
Abstract

Let $j_{\nu, 1}$ be the smallest (first) positive zero of the Bessel function $J_{\nu}(z)$, $\nu>-1$, which becomes zero when ν approaches -1 . Then $j_{\nu, 1}^{2}$ can be continued analytically to $-2<\nu<-1$, where it takes on negative values. We show that $j_{\nu, 1}^{2}$ is a convex function of ν in the interval $-2<\nu \leq 0$, as an addition to an old result [A: Elbert and A. Laforgia, SIAM J. Math. Anal. 15 (1984, 206-212)], stating this convexity for $\nu>0$. Also the monotonicity properties of the functions $\frac{j_{\nu, 1}^{2}}{4(\nu+1)}, \frac{j_{\nu, 1}^{2}}{4(\nu+1)} \sqrt{\nu+2}$ are determined. Our approach is based on the series expansion of Bessel function $J_{\nu}(z)$ and it turned out to be effective, especially when $-2<\nu<-1$.

