Abstract

In the present work we study the existence and monotonicity properties of the imaginary zeros of the mixed Bessel function $M_{\nu}(z) = (\beta z^2 + a)J_{\nu}(z) + zJ'_{\nu}(z)$. Such a function includes as particular cases the functions $J'_{\nu}(z)$ $(a = \beta = 0)$, $J''_{\nu}(z)$ $(a = -\nu^2)$, $\beta = 1$ and $H_{\nu}(z) = aJ_{\nu}(z) + zJ'_{\nu}(z)$, where $J_{\nu}(z)$ is the Bessel function of the first kind and of order $\nu > -1$ and $J'_{\nu}(z)$, $J''_{\nu}(z)$ are the first two derivatives of $J_{\nu}(z)$. Upper and lower bounds found for the imaginary zeros of the functions $J'_{\nu}(z)$, $J''_{\nu}(z)$ and $H_{\nu}(z)$ improve previously known bounds.