Abstract

It is proved that the positive zeros $j_{\nu,k}$, k = 1, 2, ..., of the Bessel function $J_{\nu}(x)$ of the first kind and order $\nu > -1$, satisfy the differential inequality $j_{\nu,k}dj_{\nu,k}/d\nu > 1 + (1+j_{nu,k}^2)^{1/2}, \nu > -1$. This inequality improves the well-known inequality $dj_{\nu,k}/d\nu > 1, \nu > -1$, which is the source of a large number of lower and upper bounds for the zeros $j_{\nu,k}, k = 1, 2, ...$