
Abstract

Let ν be real, $\nu>-1$ and $\nu>\operatorname{Re} \mu, \mu \in \mathbb{C}$. We prove an inequality which relates the first positive zero of the ordinary Bessel function $J_{\nu}(z)$ and the absolute value of the real part of any zero of $J_{\mu}(z)$. Some lower bounds for the absolute value of the complex zeros of $J_{\mu}(z)$ follow immediately. In particular for μ real and $\mu>-1$, this inequality proves that $(1+\nu)^{-1} \varrho_{\nu, 1}$ is a strictly decreasing function in the interval $-1<\nu<+\infty$, where $\varrho_{\nu, 1}$ is the first positive zero of $J_{\nu}(z)$. A number of simple lower and upper bounds for the first positive zero of $J_{\nu}(z)$ follow immediately from this result.

