formula:

wg+1 = wg − ηg∇E(wg).

To calculate the learning rate for the next iteration, ηg+1, AOBP uses informa-
tion from the current and the previous iteration. In detail, the new learning
rate is calculated through the following relation:

ηg+1 = ηg + K
〈
∇E(wg−1),∇E(wg)

〉
,

where η is the learning rate, K is the meta–learning rate constant (typically
K = 0.5), and 〈·, ·〉 stands for the usual inner product in R

d. This approach
stabilizes the learning rate adaptation process, and previous experiments [24, 35]
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have shown that it allows the method to exhibit good generalization and high
convergence rate.

2.3.2 Differential Evolution Training Algorithm

DE [44] is a novel minimization method designed to handle non–differentiable,
nonlinear and multimodal objective functions, by exploiting a population of
NP potential solutions, that is d–dimensional vectors, to probe the search space.
At each iteration of the algorithm, called generation, g, three steps, mutation,
recombination and selection, are performed to obtain more accurate approxima-
tions [36]. Initially, all weight vectors are initialized by using a random number
generator. At the mutation step, for each i = 1, . . . ,NP a new mutant weight
vector vi

g+1 is generated by combining weight vectors, randomly chosen from
the population, and exploiting the following variation operator:

vi
g+1 = ωi

g + µ(ωbest
g − ωi

g + ωr1
g − ωr2

g ), (5)

where ωr1
g and ωr2

g are randomly selected vectors, different from ωi
g, and ωbest

g

is the member of the current generation that yielded the lowest error function
value. Finally, the positive mutation constant µ, controls the magnification of
the difference between two weight vectors (typically µ = 0.8).

The resulting mutant vectors are mixed with a predetermined weight vector,
called target vector. This operation is called recombination, and it gives rise to
the trial vector. At the recombination step, for each component j = 1, 2, ..., d

of the mutant weight vector a random number r ∈ [0, 1] is generated. If r is
smaller than the predefined recombination constant p (typically p = 0.9), the
j-th component of the mutant vector vi

g+1 becomes the j-th component of the

trial vector. Otherwise, the j-th component of the target vector, ωi
g, is selected

as the j–th component of the trial vector. Finally, at the selection step, the
trial weight vector obtained after the recombination step is accepted for the
next generation, if and only if, it yields a reduction of the value of the error
function relative to the previous weight vector; otherwise, the previous weight
vector is retained.

2.3.3 Particle Swarm Optimization Training Algorithm

PSO is a swarm–intelligence optimization algorithm capable of minimizing non–
differentiable, nonlinear and multimodal objective functions. Each member of
the swarm, called particle, moves with an adaptable velocity within the search
space, and retains in its memory the best position it ever encountered. At each
iteration, the best position ever attained by the swarm is communicated among
the particles [10].

Assume a d-dimensional search space, S ⊂ R
d, and a swarm of NP particles.

Both the position and the velocity of the i-th particle are d-dimensional vectors,
xi ∈ S and vi ∈ R

d, respectively. The best previous position ever encountered
by the i-th particle is denoted by pi, while the best previous position attained
by the swarm is denoted by pg . The velocity [7] of the i-th particle at the
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(g+1)th iteration is obtained through Eq. (6). The new position of this particle
is determined, through Eq. (7), by simply adding the velocity vector to the
previous position vector.

v
(g+1)
i = χ

(
v
(g)
i + c1r1(p

(g)
i − x

(g)
i ) + c2r2(p

(g)
g − x

(g)
i )

)
, (6)

x
(g+1)
i = x

(g)
i + v

(g+1)
i , (7)

where i = 1, . . . ,NP ; c1 and c2 are positive constants (typically c1 = c2 =
2.05); r1, r2 are random numbers uniformly distributed in [0, 1]; and χ is the
constriction factor (typically χ = 0.729). In general, PSO has proved to be very
efficient and effective in tackling various difficult problems [30].

