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1. THE BACKGROUND

The various laws of Nature(in Physics, Chemistry, Biology, e.t.c.)as well as

the various natural phenomena around us, may be described in terms of

mathematical functions of several variables, which satisfy either certain

differential equations(d.e.) with partial derivatives, or systems of such e-

quations. In this way, we obtain the various named Mathematical Models

which express the corresponding theories such as the Maxwell Equations

of Classic Electrodynamics or the Einstein Equations of the General

Theory of Relativity,e.t.c.The fact is that there is a strong connection

of Science with partial differential equations and the need to produce

solutions of any kind (analytic or numerical) satisfying certain conditions

is quite critical, although the analytic solutions are scarcely possible.So,

numerical solutions are the only feasible alternatives for the problems

,in hand.
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2. The two strategies: Finite Differences (F.D.) versus Finite

Elements (F.E.)

To this end , two main strategies exist for facing problems including

differential equations; the first one replaces the derivatives involved by

a suitable finite difference approximation of certain accuracy -this is the

Finite Difference approach, while the second one transforms, through

a proper principle, the initial differential problem into an integral one,

taking thus advantage of the better stability properties of integration

against differentiation. Along these lines, a series of methods were de-

veloped, like the Weighted Residual Method, the Subdomain Method,

the Least Squares Method, the Ritz Method, the Galerkin Method,

the Variational Methods and finally the Finite Elements Method, which

proved a very successful evolution of the previous ones.
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3. The Second Order D.E. as a Study Case

Let us now consider the following equation, in two variables x and y, as a

study case, in order to demonstrate the peculiarities and the subtleties

of p.d.e.’s.:

a ·
∂2ϕ

∂x2
+ β ·

∂2ϕ

∂x · ∂y
+ γ ·

∂2ϕ

∂y2
+ δ ·

∂ϕ

∂x
+ ε ·

∂ϕ

∂y
+ ζ · ϕ + η = 0,

where : a, β, γ, δ, ε, ζ and η could be functions of x and y, with a2 +

β2 + γ2 6≡ 0, and ϕ = ϕ(x, y) the unknown function.
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4. The Classical Cases of P.D.E.’s

If we write the above equation in a domain Ω, in the simpler form :

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = H,(1)

where the coefficients: A, B, C, D, E, F and H could be piecewise

continuous functions of x and y, for ∀(x, y) ∈ Ω, then :
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Definition: In the domain Ω, the P.D.E. (1) with A2 + B2 + C2 6≡ 0 is

called:

(a) Elliptic if B2 − AC < 0 for ∀(x, y) ∈ Ω ,

(b) Parabolic if B2 − AC = 0 for ∀(x, y) ∈ Ω ,

(g) Hyperbolic if B2 − AC > O for ∀(x, y) ∈ Ω.

The classical representatives of the above equations are :

(2) uxx + uyy = 0 (Laplace’s equation-
}

Elliptic case
(3) uxx + uyy = f(x, y) (Poisson’s equation)

(4) uxx − uy = 0
(Heat transfer -

}

Parabolic

case
Heat conduction)

(5) uxx − uyy = 0
(Wave equation-

}

Hyperbolic

case
Wave propagation)
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Finally, the Tricomi equation- with variable coefficients:

yuxx + uyy = 0,

(describes the transition from a conventional to a supersonic state-

in aerodynamics ) is :

Elliptic in the upper half plane ( y > 0),
Parabolic on the axis ( y = 0), and
Hyperbolic in the lower half plane (y < 0).

Note: The above classification is not just technical but substantial,because

it describes the general properties of the solutions of the models pertaining

to natural phenomena. So, the Elliptic equations describe steady-state

phenomena, while the parabolic and the hyperbolic equations refer to

diffusion states and processes.
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5. General Solutions of P.D.E.’s

Before getting on, it will be helpful to clarify that the ”General” Solu-

tion of a P.D.E. does not have any practical use for finding a particular

solution satisfying certain conditions for a problem, as it includes arbitrary

functions. So, a particular solution of a P.D.E. problem has to be cre-

ated on the basis of the conditions( Boundary or/and Initial) which

has to satisfy, that is something quite different from what happens in the

O.D.E.’s cases.
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6. Examples

1. For the following heat conduction problem (see fig.1):

∂u

∂t
=

∂2u

∂x2
|x ∈ (0,1), u = u(x, t),

under the conditions : (initial) u = u(x,0) = 1 | x ∈ [0,1],

and (boundary) :
∂u(0, t)

∂x
= u(0, t),

∂u(1, t)

∂x
= −u(1, t) ∀t,

Figure 1.
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the following analytical solution can be produced, in some way :

u(x, t) = 4
∞
∑

n=1







sec an
(

3 + 4a2
n

)

