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Sums of Random Variables and the Central Limit Theorem

The approach we shall follow is in the spirit of the Central Limit Theorem (CLT). In particular,
we focus on chaotic regions of: (a) area–preserving maps







xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
(1)

and (b) N–degree–of–freedom Hamiltonian systems

dqk
dt

=
∂H

∂pk
,

dpk
dt

= − ∂H

∂qk
, k = 1, 2, . . . , N (2)

and construct distributions of suitably rescaled sums of M values of an observable
ηi = η(ti) (i = 1, . . . ,M), which is a linear combination of the variables (xn, yn), or
(qn(t), pn(t)) of (1) and (2) respectively. These are viewed as independent random
variables in the limit M → ∞ and we evaluate their sums

S
(j)
M =

M
∑

i=1

η
(j)
i (3)
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where j = 1, . . . , Nic refers to different initial conditions. We then study the probability

density functions (pdfs) of the variables S
(j)
M , centered about their mean value 〈S(j)

M 〉 and
rescaled by their standard deviation σM

s
(j)
M ≡ 1

σM

(

S
(j)
M − 〈S(j)

M 〉
)

=
1

σM

(

M
∑

i=1

η
(j)
i − 1

Nic

Nic
∑

j=1

M
∑

i=1

η
(j)
i

)

(4)

where

σ2
M =

1

Nic

Nic
∑

j=1

(

S
(j)
M − 〈S(j)

M 〉
)2

= 〈S(j)2
M 〉 − 〈S(j)

M 〉2. (5)

If our variables are random , or belong to uniformly ergodic regimes of deterministic

systems, when we plot the normalized distribution of the probabilities P (s
(j)
M ) as a function

of s(j)M , , we expect to find in the spirit of the classical CLT:

P (s
(j)
M ) = ae−βs

(j)2
M (6)

i.e a Gaussian pdf .
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However, as we will show in many examples of conservative systems , in regimes of “weak
chaos” , these distributions are well–approximated by different pdfs, the most ubiquitous of
them being the q-Gaussian :

P (s
(j)
M ) = ae

−βs
(j)2
M

q ≡ a

(

1− (1− q)βs
(j)2
M

) 1
1−q

(7)

where q is the Tsallis entropy index, β is a free parameter and a a normalization constant.
Expression (14) is a generalization of the Gaussian, since in the limit q → 1 we have

limq→1e
−βx2

q = e−βx2
. If 1 ≤ q < 3, (14) is normalized for an appropriate choice of a(β).

As we shall demonstrate, there are many interesting cases of conservative systems ,
where chaotic orbits are strongly influenced by “stickiness” phenomena and produce
long–lived quasi–stationary states (QSS), whose pdfs are well–approximated by
q–Gaussians. These, however, frequently do not converge to (14), but evolve, through a
sequence of QSS, which we seek to identify the limit t → ∞.
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Nonextensive Statistical Mechanics and q-Gaussians

Multi–particle systems belong to different “universality” classes , according to their
thermostatistics. In the most widely studied Boltzmann–Gibbs class, if the system can be at
any one of i = 1, 2, ...,W states with probability pi, its entropy is given by the famous formula

SBG = −k

W
∑

i=1

pilnpi (8)

where k is Boltzmann’s constant, provided, of course,

W
∑

i=1

pi = 1 (9)

The BG entropy satisfies the property of additivity , i.e. if A and B are two statistically
independent systems, the probability to be in their union is pA+B

i,j = pAi pBj and this
necessitates that the entropy of the joint state obeys

SBG(A+B) = SBG(A) + SBG(B) (10)
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At thermal equilibrium, the pis that optimize the BG entropy , subject to ((9)) and a given
energy spectrum Ei and temperature T are:

pi =
e−βEi

ZBG
, ZBG =

W
∑

i=1

e−βEi (11)

where β = 1/kT and ZBG is the so–called partition function. For a continuum set of states
depending on one variable, x, the optimal probability density function (pdf) corresponding to
BG statistics subject to ((9)), zero mean and given variance V is, of course, the well–known

Gaussian p(x) = e−x2/2V /
√
2V .

Another important property of the BG entropy is that it is extensive ,

limN→∞
SBG

N
< ∞ (12)

i.e. it grows linearly as a function of with the number of degrees of freedom N of the system.

But then, what about many physically important systems that are not extensive ?
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There are many examples of non–extensive systems , like: self–gravitating systems of
finitely many mass points, interacting black holes, ferromagnetic models, systems with long
range forces, in which strong correlations and power laws are dominant.

