
Abstract

In the present work we study the existence and monotonicity properties of the imaginary zeros of the mixed Bessel function $M_{\nu}(z)=\left(\beta z^{2}+a\right) J_{\nu}(z)+z J_{\nu}^{\prime}(z)$. Such a function includes as particular cases the functions $J_{\nu}^{\prime}(z)(a=\beta=0), J_{\nu}^{\prime \prime}(z)$ $\left(a=-\nu^{2}\right), \beta=1$ and $H_{\nu}(z)=a J_{\nu}(z)+z J_{\nu}^{\prime}(z)$, where $J_{\nu}(z)$ is the Bessel function of the first kind and of order $\nu>-1$ and $J_{\nu}^{\prime}(z), J_{\nu}^{\prime \prime}(z)$ are the first two derivatives of $J_{\nu}(z)$. Upper and lower bounds found for the imaginary zeros of the functions $J_{\nu}^{\prime}(z), J_{\nu}^{\prime \prime}(z)$ and $H_{\nu}(z)$ improve previously known bounds.