(

e−4a2
n.t

)

cos 2an (x − 0.5)







∣

∣

∣

∣

0 < x < 1,(6)

where an are the positive roots of the following equation:

a · tan(a) = 0.5.(7)
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2. For Laplace’s equation on a circular disc :

uxx + uyy = 0 |
{

(x, y) : x2 + y2 ≤ R2
}

,

under the Dirichlet boundary conditions:

u(x, y) = g(x, y) |
{

(x, y) : x2 + y2 = R2
}

, with g a given function

we can prove the existence of the following unique solution (in polar

coordinates):

u(x, y) =
R2 − ρ2

2π
·
∫ 2π

0

g(Reiϕ)dϕ

R2 + ρ2 − 2Rρ cos(ϑ − ϕ)
,(8)

where x = ρ cosϑ and y = ρ sinϑ.

Now, it is clear from (6)-(8) that both analytical solutions have no

practical use, since if one wishes to obtain a number of values of the

solution u(x, t) of (6) for certain points (x, t) of the domain of definition

of the problem, one, first of all, has to determine the positive roots of (7),

and then, by using the included quite slow converging series in (6), to

calculate the values with the required accuracy, something which is not an

easy cup of ...tea!. In addition, as we ’ll see later on, there are numerical

methods which can compute the required values faster and cheaper.
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7. Particular Solutions of a P.D.E.

Regarding now the meaning of a particular solution of a P.D.E., satisfying

certain conditions which secure a unique solution to the whole problem,

two points should be stressed: the first refers to the general solution

(g.s.) of the equation involved, which for the cases we’ll deal with, one

can produce forms of g.s. easily obtainable, and the real difficulty will

be how to manipulate the arbitrary functions such as to satisfy the re-

quired conditions. The second point regards the need in the P.D.E.’s case

to build the particular solution on the basis of the conditions imposed

and not via the g.s. of the equation, something which is pronounced in

the method of Separation of Variables. The examples that follow, from

the Euler equation, will clarify the points just made.
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8. The Euler’s equation

As is known ,the Euler’s equation has the following form :

a ·
∂2ϕ

∂x2
+ 2β ·

∂2ϕ

∂x · ∂y
+ γ ·

∂2ϕ

∂y2
= 0,(9)

where a, β, γ are constants and ϕ = ϕ(x, y). The equation can be nor-

malized by the transformation:
{

ξ = κx + λy
η = µx + νy,

(10)

with κ, λ, µ and ν parameters to be determined.

Three cases can show up (after proper manipulation ):
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(i) if β2 − aγ > 0 (Hyperbolic case)

then,the equation (9) takes the form:

∂2ϕ

∂ξ · ∂η
= 0,

with the following General Solution:

ϕ(ξ, η) = A(ξ) + B(η),

or going back to the initial variables:

ϕ(x, y) = A(x + x1y) + B(x + x2y),(11)

where A(z) and B(z) are arbitrary functions and twice differentiable

and x1 and x2 are the roots of the equation :

γx2 + 2βx + a = 0,(12)

which obviously, in this case, are real and unequal.
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Application :

In the following wave equation:

∂2ϕ

∂x2
−

1

κ2

∂2ϕ

∂y2
= 0, (κ − parameter)(13)

the equation (12) has the form:

1 −
1

κ2
x2 = 0,

and the two roots are: x1 = κ and x2 = −κ; therefore the General solution

of (13) now becomes:

ϕ(x, y) = A(x + κy) + B(x − κy),

which, of course is quite useless for finding any particular solution of the

equation.
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(ii) If β2 − aγ < 0 (Elliptic case)

then, working in the same way as before, we come up, this time, with the

following General Solution:

ϕ(x, y) = A(x + σy + iτy) + B(x + σy − iτy),

where x1 = σ + iτ and x2 = σ − iτ , are the complex roots of (12),which

is the characteristic property of an elliptic p.d.e. and the functions A

and B are, again, arbitrary and twice differentiable.
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Application: In the case of the well known Laplace’s equation:

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0,

the equation (12) now becomes:

x2 + 1 = 0,

with the following two complex roots:

x1 = i and x2 = −i.

Therefore, the General Solution,in this case , will be:

ϕ(x, y) = A(x + i.y) + B(x − i.y),

which, again, has no practical use, at all.
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(iii)If β2 − aγ = 0 (Parabolic case)

then, the normalized equation now becomes:

∂2ϕ

∂η2
= 0,

and the General Solution takes the form:

ϕ(ξ, η) = A(ξ) + ηB(ξ),

or, going back to the initial variables :

ϕ(x, y) = A(x + x∗y) + y.B(x + x∗y),(14)

where x∗ is the double root of (12),and A(z) - B(z) are arbitrary functions

having second order derivatives.

