
Abstract

Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a system of polynomials satisfying the recurrence relation $$
P_{-1}(x)=0, \quad P_{0}(x)=1, \quad P_{n+1}(x)+h_{n} P_{n-1}(x)+c_{n} P_{n}(x)=x P_{n}(x),
$$ where h_{n}, c_{n} are real sequences and $h_{n}>0, n=0,1,2, \ldots$. The co-recursive polynomials $\left\{P_{n}^{*}(x)\right\}_{n=0}^{\infty}$ satisfy the same recurrence relation except for $n=1$, where $P_{1}^{*}(x)=\gamma x-c_{0}-\beta, \gamma \neq 0$. It is well known that the problem of determining the zeros of $P_{n}(x)$ is equivalent to the problem of determining the eqigenvalues of a generalized eigenvalue problem $T f=\lambda A f$, where T and A are symmetric matrices. In this paper the problem of determining the zeros of the co-recursive polynomials is reduced to a perturbation problem of the operators T and A perturbed by perturbations of rank one. A function $\phi(\lambda)=\phi\left(\lambda, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ is found, $k=$ $1,2, \ldots, n$, whose zeros are the zeros of $P_{n}^{*}(x)$, and λ_{k} are the zeros of the polynomial $P_{n}(x)$ of degree n, for $\gamma \neq 0$. This function unifies many results concerning interlacing between the zeros of $P_{n}(x)$ and $P_{n}^{*}(x)$ for $\gamma \neq 0$. Moreover we obtain from this function similar results in the unstudied case $\gamma=0$.