In deterministic dynamics, for instance, chaos does not always mean exponential
instability , as there are regimes of “weak chaos” , where “stickiness phenomena” occur on
strange invariant sets near the boundary of regions of regular motion called ‘edge of
chaos’ , where Lyapunov exponents are zero and orbits separate linearly from each other.

It is for these type of situations that Tsallis proposed a different form of entropy [Tsallis,2009]

Sq = k
1−∑W

i=1 p
q
i

q − 1
with

W
∑

i=1

pi = 1 (13)

depending on an index q, where i = 1, . . . ,W counts the microstates of the system

occurring with probability pi and k is the Boltzmann constant.
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Just as the Gaussian distribution represents an extremal of the BG entropy ((8)), so is the
q–Gaussian pdf shown below obtained as a maximum (for q > 0) or a minimum (q<0) of
the Tsallis entropy ((13)).

p(x) = ae−βx2

q ≡ a

(

1− (1− q)βx2

) 1
1−q

(14)

for a continuum set of states.

The Tsallis entropy is not additive , as

Sq(A+B) = Sq(A) + Sq(B) + k(1− q)Sq(A)Sq(B) (15)

and hence is not extensive . It thus offers the possibility of studying cases where the A, B
subsystems mentioned above are strongly correlated.

Systems characterized by (13) are said to lie at the “edge of chaos” and are significantly
different from BG systems.
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Pdfs of Chaotic States in Area–Preserving maps

Consider the perturbed MacMillan map, which occurs in the study of equilibrium
configurations of Ablowitz–Ladik Discrete Nonlinear Schrodinger Equations:







xn+1 = yn

yn+1 = −xn + 2µ yn
1+y2

n
+ ǫyn

(16)

with parameters ǫ, µ. Since its Jacobian is 1, (16) is area-preserving.

We have analyzed the histogram of their normalized sums for a range of parameters (ǫ, µ)
and have identified some generic classes of q-Gaussians and exponentials ∼ e−k|z| having
a triangular shape on log scale , which we call triangular distributions . Monitoring their
time evolution for increasing number of iterations N , we observe the occurrence of different
QSS, which we present with the corresponding phase space plots in the Figures below.

ǫ 0.2 0.5 0.9 1.2 1.6 1.8

Lmax 0.0867 0.082 0.0875 0.0513 0.0495 0.05876

Table 1: Maximal Lyapunov exponents for µ = 0.6 and ǫ = 0.2, 0.5, 0.9, 1.2, 1.6, 1.8.
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Figure 1. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for
parameter values µ = 1.6, and ǫ = 0.2. The first column represents the pdfs of the
normalized sums of iterates and the second depicts the corresponding phase space plot. N
represents the number of (summed) iterates and Nic is the number of initial conditions that
have been randomly chosen from a square (0, 10−6)× (0, 10−6).
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Figure 2. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for
parameter values µ = 1.6, and ǫ = 0.9. The first column represents the pdfs of the
normalized sums of iterates and the second depicts the corresponding phase space plot. N
represents the number of (summed) iterates and Nic is the number of initial conditions that
have been randomly chosen from a square (0, 10−6)× (0, 10−6).
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A. The ǫ = 0.9, 0.2, 1.8, (µ = 1.6) cases

The ǫ = 0.9 case is a typical example producing time–evolving pdfs. Figures 1 and 2 show
that the corresponding phase space plots yield a simple chaotic region in phase space
around two islands, yet the corresponding pdfs do not converge to a single distribution,
rather they pass from q-Gaussians to triangular to Gaussian distributions.

There exist at least three long–lived QSS whose iterates generate pdfs passing through
different shapes. Consequently, for i = 1 . . . N = 216, a QSS is produced whose pdf is a
(q = 1.6)–Gaussian whose β increases with increasing N . This is not due to a vanishing
Lyapunov exponent, but rather to a “stickiness” effect around islands of regular motion. In
fact, the boundaries of these islands is where the ‘edge of chaos’ regime is expected in
conservative maps.