3 Presentation of Experimental Results

Numerical experiments were performed using a Clustering and a Neural Network
C++ Interface, built under a Linux operating system using the GNU compiler
collection (gcc) version 4.0.3. In all cases, we evaluate the accuracy of the
forecasting methodology by the percentage of correct sign prediction [8, 16, 50].
This measure captures the percentage of forecasts in the test set for which the
following inequality is satisfied:

(ẑt+d − zt+d−1) · (zt+d − zt+d−1) > 0, (8)

where, ẑt+d represents the predicted value, while zt+d refers to the true value of
the exchange rate at period (t+d), and finally, zt+d−1 stands for the value of the
exchange rate at the current period, (t+d−1). Correct sign prediction in effect
captures the percentage of profitable trades enabled by the forecasting system.
To successfully train FNNs capable of forecasting the direction of change of the
time series, a modified, nondifferentiable, error function is implemented:

Ek =

{
0.5 · |zt+d − ẑt+d| , if (ẑt+d − zt+d−1) · (zt+d − zt+d−1) > 0
|zt+d − ẑt+d| , otherwise.

(9)

Since gradient descent based algorithms are not applicable for this function it
is employed only when FNNs are trained through the DE and PSO algorithms.

3.1 One–Step–Ahead Forecasting

In [33] we considered the time series of the daily spot prices of the exchange rate
of the German Mark relative to the US Dollar over the period from 10/9/1986
to 8/9/1996, covering approximately ten years [22]. The total number of obser-
vations was 2567. The first 2317 were used to evaluate the parameters of the
predictive models, while the remaining 250, covering approximately the final
year of the dataset, were employed for performance evaluation.

The first step in the analysis and prediction of time series originating from
real–world systems is the choice of an appropriate time delay, T , and the deter-
mination of the embedding dimension, d. To select T an established approach is
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to use the value that yields the first minimum of the mutual information func-
tion [14]. For the considered time series no minimum occurs for T = 1, . . . , 20, as
illustrated in Fig. 1 (left). In this case a time delay of one is the typical choice.
To determine the minimum embedding dimension for state space reconstruc-
tion we applied the method of “false nearest neighbors” [21]. As illustrated
in Fig. 1 (right) the proportion of false nearest neighbors as a function of d

drops sharply to the value of 0.006 for d equal to five, which is the embedding
dimension that we selected, and it becomes zero for dimensions higher than
seven. With this embedding dimension the number of patterns used to evaluate
the parameters of the predictive models was 2312 while the performance of the
models was evaluated on the last 250 patterns.
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Figure 1: Mutual information as a function of T (left) and proportion of “false
nearest neighbors” as a function of d (right).

Having selected an embedding dimension, we tested numerous FNNs with
different architectures and training algorithms, but no single FNN was capable
of producing a satisfactory test set prediction accuracy. In fact, the obtained
forecasts resembled a time–lagged version of the original series [54]. Next, the
three unsupervised clustering algorithms, namely GNG, DBSCAN and UKW,
were applied on the patterns of the training set to partition the input space.
Note that the value to be predicted by the FNNs acting as local approximators
(target value), was also included in the patterns comprising the dataset supplied
to the clustering algorithms. Our experience suggests that this approach slightly
improves the overall forecasting performance. Once the clusters present in the
training set are identified, each pattern from the test set is assigned to one of
the clusters. Since the target value for patterns in the test set is unknown the
assignment is performed by not taking into consideration the additional dimen-
sion that corresponds to the target component. A test set pattern is assigned
to the cluster to which the nearest (in terms of Euclidean distance) node, pat-
tern, window center, belongs for the GNG, DBSCAN, and UKW algorithms,
respectively.

The results obtained are reported in Tables 1–3 and the accompanying fig-
ures. Each table reports the total number of clusters identified in the training
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set, and the number of clusters to which test set patterns were assigned. For
each of these clusters, the tables report, the number of patterns that were as-
signed to it from the training set and the test set. Notice that irrespective
of the clustering algorithm, a relatively small proportion of the patterns con-
tained in the training set was actually used to generate the predictions, since
training only the FNNs corresponding to the particular clusters is necessary.
The accompanying figures provide candlestick plots. Each candlestick depicts
for a cluster and a training algorithm the forecasting accuracy with respect to
sign prediction over 100 experiments. A filled box is plotted between the first
and third quartile of the data. The lines extending from each end of the box
(whiskers) represent the range of the data. The black line inside the box stands
for the mean value of the measurements. An immediate observation from the in-
spection of the figures is that irrespective of the clustering algorithm used there
are significant differences in the predictability of different clusters. Moreover,
within the same cluster, different training algorithms produced FNNs yielding
different predictive accuracies.

