
Abstract

It is proved that the greatest zero $\lambda_{N}(a)$ of the Laguerre polynomials $L_{N}^{(a)}(x)$ of degree N satisfies the differential inequalities $$
\begin{gathered} \lambda_{N}^{\prime}(a)>1, \quad a>-1 \\ \lambda_{N}^{\prime}(a)<\frac{\lambda_{N}(a)}{2(1+a)}+\frac{1}{2}, \quad a>-1 \end{gathered}
$$

while all the zeros $\lambda_{k}(a), k=1,2, \ldots, N$, satisfy

$$
\lambda_{k}^{\prime}(a)>1-\left(\frac{N}{N+a}\right)^{1 / 2}, \quad a \geq 0
$$

The same method applied to the largest positive zero $k_{\left[\frac{N}{2}\right]}(\lambda)$ of the Ultraspherical Polynomials gives the differential inequality

$$
-\frac{k_{\left[\frac{N}{2}\right]}^{\prime}(\lambda)}{k_{\left[\frac{N}{2}\right]}(\lambda)}<\frac{1}{2(1+\lambda)}, \quad \lambda \geq \frac{1}{2}
$$

