Abstract

A method applied in previous work [E. K. Ifantis, P. D. Siafarikas and C. B. Kouris, Conditions for solution of a Linear First-order Differential Equation in the Hardy-Lebesgue space and applications, J. Math. Anal. Appl. Vol. **104** (1984), 454-466, E. K. Ifantis and P. D. Siafarikas, An inequality Related the zeros of two Ordinary Bessel functions, Applicable Analysis Vol. **19** (1985), 251-263, E. K. Ifantis and P. D. Siafarikas, A Differential equation for the zeros of Bessel functions, Applicable Analysis Vol. **20** (1985), 269-281] to the study of the zeros of the ordinary Bessel function $J_{\nu}(z)$ is here extended and also applied to the zeros of the function $F_{\nu}(z) = aJ_{\nu}(z) + (\beta + \gamma z)J'_{\nu}(z)$, where $J'_{\nu}(z)$ is the derivative of $J_{\nu}(z)$. It is proved that in the case where ν is real and $\nu > -1$, the zeros of $F_{\nu}(z)$ are the same with the zeros of the function $G(x) = -2\nu(1+\nu) - \frac{2a(1+\nu)}{\beta + \gamma x} \cdot x + T(x)$, where T(x), in the case of real positive zeros, is meromorphic with poles the positive zeros $j_{\nu,k}$, k = 1, 2, ..., of $J_{\nu}(z)$. Moreover the function T(x) is real for x real and increases as x increases in each of the intervals $(0, j_{\nu,1})$ and $(j_{\nu,k}, j_{\nu,k+1})$, k = 1, 2,

the zeros of the interesting function $aJ_{\nu}(z) + \gamma z J'_{\nu}(z)$.