For clusters 1, 3, 5 identified by the UKW algorithm and having the cor-
responding FNNs trained by the DE and PSO algorithms, a mean predictive
accuracy exceeding 60% was achieved. These three clusters together comprise
more than 50% of the test set. However, the predictability of cluster 4 (26.8%
of the test set) is low. As previously mentioned, DBSCAN has the ability to
identify outliers in a dataset. In this case close to 50% of the patterns of the test
set were characterized as outliers. The FNN trained on these patterns produced
a poor performance. On the other hand, the mean predictability for clusters 1
and 2 was around 55%. Note that cluster 3 (to which four test patterns were
assigned) exhibited extremely high predictability. The GNG algorithm distin-
guished cluster 2 for which the corresponding FNN produced a mean accuracy
close to 60% irrespective of the training algorithm used. For cluster 4, PSO
and DE exhibited good performance, but the other three algorithms yielded the
worst performance witnessed in this study.

Among the unsupervised clustering algorithms considered, UKW’s perfor-
mance appears to be more robust. Both the DBSCAN and the GNG algorithms,
however, were capable of identifying meaningful clusters that yielded increased
predictability in the test set. From the training algorithms considered, FNNs
trained using the AOBP training algorithm exhibited the highest maximum
performance. On the other hand, the performance of the population based
algorithms, DE and PSO, exhibited wide variations.

3.2 Trading Performance

In [31] we investigate the profitability of the aforementioned methodology com-
bined with a simple trading rule, and compare its performance with two other
widely known forecasting methodologies, namely global FNNs and k nearest
neighbor regression. To generate a prediction for z(t) from the information
available up to time (t − 1), the k nearest neighbors regression method firstly
identifies the k nearest neighbors of the pattern y(t − d). An estimator of

13



Table 1: UKW
Patterns in

train set test set
Cluster 1 84 33
Cluster 2 82 57
Cluster 3 65 3
Cluster 4 239 67
Cluster 5 210 90
Total number of clusters: 13.
Clusters used in test set: 5.
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Figure 2: Proportion of correct sign prediction
based on the clustering of the input space using
the UKW algorithm.

E(zt|zt−1, . . . , zt−d) is obtained through
∑k

i=1 ωtizi, where ωti is the weight as-
signed to the ith nearest neighbor. Alternative configurations of the weights
are possible but we employed uniform weights as they are the most frequently
encountered configuration in the literature. The global FNN had an architec-
ture of 5-5-4-1 and was trained for 200 epochs using the Improved Resilient
Propagation algorithm [20].

The profitability of these methodologies was evaluated on the time series of
the daily spot exchange rate of the Euro against the Japanese Yen. The 1682
available observations cover the period from 12/6/1999 to 29/6/2005. The first
1482 observations were used as a training set, while the last 200 observations
were used to evaluate the profit generating capability of the different method-
ologies. In particular, we assume that on the first day we have 1000 Euros
available. The trading rule that we considered is the following: if the system
at date t, holds Euros and ẑt+1 > zt (where ẑt+1 is the predicted price for date
(t + 1) and zt is the actual price at date t) then the entire amount available is
converted to Japanese Yen. On the contrary, if the system holds Japanese Yen
and ẑt+1 < zt, then the entire amount is converted to Euros. In all other cases,
the holdings do not change currency at date t. The last observation of the series
is employed to convert the final holdings to Euros. When transactions costs are
included they are set to 0.25% of the total amount [3]. A perfect predictor, i.e.
a predictor that correctly predicts the direction of change of the spot exchange
rate at all dates, achieves a total profit of approximately 9716 Euros exclud-
ing transactions costs, while including transactions costs reduces total profit to
approximately 7301 Euros.

