Abstract

A differential equation for any positive zero $\rho(\nu)$ of the function $\alpha J_{\nu}(z) + \gamma z J'_{\nu}(z)$ is found, where J_{ν} is the Bessel function of the first kind of order $\nu > -1$, J'_{ν} is the derivative of J_{ν} and α , γ are real numbers. It is proved that:

(i) The function $\rho(\nu)/(1+\nu)$ decreases with $\nu > -$ in the case $\alpha \ge 1$, and the function $\rho(\nu)/(\alpha + \nu)$ decreases with $\nu > -\alpha$ in the case $\alpha < 1$.

(ii) The zeros of the function $\alpha J_{\nu} + z J'_{nu}(z)$ increase with $\nu > -1$ in the case $\alpha \ge 1$ and with $\nu > -\alpha$ in the case $\alpha < 1$. The first result leads to a number of lower and upper bounds for the zeros of the function $\alpha J_{nu}(z) + z J'_{\nu}(z)$ which complete and improve previously known bounds. The second result improves a well-known result.