
Abstract

For orthogonal polynomials of the form $$
p_{n} Q_{n+1}(x)+q_{n} Q_{n-1}(x)+r_{n} Q_{n}(x)=x Q_{n}(x), \quad Q_{0}(x)=0, \quad Q_{1}(x)=1
$$

where $p_{n}>0, q_{n}>0, r_{n} \in \mathbb{R}$ and $\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} q_{n}=\frac{1}{2}$, a general sufficient condition is found such that the support of the measure of orthogonality is the entire interval $[-1,1]$. Starting from this result, more general cases of orthogonal polynomials are studied as a perturbation problem. The results are applied to Pollaczek polynomials, Random-walk polynomials (RWP), Neutron-transport polynomials and generalized co-recursive polynomials.

