
Abstract

A differential equation for any positive zero $\varrho(\nu)$ of the function $\alpha J_{\nu}(z)+$ $\gamma z J_{\nu}^{\prime}(z)$ is found, where J_{ν} is the Bessel function of the first kind of order $\nu>-1$, J_{ν}^{\prime} is the derivative of J_{ν} and α, γ are real numbers. It is proved that: (i) The function $\varrho(\nu) /(1+\nu)$ decreases with $\nu>-$ in the case $\alpha \geq 1$, and the function $\varrho(\nu) /(\alpha+\nu)$ decreases with $\nu>-\alpha$ in the case $\alpha<1$. (ii) The zeros of the function $\alpha J_{\nu}+z J_{n u}^{\prime}(z)$ increase with $\nu>-1$ in the case $\alpha \geq 1$ and with $\nu>-\alpha$ in the case $\alpha<1$. The first result leads to a number of lower and upper bounds for the zeros of the function $\alpha J_{n u}(z)+z J_{\nu}^{\prime}(z)$ which complete and improve previously known bounds. The second result improves a well-known result.