Application :

In the following p.d.e.:

uxx + 4uxy + 4uyy = 0,

we can easily check up that it is of parabolic type, and it has the following

General Solution:

u(x, y) = A

(

x −
y

2

)

+ y · B
(

x −
y

2

)

,
20



as, in this case, equation (12) takes the form :

4x2 + 4x + 1 = 0,

or

(2x + 1)2 = 0,

and has the double root:

x∗ = −
1

2
,

with the functions A and B to be arbitrary and twice differentiable.



9. Uniqueness of a P.D.E. Solution and its Stability

In this presentation the study of P.D.E.’s is application oriented. So, we

are forced to deal with P.D.E. problems by the mathematical models we

set up in order to explain physical phenomena. For example, Laplace’s

equation can explain steady state phenomena, as we said before. The

above mathematical description in order to be valid has to satisfy the u-

niqueness criterion , as well as the need for the solution to be stable,

which means that small changes in the accompanying conditions should

only cause small changes in the resulting solutions (the stability criteri-

on), and then the problem is said to be well-posed, or well formulated.

Otherwise, is said to be ill-posed.
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10. Initial and Boundary conditions for P.D.E.’s

There are various named Initial and Boundary conditions or a mixture of

them, which can secure the uniqueness of solution to the pertaining

P.D.E. So, we have:

1. Boundary Conditions Dirichlet, 2. Boundary Conditions Neumann, 3.

Boundary Conditions Robbin and 4. Initial Conditions Cauchy.

More analytically for the Dirichlet conditions, they demand the solution

function u(x, y) ,at every point of the boundary ∂T of the domain of def-

inition T of the p.d.e., to obtain given values. So, in this case, we can

secure the uniqueness of the solution of the general Elliptic equation

(1), provided that F ≤ 0 ∀ (x, y) ∈ Ω - this is the coefficient of the

function term in the equation( see relation (1) ).
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For example, the next problem of fig. 2 has a unique solution.

Figure 2. u(x, y) = a(x, y)|∂T with a(x, y)|∂T a given function

(ii) The Neumann conditions require the value of the derivative in the

direction of the outward normal v, of the domain of definition T , at every

point of the boundary ∂T ,to be given; that is ∂u
∂v = B | ∂T , where B is

a given function defined on the boundary ∂T of the domain T . We can

prove, that for Elliptic P.D.E.’s defined in a domain T with a boundary ∂T

a closed curve, the Neumann conditions produce solutions unique up

to an additive constant.
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(iii) The Robbin (or Cauchy ) conditions require that a linear expres-

sion of the unknown function u(x, y) and its derivative in the direction

of the outward normal, at every point on the boundary of the domain of

definition, is given :

∂u

∂v
+ λu = γ | ∂T,

where λ is a given constant and γ is a given function defined both on

the boundary ∂T . We can prove that for Elliptic equations defined in

a domain T with a closed boundary, the Robbins conditions produce

unique solutions.

(iv) The Cauchy initial conditions require that the function and all its

derivatives with respect the t variable (which is usually the time variable)

up to an order by one less the order of the differential equation, are given,

at a certain point t = t0.
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For example, The Cauchy conditions, for a second order P.D.E. for the

function u(x, t) can be of the following short:

u(x, t0) = δ(x),

[

∂u(x, t)

∂t

]

t=t0

= ε(x),

where t0 is given and δ(x) with ε(x) are given functions when t = t0. We

can prove that the Cauchy conditions, produce unique solutions for

Hyperbolic P.D.E.’s.

Finally, there are problems with conditions of mixed type. For example, in

the following wave equation problem, a solution u(x, t), should be sought

for the p.d.e., satisfying the following conditions: Cauchy (initials) at

t = t0, and Dirichlet (boundary)for x = x1 and x = x2, as is shown in

Fig. 3, that follows :
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Figure 3.
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11. A case of a no unique solution

Let us, now, take the following problem:

y′′ + y = 0 | [0,2π],(15)

y(0) = y(2π) = 0.(16)

As is known, the general solution of (15) is given by :

y(x) = A · sin(x) + B · cos(x), where A,B are parameters.

Now, for conditions (16) to be satisfied, we have to have:






A · sin(0) + B · cos(0) = 0

A · sin(2π) + B · cos(2π) = 0.
(17)
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The solution of the resulting linear system (17) is easily computed to be:

A = arbitrary , B = 0;

and therefore the problem (15)-(16) has the following infinity of solutions:

y(x) = A.sin(x),(18)

and consequently, we can not solve it numerically.