Figures 3 and 4 show phase space plots for a number of iterates N . Note that for
N = 1 . . . 216, a ‘figure eight’ chaotic region is formed around two islands. But for N > 216,
a more complex structure emerges, as iterates stick around new islands, and the partial
structure of phase space passes through a sequence of quasi-stationary states.
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Figure 3. ǫ = 0.9, µ = 1.6 MacMillan map phase space plots (first panel) and the
corresponding PDFs (second panel) of the re-normalized sums as the number of iterates
i = 1 . . . N,N ≤ 1016 increases, starting from a randomly chosen initial condition in a
square (0, 10−6)× (0, 10−6).
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Figure 4. ǫ = 0.9, µ = 1.6 MacMillan map phase space for i = 1 . . . N,N ≥ 223 plot
iterates, starting from a randomly chosen initial condition in a square (0, 10−6)× (0, 10−6)

and the corresponding pdfs (right panel).
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Thus, more than one QSS coexist whose pdfs are the superposition of their corresponding
(q 6= 1)–Gaussians. In fact, note in Figure 3 that this superposition of QSS for N ≤ 221

produces a distribution where central part is still well–described by a (q = 1.6)–Gaussian .

However, as we continue to iterate the map to N = 223, this (q = 1.6)–Gaussian passes
through a superposition of states characterized by triangular distributions . From here on,
as N > 223, the central part of the pdfs become q–Gaussians with q → 1 (see Figure 4) and
a true Gaussian is expected in the limit (N → ∞).

B. The ǫ = 1.2, 1.6, (µ = 1.6) cases

Let us now analyze the cases ǫ = 1.2, whose maximum Lyapunov exponent is Lmax ≈ 0.05.
In Figure 5 iterates show a diffusive behavior that spreads around islands of a higher order
resonance, as iterations reach N = 219.

The central part of the pdfs attains a (q = 1.6)–Gaussian for N ≤ 216 (left panel of Fig. 5).
Then, orbits diffuse outward and even the tail of the pdf converges to a (q = 1.6)-Gaussian
(right panel of Fig. 5). For larger N , diffusion ceases at the q–Gaussian of Figure 6.
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Figure 5. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for
µ = 1.6, and ǫ = 1.2. The right panel depicts the corresponding phase space plot and the
left panel shows the pdfs of the normalized sums of iterates. N represents the number of
(summed) iterates and Nic is the number of initial conditions that have been randomly
chosen from a square (0, 10−6)× (0, 10−6).
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Figure 6. Tail convergence of the q–Gaussian for µ = 1.6, and ǫ = 1.2 depicting the pdfs for
N > 218 numbers of iterates.
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Figure 7. Similar dynamical and statistical behavior of chaotic orbits of the MacMillan map is
observed for µ = 1.6, ǫ = 1.6, as in the ǫ = 1.2 case. Orbital diffusion to an outer chain of
islands generates pdfs of iterate sums that also converge to a true q–Gaussian as N

increases to larger and larger values.

ORDER AND CHAOS IN MULTI–DIMENSIONAL HAMILTONIAN SYSTEMS – p. 20/55



Quasi–stationary Chaotic States in Fermi–Pasta–Ulam Hamiltonians

The FPU β− model is a one–dimensional lattice of nonlinear oscillators described by the
Hamiltonian

H =
1

2

N
∑

j=1

p2j +
N
∑

j=0

(

1

2
(qj+1 − qj)

2 +
1

4
β(qj+1 − qj)

4

)

= E (17)

E being its total energy. We shall impose fixed boundary conditions (fbc) :
q0(t) = qN+1(t) = 0, or periodic boundary conditions (pbc)
qj(t) = qj+N (t), pj(t) = pj+N (t), for all t > 0.

We focus on Simple Periodic Orbits (SPOs) , where all variables oscillate in or out of phase
and return to their initial state after only one maximum and one minimum in their oscillation.
Examples of such SPOs are Nonlinear Normal Modes (NNMs) , i.e. continuations of linear
normal modes of the FPU chain described by the Qq and Pq variables:

Qq =

√

2

N + 1

N
∑

i=1

qi sin
qiπ

N + 1
, Pq = Q̇q (18)
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These solutions are:
(a) The FPU π–Mode under pbc with N even

q̂j(t) = −q̂j+1(t) ≡ q(t), j = 1, . . . , N (19)

(b) The SPO1 mode under fbc , with N odd,

q̂2j(t) = 0, q̂2j−1(t) = −q̂2j+1(t) ≡ q̂(t), j = 1, . . . ,
N − 1

2
. (20)

(c) The SPO2 mode under fbc , with N = 5 + 3m, m = 0, 1, 2, . . .