The profitability from trading based on the predictions of the global FNN
model is depicted with the red line (Global FNN) in Fig 5. As can be seen from
Fig. 5, excluding transactions costs the FNN is capable of achieving a profit
of 282.94 Euros over the 200 days of the test set, while including transactions
costs reduces total profit to 109.57 Euros. Next the results obtained by the k
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Table 2: DBSCAN
Patterns in the

train set test set
Outliers 1353 123
Cluster 1 95 59
Cluster 2 81 53
Cluster 3 4 4
Cluster 4 11 11
Total number of clusters: 12.
Clusters used in test set: 5.
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Figure 3: Proportion of correct sign prediction
based on the clustering of the input space using
the DBSCAN algorithm.

Table 3: GNG
Patterns in the

train set test set
Cluster 1 90 57
Cluster 2 61 29
Cluster 3 94 6
Cluster 4 496 158
Total number of clusters: 9.
Clusters used in test set: 4.  0.3
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Figure 4: Proportion of correct sign prediction
based on the clustering of the input space using
the GNG algorithm.

nearest neighbor regression method are presented. We experimented with all the
integer values of k in the range [1, 20]. The best performance was exhibited for
k = 5, and is illustrated with the black line (5 Nearest Neighbor) in Fig 5. The
5 nearest neighbor method achieved a profit of 379.51 excluding transactions
costs and 129.16 including transactions costs. Finally, the performance of the
forecasting system based on the segmentation of the input using the UKW
algorithm and utilizing an FNN to act as a local predictor for each cluster, is
illustrated with the blue line (UKW FNN) in Fig. 5. This approach achieved
the highest profit: in the absence of transactions costs, 472.16 Euros, and 235.54
including transactions costs.
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Figure 5: Trading performance of the different forecasting methodologies.
Left: Excluding transactions costs. Right: Including transactions costs.

3.3 Multiple–Step–Ahead Forecasting

In [32] we considered the problem of multiple–step–ahead forecasting. The time
series considered was that of the Japanese Yen against the U.S. Dollar. The
series consists of 1827 observations spanning a period of five years, from the 1st
of January 1998 until the 1st of January of 2003. The series is freely available
from the website www.oanda.com. The training set contained the first 1500
patterns, while the remaining patterns, covering approximately the final year of
data, were assigned to the test set.

The UKW algorithm was employed to compute the clusters present in the
training set. Pattern n is of the form pn = [zn, . . . , zn+d+h−1] , n = 1, . . . , 1500,
and h = 2, 5 represents the forecasting horizon. That is the values to be pre-
dicted [zn+d, . . . , zn+d+h−1], are components of the pattern vectors employed
by the UKW algorithm. The FNNs associated with each cluster were trained
to minimize the mean squared error of one–step–ahead prediction. As an addi-
tional evaluation criterion, the performance of the FNNs on the task of two– and
five–step–ahead prediction on the training set was monitored. Having trained
all the FNNs for 100 epochs, their performance on the task of two– and five–
step–ahead prediction was evaluated on the test set. For the clusters to which
patterns from the test set were assigned, Tables 4 and 5 report the minimum
(min), mean, and maximum (max) performance with respect to correct sign
prediction. Also the standard deviation (st.dev), as well as, the performance
of the FNN that managed the highest multiple–step–ahead sign prediction on
the train set (best ms) are provided. The number of test patterns that were
assigned to each cluster is indicated next to the cluster index. Due to space
limitations, the results for one cluster containing four patterns from the test
set are not reported in Table 4 for the two–step–ahead problem, while for the
five–step–ahead task the results for three clusters containing one, four and five
patterns respectively are not reported in Table 5.