Note: H.B.Keller in his book entitled ”Numerical Method of Two-Point

Boundary Value problems” (Blaisdell, Waltham, Mass, 1968), presents

the following theorem:
The two point boundary value problem:

y′′ + P (x) · y′ + Q(x) · y = R(x) | x ∈ [a, b]

y(a) = A, y(β) = B,

where A, B are given constants, with P (x), Q(x) and R(x) | (a, b) are

continuous functions, has a unique solution in (a, β), if Q(x) ≤ 0 | ∀x ∈

(a, β).

Note: The above problem (15) - (16), obviously, does not satisfy the

requirements of the previous theorem.

In the rest of this presentation, all the problems we shall be dealing

with, will have a unique solution.
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12. The Numerical Algorithms

We come now to the main theme of this presentation which is the ways

we produce approximating algorithms to the solution of P.D.E. problems

that possess a unique solution. Two strategies have a commanding role

in the area; the Finite Differences Technique - F.D., and the Finite

Elements Method - F.E.. The interesting point with them is that even

though they both start up from a different philosophy, they both end

up with a similar outcome. To be more specific, I have to underline the

fact that F.D. works with the Differentiation Operator, while the F.E.

deals with the Integration Operator, something totally different to each

other. The other noticeable point is that they both end up with a similar

system of equations, which in the case of linear P.D.E.’s become similarly

linear, with the unknowns to be the solution values at predetermined

points, of the domain of definition of the problem. Finally, there is a

second interesting similarity of the two approaches- in the case again of a

linear P.D.E.: that refers to the structure of the resulting linear system,

which is symmetric, banded (most of the elements of the coefficient

matrix are zeroes) with positive eigenvalues. These properties of the

coefficient matrix are quite favorable to the existing Fast Solvers, for

obtaining the desired numerical values at a low cost.
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13. The Method of Finite Differences

In this approach, as we said before, we replace the existing derivatives of

the unknown function of the problem, by a finite difference approximation,

at each point of the domain of definition of the problem, where we wish to

find a solution value. These points are distributed in a canonical way in

the domain of definition, by imposing a mesh of proper size, the nodes

of which consist of all the points where solution values are required. To be

more specific let us assume the following problem for Laplace’s equation

on the unit square under Dirichlet boundary conditions (this is the so called

the Model Problem).
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14. The Model Problem :

Find the solution of the following differential system:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= uxx(x, y) + uyy(x, y) = 0 | T = {(x, y) | 0 < x, y < 1}(19)

under the Dirichlet conditions:

u(x, y) = f(x, y) | ∀(x, y) ∈ ∂T,(20)

where f(x, y) is a given function defined on the boundary of the square
(see figure 4).

Figure 4.

To this end, we impose a proper mesh of size n, as it appears in figure 5,
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Figure 5.

and at each internal mesh point we find the central difference analogue of

the differential equation, by using the Taylor series expansion of u(x, y). To

be more specific, let us suppose that the coordinates of a point P (in, jn)

of the square are given by: (x0, y0) and let us try to produce the required

difference analogue of the differential equation at the point P (in, jn), by

using the Taylor series expansion of the function u along the two coordinate

axis :

(21) u(x0 ± n, y0) = u(x0, y0) ± nux(x0, y0) +
n2

2
uxx (x0, y0)±

±
n3

6
uxxx(x0, y0) +

n4

24
uxxxx(x0, y0) ± · · · ,
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(22) u(x0, y0 ± n) = u(x0, y0) ± nuy(x0, y0) +
n2

2
uyy (x0, y0)±

±
n3

6
uyyy(x0, y0) +

n4

24
uyyyy(x0, y0) ± · · · ,

where ,of course, the point (x0, y0) and its 4 neighboring points (x ± n, y)

and (x, y ± n) must be points of the set T ∪ ∂T .

By adding equations (21) and (22) we have :

u(x0 + n, y0) + u(x0 − n, y0) + u(x0, y0 + n) + u(x0, y0 − n) = 4u(x0, y0)+

+ n2 {uxx(x0, y0) + uyy(x0, y0)} +
n2

12
{uxxxx(x0, y0) + uyyyy(x0, y0)} + · · ·

or, finally, the required relationship :

(23) uxx(x0, y0) + uyy(x0, y0) =
1

n2
{u(x0 + n, y0) + u(x0 − n, y0)+

+u(x0, y0 + n) + u(x0, y0 − n) − 4u(x0, y0)} −
n2

12
{uxxxx(x0, y0)+

+uyyyy(x0, y0)} − · · ·
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15. The Difference Analogue Production

Equation (23) is fundamental and in essence provides the desired

difference analogue of the Laplacian operator ∇2u(x0, y0) in connec-

tion with the function values at the original point u(x0, y0) and its

4 neighboring points, plus the derivatives of higher order of the un-

known function, at (x0, y0) .