q̂3j(t) = 0, j = 1, 2, 3 . . . ,
N − 2

3
, (21)

q̂j(t) = −q̂j+1(t) = q̂(t), j = 1, 4, 7, . . . , N − 1. (22)

which are exact continuations of the q = N/2, q = (N + 1)/2 and q = 2(N + 1)/3 linear
modes respectively. Let us see what these solutions look like for some small particle chains.
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Figure 8: The π–mode of oppositely moving particles, the SPO1 mode corresponding to
every other particle being stationary and the SPO2 mode, with one stationary particle every
other two.
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First, we specify an observable denoted by η(t) in terms of one (or more) of the components
of a chaotic solution, which visits all parts of our QSS during the time interval 0 ≤ t ≤ tf . We
divide tf into Nic equally spaced, consecutive windows , which are long enough to
contain a significant part of the orbit. Next, we subdivide each window into a sufficiently

large number M of equally spaced subintervals and calculate the sum S
(j)
M of the values

of the observable η(t) at the right edges of these subintervals.

We repeat this process Nic times, to obtain a large number of sums for reliable statistics .
Next, we compute the average of these sums and their standard deviation, as we already
explained in the CLT section, see (4) and (5).

〈S(j)
M 〉 = 1

Nic

Nic
∑

j=1

S
(j)
M , σM =

√

√

√

√

√

1

Nic

Nic
∑

j=1

(

S
(j)
M − 〈S(j)

M 〉
)2

(23)

Having all this information, we then proceed to compute the Nic rescaled quantities s
(j)
M and

plot the histogram P (s
(j)
M ) of their distribution.
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Our aim is to study chaotic regions near these NNM orbits, when they have just turned
unstable.

(a) The FPU π–Mode under pbc with N even
Here, we choose as an observable the quantity

η(t) = qN
2
(t) + qN

2
−1

(t) (24)

using the fact that η(t) = 0 and remains close to zero at energy values E where the
π–mode is still stable. At energies above its first destabilization threshold, i.e. E > E1

u,
however, η(t) eventually deviates from zero. Following a similar study published recently in
[Leo,Leo and Tempesta, 2010], we consider the case of N = 128 and β = 1 for which
E1

u ≈ 0.0257 and take as our total energy E = 0.768, at which the π–mode is unstable.

As we see in Figures 9 and 10, when we increase the total integration time of our numerical
trajectory, the statistical distributions (red curves) approaching closer and closer to a
Gaussian with q tending to 1. Moreover, the above results seem to be independent of the
values of Nic and/or M , at least up to the final integration time tf = 108 that we have been
able to check.
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Figure 9. Plot in linear–log scale of numerical (red curve), q–Gaussian (green curve) and
Gaussian (blue curve) distributions for the FPU π− mode with p.b.c. for N = 128 degrees of
freedom, β = 1 and E = 0.768. Panel a) corresponds to integration time tf = 105 using
Nic = 10 and M = 10 terms in the sums. The numerical fitting with a q–Gaussian gives
q ≈ 1.818 with χ2 ≈ 0.00070. Panel b) corresponds to tf = 106 using Nic = 100 and
M = 100 terms in the sums. Here the fitting is with a q–Gaussian with q ≈ 1.531 and
χ2 ≈ 0.00039.

ORDER AND CHAOS IN MULTI–DIMENSIONAL HAMILTONIAN SYSTEMS – p. 26/55



10-4

10-3

10-2

10-1

100

-30 -20 -10  0  10  20  30

P
(s

M
(j
) )

sM
(j)

c)

 0.0001

 0.001

 0.01

 0.1

 1

-30 -20 -10  0  10  20  30
P

’(
s

M
(j
) )

sM
(j)

d)

Figure 10. Panel c) corresponds to final integration time of tf = 108 using time windows of
length Nic = 1000 and M = 1000 terms in the computations of the sums. Here the
numerical distribution (red curve) has almost converged to a Gaussian (blue curve). Panel d)
Plot in linear–log scale of the same numerical distribution as in panel a) (red curve) and of
the P ′ function of Eq. (25) for a1 ≈ 0.009, aq ≈ 2.849 and q ≈ 2.179 with χ2 ≈ 0.00008

(green curve). The fitting by this function is evidently better than that with a q–Gaussian.
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As Figure 10 (d) shows, the computed distribution (red curve) on its way to a Gaussian, may
pass through intermediate QSS, where it is better fitted by a function presented in [Tsallis
and Tirnakli, 2010]

P ′(s(j)M ) =
1

(

1− aq

a1
+

aq

a1
e(q−1)a1s

(j)2
M

) 1
q−1

, a1, aq ≥ 0 and q > 1 (25)

where a1 ≈ 0.009, aq ≈ 2.849 and q ≈ 2.179 getting χ2 ≈ 0.00008 (in contrast to the
χ2 ≈ 0.00070 of a q–Gaussian (14) fitting with q ≈ 1.818). Eq. (25) contains q–Gaussians in
the limit of q being close to 1.