On the task of two–step ahead prediction (Table 4), no FNN was able to
achieve a correct sign prediction exceeding 50% for the patterns that were clas-
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Cluster 5: 13 patterns
min mean max st.dev. best ms

AOBP 0.46 0.46 0.46 0.0 0.46
SCG 0.46 0.49 0.61 0.05 0.53
RPROP 0.46 0.46 0.46 0.0 0.46

Cluster 6: 39 patterns
min mean max st.dev. best ms

AOBP 0.46 0.56 0.61 0.05 0.46
SCG 0.43 0.57 0.61 0.07 0.61
RPROP 0.61 0.61 0.61 0.0 0.61

Cluster 7: 64 patterns
min mean max st.dev. best ms

AOBP 0.37 0.41 0.43 0.01 0.42
SCG 0.45 0.45 0.45 0.0 0.45
RPROP 0.45 0.45 0.45 0.0 0.45

Cluster 8: 42 patterns
min mean max st.dev. best ms

AOBP 0.38 0.46 0.5 0.04 0.38
SCG 0.35 0.50 0.54 0.06 0.35
RPROP 0.5 0.52 0.54 0.01 0.54

Cluster 9: 60 patterns
min mean max st.dev. best ms

AOBP 0.51 0.57 0.61 0.03 0.60
SCG 0.46 0.50 0.58 0.03 0.58
RPROP 0.43 0.47 0.48 0.01 0.48

Cluster 10: 23 patterns
min mean max st.dev. best ms

AOBP 0.47 0.53 0.56 0.03 0.52
SCG 0.47 0.54 0.56 0.03 0.56
RPROP 0.52 0.54 0.60 0.03 0.52

Cluster 11: 25 patterns
min mean max st.dev. best ms

AOBP 0.56 0.61 0.72 0.06 0.56
SCG 0.52 0.52 0.6 0.02 0.52
RPROP 0.52 0.52 0.52 0.0 0.52

Cluster 12: 50 patterns
min mean max st.dev. best ms

AOBP 0.42 0.45 0.50 0.03 0.48
SCG 0.44 0.51 0.52 0.02 0.44
RPROP 0.52 0.52 0.52 0.0 0.52

Table 4: Results for the problem of 2–step ahead prediction

sified to cluster 7. A similar behavior is observed for clusters 17, 18, 19, and
20 for the five–step–ahead prediction task. On the other hand, the minimum
correct sign prediction exceeds 50% for most training algorithms in clusters 10
and 11 of Table 4 and clusters 14, 15, and 21 of Table 5. It is important to note
that the FNNs that achieved the best performance on the task of two– and five–
step–ahead prediction on the training set were rarely the ones that exhibited
the highest performance on the test set. Selecting among the trained FNNs for
each cluster the one with the highest performance with respect to minimum,
mean, maximum and highest multiple–step–prediction accuracy on the training
set, respectively, we computed the mean forecasting performance achieved on
the entire test set. These results are illustrated in Table 6 for the two– and
five–step–ahead tasks. As expected the accuracy of the forecasts deteriorates as
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Cluster 11: 35 patterns
min mean max st.dev. best ms