Consequently, a first approximation of the Laplacian at the point

(x0, y0) of order of accuracy n2 is given by:

(24) ∇2u(x0, y0) =
1

n2
{u(x0 + n, y0) + u(x0 − n, y0)+

+u(x0, y0 + n) + u(x0, y0 − n) − 4u(x0, y0)} ,

which is valid for every neighboring quintic points of T ∪ ∂T , like the

ones shown in fig. 5, before.
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Moreover, because of (19), relation (23) gives:

(25) u(x0 + n, y0) + u(x0 − n, y0) + u(x0, y0 + n) + u(x0, y0 − n)−

− 4u(x0, y0) = 0.

Equation (25) is a relation connecting 5 points, that is the reason why it

is called the five-point formula for approximating the Laplacian ∇2u with

the order of accuracy n2, and for reasons of simplicity it is described by

the following computational cell:
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Figure 6. The 5-point formula computational cell

In addition, if we apply equation (25) to every internal point(a total of
16 ), of the mesh in fig.7, we obtain for every point a linear algebraic
equation, the totality of which results in the following system :

Figure 7.
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16. The Linear System of the Finite Difference Method :

(1,1) 4u1,1 − u1,2 − u2,1 = f1,0 + f0,1
(2,1) 4u2,1 − u1,1 − u3,1 − u2,2 = f2,0
(3,1) 4u3,1 − u2,1 − u4,1 − u3,2 = f3,0
(4,1) 4u4,1 − u3,1 − u4,2 = f4,0 + f5,1

(1,2) 4u1,2 − u1,1 − u3,1 − u2,2 = f0,2
(2,2) 4u2,2 − u2,1 − u2,3 − u1,2 − u3,2 = 0

(3,2) 4u3,2 − u3,1 − u3,4 − u3,1 − u3,3 = 0

(4,2) 4u4,2 − u4,1 − u4,3 − u3,2 = f5,2

(1,3) 4u1,3 − u1,2 − u1,4 − u2,3 = f0,3
(2,3) 4u2,3 − u2,2 − u2,4 − u1,3 − u3,3 = 0

(3,3) 4u3,3 − u3,2 − u3,4 − u2,3 − u4,3 = 0

(4,3) 4u4,3 − u4,2 − u4,4 − u3,3 = f5,3

(1,4) 4u1,4 − u2,4 − u1,3 = f0,4 + f1,5
(2,4) 4u2,4 − u1,4 − u3,4 − u2,3 = f2,5
(3,4) 4u3,4 − u2,4 − u4,4 − u3,3 = f3,5
(4,4) 4u4,4 − u4,3 − u3,4 = f4,5 + f5,4
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and in matrix form:




















































4−1 −1
−1 4−1 −1

−1 4−1 −1
−1 4 −1

−1 4−1 −1
−1 −1 4−1 −1

−1 −1 4−1 −1
−1 −1 4 −1

−1 4−1 −1
−1 −1 4−1 −1

−1 −1 4−1 −1
−1 −1 4 −1

−1 4−1
−1 −1 4−1

−1 −1 4−1
−1 −1 4





















































·



















































u1,1

u2,1

u3,1

u4,1

u1,2

u2,2

u3,2

u4,2

u1,3

u2,3

u3,3

u4,3
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f3,0

f4,0 + f5,1

f0,2

0
0

f5,2

f0,3

0
0

f5,3

f0,4 + f1,5

f2,5

f3,5

f4,5 + f5,4
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
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


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
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
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





















.(26)
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In system (26), the coefficient matrix is clearly sparse,symmetric and

easily proved with positive eigenvalues, a fact very helpful for a fast

computation of the numerical solution of the original problem.

Note: An improved accuracy scheme of a 9-point formula is easily

obtained working in a similar way and involving 9 - instead of 5 - neigh-

boring points. Thus, we can produce a better approximation to the

Laplacian equation - which will be of order O(n6) - and for the central

point (i, j) will be expressed by the following equation:

− 20ui,j + 4(ui+1,j + ui,j+1 + ui−1,j + ui,j−1) + ui+1,j+1 + ui+1,j−1+

+ ui−1,j+1 + ui−1,j−1 = 0,

which is the analogous equation to (25), of the 5 - point scheme and

it is described by the following computational cell :
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Figure 8. The 9-point formula computational cell
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17. The Technique of Finite Elements

In this approach, we end up again in a similar linear system like the

one in (26), for the same problem (19)-(20), the only difference being that

the nodes are not forced to be canonically distributed within the domain of

definition, but they can be chosen according to the needs of the problem.