(b) FPU SPO1 mode under fbc
Let us now pass to the second example we consider in this study and examine the chaotic
dynamics near another NNM of the FPU system, imposing this time fixed boundary
conditions . In particular, we study statistical distributions of chaotic orbits in the
neighborhood of a nonlinear mode we have called SPO1.
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More specifically, we consider the FPU–β one–dimensional lattice of N = 5 particles under
fbc.

The chaotic regions near this solution (when it has just become unstable) are embedded into
each other, as shown in Figure 11. At first, a “figure eight” appears created by an orbit
starting at a distance ≈ 1.192× 10−7 from the SPO1 mode, see the surface of section
(q1, p1) of Figure 11 (at times when q3 = 0 and E = 7.4).

Orbits starting in the neighborhood of this point remain nearby for very long times, forming
the “figure eight” at the middle of the picture. Starting, however, at a distance
≈ 1.086× 10−2 from the saddle point, a more extended chaotic region is observed, in the
form of a small “figure eight cloud” enveloping the first orbit.

Choosing even more distant initial conditions, e.g. one starting ≈ 3.421× 10−1 from the
saddle point, a much larger chaotic region is obtained, which spreads uniformly over a
much larger part of the available energy surface.
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Figure 11: (i) The “figure eight” chaotic region (blue points) for an orbit starting at a distance
≈ 1.192× 10−7 from SPO1 mode at the saddle point in the figure), (ii) a fatter “figure eight
cloud” (green points) is seen starting at (≈ 1.086× 10−2) and a much larger chaotic region
(red points) on the energy surface for an initial condition even more distant (≈ 3.421× 10−1).
N = 5 and β = 1, on the surface of section (q1, p1) computed at q3 = 0. In this figure, we
have integrated our three orbits up to tf = 105 on the energy surface E = 7.4.
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In the present example, we have chosen as an observable the quantity

η(t) = q1(t) + q3(t) (26)

which is exactly equal to zero at the SPO1 orbit. In fact, η(t) remains very close to zero at
energies where the SPO1 mode is stable and becomes nonzero due to numerical errors at
energies just above the first destabilization energy E1

u of the mode.

We now study the 3 different initial conditions located on the neighborhood of the unstable
SPO1 mode (see Fig. 11). In particular, in Figures 12, 13 and 14, we see on the left panel
the surface of section created by the trajectory at initial distance ≈ 1.192× 10−7 from the
unstable SPO1 integrated up to times tf = 105, tf = 107 and tf = 108 respectively, while
on the right panels of these figures we plot the corresponding pfds of the normalized sums.

Clearly, as the integration time tf grows, our chaotic orbit eventually wanders over a more
extended domain, covering gradually a much larger part of the energy surface when
tf = 108. This may also be explained by the behavior of the Lyapunov exponents of the orbit
(see Figure 15).
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An important question arises now:

Are these different dynamical behaviors reflected by the normalized sum pdfs and for what
integration times? The answer to this question is presented, for an initial
distance1.192E− 07 and for integration time tf = 105 in Figure 12(b). Here, a fitting with the
q–Gaussian (14) gives q ≈ 2.785 with χ2 ≈ 0.00031.

If we now increase the time to tf = 107 (see Figure 13(b)) using Nic = 100 and M = 1000

terms in the sums and perform the same kind of fit we find a q–Gaussian fit with q ≈ 2.483

and χ2 ≈ 0.00047. This distribution corresponds to the surface of section of Figure 13(a),
which shows that in this time the orbit has diffused further in phase space, creating a “fatter”
figure eight.

