
Abstract

It is proved that the differential equation $$
x^{2} f^{\prime \prime}(x)+\left(\beta_{0} x^{2}+\beta_{1} x\right) f^{\prime}(x)+\left(\gamma_{0} x^{2}+\gamma_{1} x+\gamma_{2}\right) f(x)=0
$$ for arbitrary $\beta_{0}, \gamma_{0}, \gamma_{1}$ and $\beta_{1} \neq 0, \pm 1, \pm 2,-3,-4, \ldots$ has an entire solution if and only if the condition $\beta_{1}-2-\gamma_{2}=n^{2}+\left(\beta_{1}-3\right) n, n=1,2, \ldots$ is satisfied. The entire solution $f(x)$ for $n=k, k \geq 1$ is of the form $f(x)=x^{k-1} \sum_{k=1}^{\infty} \alpha_{k} x^{k-1}, \alpha_{1}=1$.