This is quite helpful especially in the cases of complicated boundaries ∂T .

The starting point of the method is totally different, as it asks for a

suitable principle in order to reform the original differential problem into

an equivalent integral one. To this end, the following theorem is decisive

:
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THEOREM: Let k1(x, y), k2(x, y), ρ(x, y) and f(x, y) be given functions
in the region T and a(s) and y(s) be given functions on the boundary seg-
ments ∂T of T . The function u(x, y) which makes the integral expression:

(27) I =

∫ ∫

T

{

1

2

[

k1(x, y)u2
x + k2(x, y)u2

y

]

−
1

2
ρ(x, y)u2 + f(x, y)u

}

dxdy+

+

∮

∂T

{

1

2
a(s)u2 − γ(s)u

}

ds,

stationary, under the associated condition (essential):

u(x, y) = ϕ(x, y) |∂T1,(28)

necessarily solves the boundary value problem :

∂

∂x

(

k1(x, y)
∂u

∂x

)

+
∂

∂y

(

k2(x, y)
∂u

∂y

)

+ ρ(x, y)u = f(x, y) | T,(29)

under the Dirichlet boundary condition (28) and the general ( natural)
Robbin boundary conditions:

k1
∂u

∂x
nx + k2

∂u

∂y
ny + a(s)u = γ(s) |∂T2,(30)

where nx and ny are the direction cosines of the outward normal n to
the boundary ∂T , while ∂T2 is the rest of the boundary that satisfies the
property:

∂T1 ∪ ∂T2 = ∂T and ∂T1 ∩ ∂T2 = ∅.
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Note: It is clear that the F.E. method instead of seeking the solution

of the differential system (29)-(28)-(30), is looking for a function

u(x, y) which will make the functional (27) stationary, under only the

essential condition (28), and that with the following steps:
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Step 1st:
The domain T is discretized by dividing the total space domain into simple
subdomains, the elements. In 2-dim problems, for example, the domain
is divided into triangles, parallelograms, curved - sided triangles or quadri-
laterals, as is shown in figure 9 .

Figure 9. Discretization of the 2- dim region T

Note: This type of discretization is very flexible and can be adjusted

to suit the region of any problem. It has to be taken into account,

however, that adjacent small angles or highly obtuse angles should

be avoided, as they create numerical difficulties.

The region is replaced, in the calculation, by the union of the approximating

elements.
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Step 2nd:

For each of the elements, a suitable approximation to the function

sought, has to be chosen. For 1-dim cases appropriate choices can be

1st, 2nd, or 3rd degree polynomials, or occasionally even higher degree

polys depending on the needs of the problems. In two dimensional prob-

lems linear, quadratic or bilinear forms of the following short may be

appropriate:

(31) u(x, y) = a1 + a2x + a3y, a1, a2, and a3, are constants

(32) u(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2,

a1, a2, a3, a4, and a5, are constants

(33) u(x, y) = a1 + a2x + a3y + a4xy, a1, a2, a3, and a4, are constants.

The exact form of the approximation depends on the shape of the el-

ement, together with the type of the problem being treated. There are

definite continuity conditions which have to be satisfied by the approx-

imating functions across inter - element boundaries; for example , if-u

represents the displacement of a continuous medium in the z - direction, it

must be continuous across the common boundary of 2 elements, in order

to guarantee continuity of the material.
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Elements with approximating functions which satisfy the continuity

conditions are said to be conforming.

Note: When linear transformations from one Cartesian coordinate system

to another are involved and after that the approximating function must

still be suitable for the problem,then, the polys to be used should be

complete of a specific degree, as the ones shown before.
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In addition, in each element σ, if the approximating function is u(σ), then

its value is controlled by function values ui at certain points, the nodes.

These nodal function values, together with the values of the partial deriva-

tives at the nodes, are called the nodal variables, of the element. The

important fact is that the approximating function can be expressed

with the help of these nodal variables as a linear expression of the ba-

sis functions, with the nodal values as parameters. If we now suppose

that the function values are the only nodal variables and that they are of

multitude κ, then the approximating function in the domain T, in each

element, will be :

u(σ)(x, y) = Σκ
i=1u

(σ)
i · N

(σ)
i (x, y),(34)
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where N
(σ)
i (x, y) are the basis functions. But the above expression (34)

should be valid for any nodal variable, therefore the basis functions have

to possess the interpolation characteristic, and consequently to satisfy

the property:

N
(σ)
i (x

(σ)
j , y

(σ)
j ) =











1, when i = j,

0, when i 6= j,

where(x
(σ)
j , y

(σ)
j ) is one of the κ nodes of the element σ.
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Example:

Let us suppose the element on the left- the orthogonal trian-

gle σ - and let us further assume the following approximating

function (31):

u(x, y) = a1 + a2x + a3y,
then, three conditions will be enough for determining the values of the co-

efficients: a1, a2 and a3, as functions of the nodal variables at the three

points(vertices):

1(0,0), 2(1,0), and 3(0,1).