However, the lower parts (tails) of the red distribution are not fitted well at all by a
q–Gaussian . This suggests that the pdf passes through a transient form, that may well be
approximated by other types of functions like (25) mentioned above.
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Figure 12. Left: Surface of section of a trajectory starting from a distance of ≈ 1.192× 10−7

from the unstable SPO1 saddle and integrated for a total time tf = 105. Right: For the
same integration time, we find that the pdf representing the distribution of the sums is well
fitted by a q–Gaussian, q ≈ 2.785 with χ2 ≈ 4.05× 10−6.
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Figure 13: Left: Surface of section of a trajectory starting from an distance ≈ 1.192× 10−7

from the unstable SPO1 saddle point total after time tf = 107. Right: For the same
integration time, the statistical distribution of the sums of one chaotic component of the
orbit can still be fitted–but not as well–by a q–Gaussian with q ≈ 2.483 with
χ2 ≈ 6.05× 10−6.
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Figure 14: Left: Surface of section of the same trajectory for total integration time
tf = 108. Right: Final integration time tf = 108 in the computations of the sums. In this
case it is evident that the distribution appears to converge to a Gaussian (q=1) .
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Figure 15: The 4 positive Lyapunov exponents of the previous solution integrated for a total
time of t = 108. Observe the sudden jump in their magnitude at ( t ≃ 107), where the orbit
escapes from the region of “weak chaos” and q–Gaussian distributions into the wider
chaotic domain of “strong chaos” where the statistics is Gaussian .
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If we perform the same study for an orbit initially located at a distance ≈ 1.086× 10−2 from
the SPO1 and on the same surface of section we find very similar results.

More specifically, for tf = 105, the sum distributions for this initial condition are fitted by a
q–Gaussian with q ≈ 2.874 and χ2 ≈ 5.48× 10−5. If we now increase the integration time to
tf = 107 and set Nic = 100 and M = 1000, we obtain a q–Gaussian fitting with q ≈ 2 with
χ2 ≈ 0.00021. Again the tails of the numerical distribution are not fitted well by a q–Gaussian
distribution. Finally, for tf = 108, time windows of length Nic = 10000 and M = 1000 we get
q ≈ 1.241 with χ2 ≈ 0.00020, i.e. we are even closer to a true Gaussian representing orbits
that cover almost all of the available energy surface.

(c) FPU SPO2 mode under fbc

Finally, we examined the neighborhood of the SPO2 mode, which first becomes unstable at
much smaller energies (i.e. E1

u/N ∝ N−2) compared to SPO1 (i.e. E1
u/N ∝ N−1), in the

same way as low q = 1, 2, 3, ... mode NNMs connected with the breakdown of FPU
recurrences. Thus, we expect that near SPO2 orbits will be more weakly chaotic compared
with SPO1 and hence QSS are expected to persist for even longer times.
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This is indeed what happens. As figure 16 clearly shows, the dynamics in the close vicinity of
SPO2 has the features of what we might call ‘edge of chaos’ : Orbits trace out a kind of
“banana” shaped region (Fig. 16(a)) in a regime of very small (positive) Lyapunov
exponents (Fig. 16(b)). This is very different than the “figure eight” we had observed for
SPO1 and the normalized sum pdfs, up to tf = 1010!, converge to a function that is close
to a q–Gaussian , never deviating towards a Gaussian, as shown in Figure 17.

More specifically, we take N = 5, β = 1, E = 0.5 and choose an orbit located initially at a
distance ≈ 1.418× 10−3 from the SPO2 solution, which has just turned unstable at
E1

u ≈ 0.4776. As we can see on the surface of section plot of Figure 16(a), the dynamics
near SPO2 “sticks” to a type of quasiperiodic torus , at least up to tf = 108.

The weakly chaotic nature of the motion is plainly depicted in Figure 16(b), where we have
plotted the four positive Lyapunov exponents up to tf = 109. Note that, although they are all
seen to decrease towards zero, at about tf > 109, the largest exponent shows a
tendency to converge to a very small value of about 10−7, indicating that the orbit is
chaotic and “sticky” to some quasiperiodic torus near SPO2.
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Figure 16: (a) The dynamics near SPO2 “sticks” to a quasiperiodic banana–like state, at
least up to tf = 108. The weakly chaotic nature of the motion is plainly depicted in (b), where
we have plotted the four positive Lyapunov exponents up to tf = 109. Note that, although
they all decrease towards zero, at about tf > 109, the largest exponent shows a tendency
to converge to a very small value of about 10−7, indicating that the orbit is chaotic.
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Figure 17: Left panel: The distribution of the normalized sum pdf of the orbit starting near
SPO2, for a total integration time tf = 106. Right panel: Final integration time tf = 1010 the
normalized sum pdf has converged to a shape that closely resembles a q–Gaussian with
q ≈ 2.769 and χ2 ≈ 4.44× 10−5.
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Figure 18: Left panel: The converged distribution of the normalized sum pdf of the orbit
starting near SPO2, for tf = 1010. Right panel: Its analytical form is better approximated by
the crossover formula (25)where a1 ≈ 0.006, aq ≈ 170 and q ≈ 2.82 with χ2 ≈ 2.06× 10−6,
than a q–Gaussian with q ≈ 2.769 and χ2 ≈ 4.44× 10−5 .
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Figure 19: Plot of the instantaneous on site energy
En = 1

