
Abstract

A method applied in previous work [E. K. Ifantis, P. D. Siafarikas and C. B. Kouris, Conditions for solution of a Linear First-order Differential Equation in the Hardy-Lebesgue space and applications, J. Math. Anal. Appl. Vol. 104 (1984), 454-466, E. K. Ifantis and P. D. Siafarikas, An inequality Related the zeros of two Ordinary Bessel functions, Applicable Analysis Vol. 19 (1985), 251-263, E. K. Ifantis and P. D. Siafarikas, A Differential equation for the zeros of Bessel functions, Applicable Analysis Vol. 20 (1985), 269-281] to the study of the zeros of the ordinary Bessel function $J_{\nu}(z)$ is here extended and also applied to the zeros of the function $F_{\nu}(z)=a J_{\nu}(z)+(\beta+\gamma z) J_{\nu}^{\prime}(z)$, where $J_{\nu}^{\prime}(z)$ is the derivative of $J_{\nu}(z)$. It is proved that in the case where ν is real and $\nu>-1$, the zeros of $F_{\nu}(z)$ are the same with the zeros of the function $G(x)=-2 \nu(1+\nu)-\frac{2 a(1+\nu)}{\beta+\gamma x} \cdot x+T(x)$, where $T(x)$, in the case of real positive zeros, is meromorphic with poles the positive zeros $j_{\nu, k}, k=1,2, \ldots$, of $J_{\nu}(z)$. Moreover the function $T(x)$ is real for x real and increases as x increases in each of the intervals $\left(0, j_{\nu, 1}\right)$ and $\left(j_{\nu, k}, j_{\nu, k+1}\right)$, $k=1,2, \ldots$. This result unifies, generalizes and improves, many known results for the zeros of the interesting function $a J_{\nu}(z)+\gamma z J_{\nu}^{\prime}(z)$.

