Abstract

Let $H_1(\Delta)$ be the Banach space of all functions $f(z) = \sum_{n=1}^{\infty} f_n z^{n-1}$ which are analytic in the unit disc $\Delta = \{z \in \mathcal{C} : |z| < 1\}$ and satisfy the condition $\sum_{n=1}^{\infty} |f_n| < +\infty$. In this paper we prove that the cokernel of the operator corresponding to the singular differential equation $z^2 y''(z) + a(z)y(z) = b(z)$ in the complex plane, consists of functions which belong to $H_1(\Delta)$. Also we prove that the solutions of the differential equation w''(z) + q(z)w(z) = 0 are elements of $H_1(\Delta)$ under the assumption that q(z) belongs to $H_1(\Delta)$, i.e. the Hilbert space of functions $h(z) = \sum_{n=1}^{\infty} h_n z^{n-1}$ which are analytic in Δ and satisfy the condition $\sum_{n=1}^{\infty} |h_n|^2 < \infty$. These results improve previously known results.