2
p2n + 1

2
V (qn+1 − qn) +

1
2
V (qn − qn−1) along the N = 128 FPU chain with periodic

boundary conditions. Panel (a) at time t = 9× 107 (observation of a chaotic breather),
where the corresponding pdf is a q-Gaussian (q>1) and Panel (b) at time t = 6× 108, where
the system has relaxed to an energy equipartition state and the pdf tends to a true Gaussian.
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Figure 20: Panel (a) Plot of C0 as a function of time for a perturbation of the unstable

(E = 1.5 > ESPO1
u ≈ 1.05226) SPO1 mode with β = 1.04 and N = 129 at initial distance

2.22× 10−7. Plot in linear-log scale of numerical (red curve), q-Gaussian (green curve) and
Gaussian (blue curve) distributions for the same initial condition and parameters as in panel
(a). Panel (b) corresponds to tf = 2× 106, Nic = 5× 104 and M = 20. Here, the numerical
fitting gives q ≈ 1.564 with χ2 ≈ 0.00014.
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Figure 21: Panel (a) Plot of C0 as a function of time for a perturbation of the unstable

(E = 0.1 > ESPO2
u ≈ 0.01279) SPO2 mode with β = 1 and N = 128 at initial distance

4.09× 10−7. Plot in linear-log scale of numerical (red curve), q-Gaussian (green curve) and
Gaussian (blue curve) distributions for the same initial condition and parameters as in panel
(a). Panel (b) corresponds to tf = 106, Nic = 2.5× 104 and M = 20. Here, the numerical
fitting gives q ≈ 1.943 with χ2 ≈ 0.00035.
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QSS and Dynamical Phase Transitions in a Microplasma System

We now turn our attention to another N degree of freedom Hamiltonian system of very
different type than the FPU models, as it is characterized by long range interactions of
the Coulomb type and study statistically the dynamics during the transition from
“crystalline–like” to “liquid–like” phase (the so called “melting transition”) for small
energies and also from “liquid–like” to “gas–like” phase at higher energies. We consider
a microplasma of N ions of equal mass m = 1 and electric charge Q in a Penning trap with
electrostatic potential

Φ(x, y, z) = V0
2z2 − x2 − y2

r20 + 2z20
(27)

and constant magnetic field along the z direction with a vector potential of the form

A(x, y, z) =
1

2
(−By,Bx, 0). (28)

The system is described by the Hamiltonian

H =
N
∑

i=1

{

1

2m
(pi − qA(ri))

2) +QΦ(ri)

}

+
∑

1≤i<j≤N

Q2

4πǫ0rij
(29)
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Here ri is the position of the ith ion, rij is the Euclidean distance between the ith and jth
ions and ǫ0 is the vacuum permittivity. The ions are subjected to a harmonic confinement
in the z direction with frequency

ωz =

√

4QV0

m(r20 + 2z20)
(30)

while, in the perpendicular direction, they rotate with frequency ωc = QB/m. Thus, in a
frame rotating around the z axis with Larmor frequency ωL = ωc/2, the ions are subjected to

a harmonic confinement with frequency ωx = ωy =

√

ω2
c

4
− ω2

z

2
in the direction

perpendicular to the magnetic field. In the rescaled time τ = ωct, position R = r/a and

energy H = H
mω2

ca
2 with a =

(

Q2

4πǫ0mω2
c

) 1
3 , the Hamiltonian (29) describing the motion of

the N ions takes the form

H =
N
∑

i=1

[1

2
P2

i

]

+
N
∑

i=1

[(1

8
− γ2

4

)

(X2
i + Y 2

i ) +
γ2

2
Z2
i

]

+
∑

i<j

1

Rij
= E (31)
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where E is the total conserved energy of the system, Ri = (Xi, Yi, Zi) and
Pi = (PXi

, PYi
, PZi

) are the positions and momenta in R
3, Rij is the Euclidean distance

between different ions i, j given by

Rij =
√

(Xi −Xj)2 + (Yi − Yj)2 + (Zi − Zj)2 (32)

and γ = ωz/ωc. The ions perform bounded motion under the condition that

0 < |γ| < 1√
2
. (33)

The trap is called prolate if 0 < |γ| < 1√
6

, isotropic if |γ| = 1√
6

and oblate if 1√
6
< |γ| < 1√

2
.

