A.C. Megaritis

The relative invariant covering dimension r-dim

Department of Accounting
Technological Educational Institute of Messolonghi
30200 Messolonghi, Greece
Abstract

In [1] two relative covering dimensions defined and studied.

In [2] and [3] we studied these dimensions and we gave some properties including subspace, sum, partition, compactification, and product theorems. Also, we gave answers for the questions which are given in [1].

[3] D.N. Georgiou and A.C. Megaritis, *On the relative dimensions* \(\dim \) and \(\dim^* \) *II*, Questions and Answers in General Topology, **29**
In [4] we gave and studied a new relative covering dimension, denoted by r-dim.

Finally, in [5] we gave an algorithm of polynomial order for computing the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X, using matrix algebra.

The main results of the papers [4] and [5] are presented and discussed.
The cardinality of a set X is denoted by $|X|$ and the first infinite cardinal is denoted by ω. We also consider two symbols, “-1” and “∞”, for which we suppose that:

(i) $-1 < n < \infty$ for every $n \in \omega$.

(ii) $\infty + n = n + \infty = \infty$ and $-1 + n = n + (-1) = n$ for every $n \in \omega \cup \{-1, \infty\}$.

The “relative dimensions” or “positional dimensions” are functions whose domains are classes of subsets. By a class of subsets we mean a class consisting of pairs (Q, X), where Q is a subset of a space X.

Let X be a space. A family r of subsets of X is said to be a refinement of a family c of subsets of X if each element of r is contained in an element of c.

Preliminaries
Define the order of a family r of subsets of a space X as follows:

(a) $\text{ord}(r) = -1$ if and only if $r = \{\emptyset\}$.

(b) $\text{ord}(r) = n$, where $n \in \omega$, if and only if the intersection of any $n + 2$ distinct elements of r is empty and there exist $n + 1$ distinct elements of r, whose intersection is not empty.

(c) $\text{ord}(r) = \infty$, if and only if for every $n \in \omega$ there exist n distinct elements of r, whose intersection is not empty.
Definition 1. We denote by r-\dim the (unique) function that has as domain the class of all subsets and as range the set $\omega \cup \{-1, \infty\}$ satisfying the following condition

$$r$-$\dim(Q, X) \leq n, \text{ where } n \in \{-1\} \cup \omega$$

if and only if for every finite family c of open subsets of X such that $Q \subseteq \bigcup\{U : U \in c\}$ there exists a finite family r of open subsets of X refinement of c such that $Q \subseteq \bigcup\{V : V \in r\}$ and $\text{ord}(r) \leq n$.

Proposition 1. Let Q be a subset of a space X. The following statements are true.

1. $\dim(Q) \leq r$-$\dim(Q, X)$. Moreover, if the subset Q of X is open, then $\dim(Q) = r$-$\dim(Q, X)$.
2. If the subset Q of X is closed, then r-$\dim(Q, X) \leq \dim(X)$.
Examples.

(1) Let X be the space of the real numbers and $Q = \{0\}$. Then, $\text{r-dim}(Q, X) = 0$ and $\text{dim}(X) = 1$.

(2) Let (X, τ) be the topological space, where $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Let $Q = \{a, c\}$. Then, $\text{dim}(Q) = \text{dim}(X) = 0$ and $\text{r-dim}(Q, X) = 1$.

(3) Let $X = [-1, 1]$ and $Q = \{-1, 1\}$. The family consisting of all sets of the form $[-1, b)$ for $b > 0$, $(a, 1]$ for $a < 0$, and (a, b) is a basis for some topology in X. We observe that $\text{dim}(Q) = 0$ and $\text{r-dim}(Q, X) = \text{dim}(X) = 1$.
Proposition 2. For every subset Q of a space X the following conditions are equivalent:

1. $\text{r-dim}(Q, X) \leq n$.

2. For every finite family $\{U_1, U_2, \ldots, U_m\}$ of open subsets of X with $Q \subseteq \bigcup_{i=1}^{m} U_i$ there exists a family $\{V_1, V_2, \ldots, V_m\}$ of open subsets of X such that $V_i \subseteq U_i$ for $i = 1, \ldots, m$, $Q \subseteq \bigcup_{i=1}^{m} V_i$, and $\text{ord}(\{V_1, V_2, \ldots, V_m\}) \leq n$.

3. For every family $\{U_1, U_2, \ldots, U_{n+2}\}$ of open subsets of X with $Q \subseteq \bigcup_{i=1}^{n+2} U_i$ there exists a family $\{V_1, V_2, \ldots, V_{n+2}\}$ of open subsets of X such that $V_i \subseteq U_i$, $i = 1, \ldots, n + 2$, $Q \subseteq \bigcup_{i=1}^{n+2} V_i$ and $\bigcap_{i=1}^{n+2} V_i = \emptyset$.
Subspace theorems

Proposition 3. Let K and Q be two subspaces of a space X with $K \subseteq Q$. If K is a closed subspace of X or $Q \setminus K$ is an open subspace of X, then

$$r\text{-dim}(K, X) \leq r\text{-dim}(Q, X).$$

Proposition 4. Let Y be a subspace of a space X and $Q \subseteq Y$. Then,

$$r\text{-dim}(Q, Y) \leq r\text{-dim}(Q, X).$$

Proposition 5. For every closed subspace Q of a normal space X we have

$$r\text{-dim}(Q, X) = r\text{-dim}(Q, \beta X).$$
Sum theorems

Proposition 6. Let Q be a subspace of a space X. If $X = X_1 \cup X_2$, where $Q \subseteq X_1 \cap X_2$, $r\text{-dim}(Q, X_1) \leq n$, and $r\text{-dim}(Q, X_2) \leq n$, then $r\text{-dim}(Q, X) \leq n$.

