
Abstract

Let the differential system $$
\begin{equation*} z^{D} \frac{d f(z)}{d z}=A(z) \cdot f(z), \quad f(z)=\left(f_{1}(z), f_{2}(z), \ldots, f_{k}(z)\right) \tag{1} \end{equation*}
$$ where D is the diagonal matrix $p, p, \ldots, p, p \geq 2, p \in \mathbb{N}$ and the elements $\alpha_{i j}(z)$ of the matrix $A(z)$ are analytic functions in some neighborhood of the closed unit disc. In this paper under several assumptions with respect to the constant matrices $\left\{\alpha_{i j}(0)\right\},\left\{\alpha_{i j}^{\prime}(0)\right\}, i, j=1,2, \ldots, k$ and the diagonal D, it is proved that the conjugate system of (1) has exactly $k(p-1)$ linearly independent solutions in the product space $H_{2}(\Delta)^{k}$, where $H_{2}(\Delta)$ is the usual Hilbert space of analytic functions in the open unit disc.