AOBP 0.51 0.53 0.54 0.01 0.54
SCG 0.34 0.48 0.54 0.07 0.45
RPROP 0.48 0.51 0.54 0.01 0.51

Cluster 12: 17 patterns
min mean max st.dev. best ms

AOBP 0.35 0.42 0.52 0.07 0.52
SCG 0.17 0.27 0.35 0.05 0.29
RPROP 0.17 0.33 0.52 0.13 0.52

Cluster 13: 9 patterns
min mean max st.dev. best ms

AOBP 0.22 0.24 0.33 0.04 0.22
SCG 0.22 0.23 0.33 0.03 0.22
RPROP 0.22 0.26 0.33 0.05 0.33

Cluster 14: 75 patterns
min mean max st.dev. best ms

AOBP 0.54 0.56 0.57 0.0 0.56
SCG 0.49 0.55 0.58 0.02 0.49
RPROP 0.54 0.56 0.58 0.01 0.57

Cluster 15: 64 patterns
min mean max st.dev. best ms

AOBP 0.59 0.60 0.60 0.0 0.59
SCG 0.57 0.60 0.60 0.0 0.60
RPROP 0.56 0.60 0.62 0.01 0.59

Cluster 16: 15 patterns
min mean max st.dev. best ms

AOBP 0.46 0.46 0.46 0.0 0.46
SCG 0.4 0.46 0.46 0.02 0.46
RPROP 0.26 0.41 0.46 0.06 0.40

Cluster 17: 16 patterns
min mean max st.dev. best ms

AOBP 0.25 0.25 0.25 0.0 0.25
SCG 0.18 0.40 0.5 0.12 0.18
RPROP 0.18 0.35 0.5 0.11 0.18

Cluster 18: 9 patterns
min mean max st.dev. best ms

AOBP 0.33 0.33 0.33 0.0 0.33
SCG 0.11 0.13 0.33 0.07 0.11
RPROP 0.11 0.18 0.33 0.07 0.11

Cluster 19: 17 patterns
min mean max st.dev. best ms

AOBP 0.35 0.39 0.41 0.02 0.41
SCG 0.17 0.23 0.29 0.02 0.23
RPROP 0.23 0.32 0.41 0.04 0.41

Cluster 20: 10 patterns
min mean max st.dev. best ms

AOBP 0.20 0.26 0.30 0.05 0.20
SCG 0.20 0.24 0.40 0.06 0.30
RPROP 0.20 0.26 0.30 0.05 0.30

Cluster 21: 40 patterns
min mean max st.dev. best ms

AOBP 0.55 0.55 0.55 0.0 0.55
SCG 0.55 0.58 0.60 0.01 0.55
RPROP 0.57 0.60 0.62 0.01 0.60

Table 5: Results for the problem of 5–step ahead prediction
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the forecasting horizon is expanded.

min mean max best ms
2–step–ahead 0.51 0.53 0.575 0.55
5–step–ahead 0.48 0.51 0.56 0.51

Table 6: Overall forecasting accuracy achieved by selecting the best performing
FNN with respect to min, mean, max, and best ms, respectively

Since the embedding dimension used to construct the input patterns for the
FNNs acting as local predictors was five, to perform six–step–ahead prediction
through the aforementioned approach, implies that all the elements of input
vector are previous outputs of the model. In other words, the problem becomes
one of iterated (closed–loop) prediction. We have tested the performance of the
system on this task, but the model fails to keep track of the evolution of the
series. In effect beyond a certain number of iterated predictions the output of
the model converges, to a constant value, implying that the system has been
trapped in a fixed point. Enhancing the model so as to be able to overcome this
limitation is a very interesting problem which we intend to address in future
work.

4 Conclusions

This paper presents a time series forecasting methodology which draws from
the disciplines of chaotic time series analysis, clustering, and artificial neural
networks. The methodology consists of four stages. Primarily the minimum
dimension necessary for phase space reconstruction through time–delayed em-
bedding is calculated using the method of false nearest neighbors. To identify
neighborhoods in the state space, time delayed vectors are subjected to unsu-
pervised clustering. Thus, the number of clusters present in a dataset is endoge-
nously approximated. Subsequently, a different feedforward neural network is
trained on each cluster to act as a local predictor for the corresponding subspace
of the input space. The methodology is applied to generate one–step–ahead, as
well as, multiple–step–ahead forecasts for different time series of daily spot for-
eign exchange rates of major currencies. The obtained experimental results
are promising for the case of one–step–ahead forecasting. A finding common
to all the unsupervised clustering algorithms considered is the identification of
regions characterized by substantially different predictability. This result high-
lights the importance of devising a scheme that will be capable of synthesizing
the outcome of different algorithms to produce a satisfactory performance on
a broader region of the input space. Trading based on the signals obtained
through the proposed approach generates positive profit, despite the very sim-
ple nature of the trading rule applied and the inclusion of trading costs. As
expected, multiple–step–ahead prediction is a considerably more difficult task.
Indeed the mean performance of the methodology under examination marginally
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exceeds the benchmark of 50%. In future work the synthesis of the results of the
different clustering algorithms to improve the forecasting performance in larger
regions of the input space, will be considered. We also intend to address the
issue of iterated prediction, by incorporating the test proposed by Diks et al. [9]
which provides a measure of the extent to which the developed prediction sys-
tem accurately captures the attractor of the measured data [4]. We also intend
to consider alternative neural network models like recurrent neural networks.
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