Proposition 7. Let Q be a subspace of a space X. For every subset A of X such that $Q \subseteq A$ we have

$$r\text{-dim}(Q, X) \leq \max\{r\text{-dim}(Q, A), r\text{-dim}(Q, (X \setminus A) \cup Q)\}.$$

Proposition 8. Let Q be a subspace of a space X. If $X = X_1 \cup X_2$, where $Q \subseteq X_1 \cap X_2$, then

$$r\text{-dim}(Q, X) = \max\{r\text{-dim}(Q, X_1), r\text{-dim}(Q, X_2)\}.$$

Proposition 9. Let Q_1 and Q_2 be two subsets of a space X. Then,

$$r\text{-dim}(Q_1 \cup Q_2, X) \leq r\text{-dim}(Q_1, X) + r\text{-dim}(Q_2, X) + 1.$$

Partition and Product theorems

Definition 2. Let A and B be two disjoint subsets of a space X. We say that a subset L of X is a partition between A and B if there exist two open subsets U and W of X such that

1. $A \subseteq U$, $B \subseteq W$,
2. $U \cap W = \emptyset$, and
3. $X \setminus L = U \cup W$.
Proposition 10. Let Q be a normal subspace of a space X. If for every family $\{(A_1, B_1), (A_2, B_2), \ldots, (A_{n+1}, B_{n+1})\}$ of $n + 1$ pairs of disjoint subsets of X, where A_i’s are closed in X and B_i’s are closed in Q, there exist partitions L_i between A_i and B_i such that

$$Q \cap \bigcap_{i=1}^{n+1} L_i = \emptyset,$$

then $r\text{-dim}(Q, X) \leq n$.
Proposition 11. Let Q be a closed subspace of a normal space X satisfying $r\text{-dim}(Q, X) \leq n$. Then, for every family
\[
\{(A_1, B_1), (A_2, B_2), \ldots, (A_{n+1}, B_{n+1})\}
\]
of $n + 1$ pairs of disjoint closed subsets of X there exist partitions L_i between A_i and B_i such that
\[
Q \cap \bigcap_{i=1}^{n+1} L_i = \emptyset.
\]
Proposition 12. Let Q^X be a closed subspace of a compact Hausdorff space X and Q^Y a closed subspace of a compact Hausdorff space Y. Then,

$$r\text{-dim}(Q^X \times Q^Y, X \times Y) \leq r\text{-dim}(Q^X, X) + r\text{-dim}(Q^Y, Y).$$
An algorithm of polynomial order for computing the dimension $r \text{-dim}(Q, X)$, where Q is a subset of a finite space X.

Let $X = \{x_1, \ldots, x_n\}$ be a finite space of n elements. In what follows we denote by U_i the smallest open set of X containing the point x_i, $i = 1, \ldots, n$.

The $n \times n$ matrix $T = (t_{ij})$, where

$$t_{ij} = \begin{cases}
1, & \text{if } x_i \in U_j \\
0, & \text{otherwise}
\end{cases}$$

is called the incidence matrix of X.

We denote by c_1, \ldots, c_n the n columns of the matrix T.

The relative invariant covering dimension $r \text{-dim}$
The relative invariant covering dimension r-dim

Let

$$c_i = \begin{pmatrix}
 c_{1i} \\
 c_{2i} \\
 \vdots \\
 c_{ni}
\end{pmatrix}$$

and

$$c_j = \begin{pmatrix}
 c_{1j} \\
 c_{2j} \\
 \vdots \\
 c_{nj}
\end{pmatrix}$$

be two $n \times 1$ matrices.

Then, by $\max c_i$ we denote the maximum

$$\max\{c_{1i}, c_{2i}, \ldots, c_{ni}\}.$$

Also, we write $c_i \leq c_j$ if only if $c_{ki} \leq c_{kj}$ for each $k = 1, \ldots, n$.

