
Abstract

Let $j_{\nu, k}$ be the k th positive zero of the Bessel function $J_{\nu}(z)$ of the first kind and order $\nu>-1$. We prove the differential inequalities $$
\frac{d j_{\nu, k}}{d \nu}<\frac{j_{\nu, k}}{\nu+l+1}+\frac{2}{j_{\nu, k}} \sum_{n=0}^{l-1}\left\{1-\frac{\nu+n+1}{\nu+l+1}\right\} h_{n, \nu+1}^{2}\left(\frac{1}{j_{n u, k}}\right), \nu>-1, l=0,1,2, \ldots
$$

where $h_{n, \nu}(x), n \geq 0$, are the Lommel polynomials (Watson, 1966). As a consequence we obtain some new lower and upper bounds for $j_{\nu, k}$ improving previously known results.