So, we obtain the relationships( one on each vertix):

u1 = a1
u2 = a1 + a2
u3 = a1 + a3











→(35)

The solution of the system (35) determines the values of a1, a2 and a3 as

functions of the nodal variables; that is :

a1 = u1,
a2 = u2 − u1,
a3 = u3 − u1,

49



and if we replace the found values in the approximating function, we get:

u(x, y) = u1 + (u2 − u1)x + (u3 − u1)x

which, in turn, can be written as:

u(x, y) = (1 − x − y)u1 + xu2 + yu3 ≡ N1(x, y)u1 + N2(x, y)u2 + N3(x, y)u3,

and therefore the basis functions, in this case, become:

N1(x, y) = 1 − x − y,

N2(x, y) = x,

N3(x, y) = y.

Note: Now, it is easy to see the interpolating property of the above

basis functions: Ni(x, y), i = 1,2,3, at the three vertices of the element,

as it obviously holds:

N1(0,0) = 1, N1(1,0) = 0 and N1(0,1) = 0,

N2(0,0) = 0, N2(1,0) = 1 and N2(0,1) = 0,

N3(0,0) = 0, N3(1,0) = 0 and N3(0,1) = 1.
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Finally, expression (34) holds for every element σ, which is the local ex-

pression of the function u, whose the global expression will be:

u(x, y) = Σn
λ=1uλNλ(x, y), (n : all kind of nodes),(36)

which is the piecewise combination of the approximations of u(σ)(x, y) over

all the elements, and is therefore the union of approximations (34) over all

the elements, on the whole region.

In expression (36), the function Nλ(x, y) is the union of all the individual

element basis functions N
(σ)
i (x, y) that take the value 1 at the node (xλ, yλ),

which is connected with the nodal variable uλ. Consequently, the global

basis function Nλ(x, y) takes a non zero value only in elements which

contain the nodal point (xλ, yλ).

Note: In expression (36), it is an easy matter to incorporate any essential

conditions on the global approximating function, by just replacing the

function values with the given values, by the condition.
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Step 3rd:

After that, expressions (36) are replaced in (27), where the integration can

be materialized in parts on each one element, and then by summing them

all up, we get a quadratic expression which, for stationary problems, has

the general form:

I =
1

2
ū⊤A · ū + β̄⊤ · ū + γ,(37)

where:

ū: ,is the vector of the nodal variables, that is the values of the unknown

function, that we are looking for, at the various nodes.

A: is the matrix of the quadratic terms of u ( a symmetric and positive

- definite matrix ),

β̄: is the vector of the linear terms of u, and

γ: is a constant.

52



Finally, if we impose the condition that the functional be stationary, we

easily get the following system of linear equations:

A · ū + β̄ = 0.(38)

The linear system (38) obtained by the method of Finite Elements

is the corresponding to the system (26) derived by the method of

the Finite Differences and it has, in general, similar structure with it.

Example:

Let us take the 1- dim problem:

u′′ − 2 = 0 | [0,1]

u(0) = 0, u(1) = 1.

and let us suppose, for the ease of the application, only two elements,

the first [0, n] and the second [n,1], produced by the point n on the x- axis.

It is clear that the only unknown value is that of u(n) ( see figure 10).
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Figure 10. Two linear elements
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Let us further suppose the linear approximating function:

u(x) = A · x + β,(39)

then, in the first element, the expression of the approximating function

u(x), as an expression of the nodal variables at 0 and n points - with

corresponding values u0 = 0( by the essential conditions) and u1 (the

unknown value) - is given by the Lagrange formula:

u(1)(x) =
1

n
u1 · x.(40)

Similarly, in the second element the approximating function u(x) will be

:

u(2)(x) =
u2 − u1

1 − n
· x +

u1 − u2 · n

1 − n
, where u2 = 1(by the essential condition

or, by substituting the given values in the equation, we get:

u(2)(x) =
1 − u1

1 − n
· x +

u1 − n

1 − n
.(41)
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The functional (27), in this case becomes:

I =

1
∫

0

{

1

2
u2

x + 2u

}

dx,(42)

and by analyzing it in the two integrals we get:

I =

n
∫

0

{

1

2
u2

x + 2u

}

dx +

1
∫

n

{

1

2
u2

x + 2u

}

dx,(43)

where the function u(x), in each element, is given by expressions (40) and

(41). By replacing ,we get:

n
∫

0

{

1

2

(

1

n
u1

)2

+
2

n
u1x

}

dx =
u2
1

2n
+ u1 · n

1
∫

n

{

1

2

(

1 − u1

1 − n

)2

+ 2

[(

1 − u1

1 − n

)

x +
u1 − n

1 − n

]

}

dx =
(1 − u1)

2

2 (1 − n)
+ (1 + u1) (1 − n) .
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Therefore, the functional (43) finally becomes:

I =
u2
1

2n
+ u1 · n +

(1 − u1)
2

2 (1 − n)
+ (1 + u1) (1 − n) ,

and in order to be stationary we should have :

dI

du1
= 0 −→

u1

n
+ n + (1 − n) −

1 − u1

1 − n
= 0.

or, after simplification:

u1 = n2,(44)

which is the sought value and it is quite interesting that it coincides with

the analytical solution u(x) = x2 of the problem.

57



Final remark

In the previous example, if we assume that n = 1/2 then we can use the

3- point finite difference analogue substitute to the second derivative,

in the differential equation, and obtain at once the sought value, from

the resulting algebraic equation :

(u2 − 2.u1 + u0)/n2 − 2 = 0,

or, after simplification and incorporation of the essential conditions of the

problem:

u0 = 0, u2 = 1,

we easily get :

u1 = n2 = 1/4,

exactly, the theoretical value, again of the problem , in a very simple and

straightforward way, which is the characteristic of the F.D. approach .
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C O N C L U S I O N S

The final conclusion is easily reached: the FINITE DIFFERENCE ap-

proach is quite simple in the implementation, BUT it imposes strict re-

strictions on the domain of definition of the problem and the choice of

the nodes. On the other hand, the FINITE ELEMENT approach is very

flexible and can be adapted to a very large variety of domains and cover

sophisticated cases, PROVIDED that the required transformation , in

some way, can be effected.

So, for the particular choice one has to make, it all depends on the

problem in hand and its requirements.

After all, to recall Euclid’s answer to King Ptolemeos • There is no

Royal road in Mathematics•.

All the results obtained during the Ages, are the outcome of fierce fight-

ing against the unknown, and so, life gets on improving all the way.

My Best Wishes to all of you, for enjoying the rest of your stay in

this beautiful part of GREEC, something that adverse

circumstances prevented me of doing - FAREWELL...
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P R O P O S E D / P R A C T I C E !

1st APPLICATION - Finite Differences
Find the numerical solution of Laplace’s equation for the model problem:

∂2u

∂x2
+

∂2u

∂y2
= 0 | (T unit square), u = u(x, y)

under the Dirchlet boundary condition:

u(x, y) = f(x, y) ≡ x + y | ∂T,

using Finite Differences and :

(a) the 5 -point formula

(b) the 9-point formula.

Finally, take the mesh size to be : h = 0.20.

(SUGGESTION: To solve the resulting linear systems, use a package like IMSL/MATHEMATICA, or any
other, you can get by. For naming the nodes follow the next scheme:

The required values of u = u(x, y) which have to be computed are : u1, u2, u3, . . . , u13, u14, u15and u16.
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2nd Application - Finite Elements
Find the numerical solution of the differential system:

d2u

dx2
− 2 = 0 | [0,1]

under the essential boundary conditions :u(0) = 0.0, u(1) = 1.0, using the Finite Elements technique.
Take the nodal points: 0.2, 0.4, 0.6 and 0.8, and produce an Element Information Matrix of the following
form , by adopting a linear approximating function :

Element Nodal coordinates Nodal values Approximating function

6(1) x0 = 0 and x1 = 0.2 u0 = 0.0, u1 = . . . u(1) = . . .
6(2) x1 = 0.2 and x2 = 0.4 u1 =;, u2 =; . . .
6(3) x2 = 0.4 and x3 = 0.6 u2 =;, u3 =; . . .
6(4) x3 = 0.6 and x4 = 0.8 u3 =;, u4 =; . . .
6(5) x4 = 0.8 and x5 = 1.0 u4 =;, u5 = 1.0 u(5) = . . .

Hint: As the nodes are equidistant to each other, solve the same problem using THE F.D. method and
the 3- point formula to approximate the second derivative and get the linear system which reads as follows:

u0 − 2u1 + u2 = 2n2, u1 − 2u2 + u3 = 2n2, u2 − 2u3 + u4 = 2n2, u3 − 2u4 + u5 = 2n2.

Which one finally behaves better ?
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