An algorithm of polynomial order for computing the dimension r-dim(Q, X)
Let $Q \subseteq X$. We denote by $\mathbf{1}_Q$ the $n \times 1$ matrix

\[
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix},
\]

where

\[
a_i = \begin{cases}
1, & \text{if } x_i \in Q \\
0, & \text{otherwise.}
\end{cases}
\]
Proposition 13. Let $X = \{x_1, \ldots, x_n\}$ be a finite space and $Q \subseteq X$. Then, $r\text{-dim}(Q, X) \leq k$, where $k \in \omega$, if and only if there exists a family $\{U_{j_1}, \ldots, U_{j_m}\}$ such that

$$\{x_{j_1}, \ldots, x_{j_m}\} \subseteq Q \subseteq U_{j_1} \cup \ldots \cup U_{j_m}$$

and

$$\text{ord}(\{U_{j_1}, \ldots, U_{j_m}\}) \leq k.$$

Proposition 14. Let $X = \{x_1, \ldots, x_n\}$ be a finite space and $Q \subseteq X$. Then,

$$r\text{-dim}(Q, X) \leq |Q| - 1.$$
Let $X = \{x_1, \ldots, x_n\}$ be a finite space of n elements, $Q = \{x_{\lambda_1}, \ldots, x_{\lambda_l}\} \subseteq X$, and $T = (t_{ij})$ the $n \times n$ incidence matrix of X.

Our intended algorithm contains $l - 1$ steps:

Step 1. Read the l columns $c_{\lambda_1}, \ldots, c_{\lambda_l}$ of the matrix T. If some column is equal to 1_Q, then print

$$ r \text{-dim}(Q, X) = 0. $$

Otherwise go to the Step 2.
Step 2. Find the sums

\[c_{\lambda_{j_{11}}} + c_{\lambda_{j_{21}}} + \ldots + c_{\lambda_{j_{(l-1)1}}} \]

for each \(\{j_{11}, j_{21}, \ldots, j_{(l-1)1}\} \subseteq \{1, \ldots, l\} \).

If there exists \(\{j_{11}^0, j_{21}^0, \ldots, j_{(l-1)1}^0\} \subseteq \{1, \ldots, l\} \) such that

\[c_{\lambda_{j_{11}^0}} + c_{\lambda_{j_{21}^0}} + \ldots + c_{\lambda_{j_{(l-1)1}^0}} \geq 1_Q, \]

then go to the Step 3.

Otherwise print

\[\text{r-dim}(Q, X) = \max(c_{\lambda_1} + c_{\lambda_2} + \ldots + c_{\lambda_l}) - 1. \]
Step 3. Find the sums

\[c_{\lambda j_{12}} + c_{\lambda j_{22}} + \ldots + c_{\lambda j_{(l-2)2}} \]

for each \(\{j_{12}, j_{22}, \ldots, j_{(l-2)2}\} \subseteq \{j_{11}^0, j_{21}^0, \ldots, j_{(l-1)1}^0\} \).

If there exists \(\{j_{12}^0, j_{22}^0, \ldots, j_{(l-2)2}^0\} \subseteq \{j_{11}^0, j_{21}^0, \ldots, j_{(l-1)1}^0\} \) such that

\[c_{\lambda j_{12}^0} + c_{\lambda j_{22}^0} + \ldots + c_{\lambda j_{(l-2)2}^0} \geq 1_Q, \]

then go to the Step 4.

Otherwise print

\[\text{r-dim}(Q, X) = \max(c_{\lambda j_{11}^0} + c_{\lambda j_{21}^0} + \ldots + c_{\lambda j_{(l-1)1}^0}) - 1. \]

..........
Step $l - 2$. Find the sums

$$c\lambda j_1(l-3) + c\lambda j_2(l-3) + c\lambda j_3(l-3)$$

for each $\{j_1(l-3), j_2(l-3), j_3(l-3)\} \subseteq \{j_1^0(l-4), j_2^0(l-4), j_3^0(l-4), j_4^0(l-4)\}$.

If there exists

$\{j_1^0(l-3), j_2^0(l-3), j_3^0(l-3)\} \subseteq \{j_1^0(l-4), j_2^0(l-4), j_3^0(l-4), j_4^0(l-4)\}$ such that

$$c\lambda j_1^0 + c\lambda j_2^0 + c\lambda j_3^0 \geq 1_Q,$$

then go to the Step $l - 1$.

Otherwise print

$$r\text{-dim}(Q, X) = \max(c\lambda j_1^0 + c\lambda j_2^0 + c\lambda j_3^0 + c\lambda j_4^0) - 1.$$
Step \(l - 1 \). Find the sums

\[c\lambda j_1(l-2) + c\lambda j_2(l-2) \]

for each \(\{j_1(l-2), j_2(l-2)\} \subseteq \{j_1^0(l-3), j_2^0(l-3), j_3^0(l-3)\} \).

If there exists \(\{j_1^0(l-2), j_2^0(l-2)\} \subseteq \{j_1^0(l-3), j_2^0(l-3), j_3^0(l-3)\} \) such that

\[c\lambda j_1^0(l-2) + c\lambda j_2^0(l-2) \geq 1, \]

then print

\[r\text{-dim}(Q, X) = \max(c\lambda j_1^0(l-2) + c\lambda j_2^0(l-2)) - 1. \]

Otherwise print

\[r\text{-dim}(Q, X) = \max(c\lambda j_1^0(l-3) + c\lambda j_2^0(l-3) + c\lambda j_3^0(l-3)) - 1. \]
Proposition 15. An upper bound on the number of iterations of the algorithm for computation of the dimension r-dim of a pair (Q, X), where Q is a subset of a finite space X, is the number

$$\frac{1}{2}|Q|^2 + \frac{3}{2}|Q| - 3.$$