Thus, the motion is quasi 1–dimensional in the limit γ → 0 and quasi 2–dimensional in
the limit γ → 1/

√
2. The Z direction is a symmetry axis and hence, the Z component of the

angular momentum LZ =
∑N

i=1 XiPYi
− YiPXi

is conserved. We suppose, from now on
LZ = 0) and that the motion is studied in the Larmor rotating frame.
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Recent results demonstrate the occurrence of dynamical regime changes when the
system is in a prolate quasi 1–dimensional configuration ( γ = 0.07). More specifically, in
the lower energy regime , a transition from a “crystalline–like” to a “liquid–like” behavior is
observed, called the “melting phase”. This is not associated with a sharp increase of the
temperature at some critical energy and the positive Lyapunov exponents attaining high
values. Thus, it appears that there is no clear “macroscopic” approach for identifying and
studying the “melting” process of the microplasma system in detail.

Using the Smaller Alignment Index (SALI) method to study the local dynamics, it was
discovered that there exists an energy range Emt of weakly chaotic behavior , i.e.
E ∈ Emt = (2, 2.5), where the positive Lyapunov exponents are very small and SALI
exhibits a stair–like decay to zero with varying decay rates, due to the presence of long lived
“sticky” orbits near the boundaries of resonance islands.

Thus, we set γ = 0.07 and consider a prolate trap giving rise to quasi 1–dimensional
motion for the case of N = 5 ions . For these parameters, the minimum energy for the ions
to start moving around their equilibrium positions is E0 ≈ 1.8922.
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We first study the “melting transition” , as the energy of the Hamiltonian (31) increases
above E0, from the viewpoint of probability distributions associated with chaotic trajectories.
Based on the results of the previous sections, we expect to find q–Gaussians with 1 < q < 3

in the vicinity of Emt where the positive Lyapunov exponents λi, i = 1, . . . , 3N are quite
small compared to the maximum values they can attain. This is also expected since in the
interval Emt the orbits stick to the boundaries of islands, at the so called “edge of chaos”
[Tsallis, 2009].

Indeed, in Figure 22, we apply our statistical analysis to the microplasma system, taking
Nic = 1000, M = 1000, tf = 2× 107 as integration time for our orbits and using as an
observable the quantity η(t) = X1(t), i.e. the first component of the position R1 of the first
ion. We find that, in the energy range of the “melting transition”, the values of the entropic
parameter of the q–Gaussian distribution (14) exhibiit a maximum well above q = 1,
indicating that the statistics is not Gaussian. Rather, a q–Gaussian is detected, which
persists up to about E = 4.5.
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Figure 22: Plot of the q–entropic parameter as a function of the energy E of the

microplasma Hamiltonian (31) for γ = 0.07 (prolate trap) and N = 5 ions. In this plot, we

have used Nic = 1000 and M = 1000. We have also plotted the line at q = 1 for reference

to the entropic parameter of the Gaussian distribution.
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Finally, we study a second transition from “liquid–like” to “gas–like” behavior, where the
system is “weakly chaotic” at higher energies, where the biggest Lyapunov exponents
decrease towards zero according to the equation [see Gaspard, 2003]

LE1 ∼
〈

N2

R3
ij

〉

∼ N
(lnT )1/2

T 3/4
(34)

where T is defined as T =
kBT

mω2
ca

2 , with T being the temperature of the system. This

formula represents the asymptotic power law decay of the biggest Lyapunov exponent for
sufficiently high energies (well above its peak at E ≈ 6), see Figure 20(a).

As Figure 20(b) shows, the q indexes of the distributions are well above unity for
E ∈ (30, 200) indicating that in this range a significant dynamical change occurs. The
energy increase drives the system to a more organized state favoring the kinetic part rather
than the Coulomb part and leading to a regime characterized by few rare particle
encounters, much like in an “ideal gas”.
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Figure 20: Panel a) Plot of the two biggest positive Lyapunov exponents (LE1 with red color
and LE2 with green color) as a function of the energy E in log–log scales. We observe that,
after their peak values at E ≈ 6, both of them decay to zero according to the formula (34).
Panel b) Plot in log–linear scales of the q–entropic parameter as a function of E for γ = 0.07

(prolate trap) and N = 5 ions. In this plot, we have used Nic = 1000 and M = 1000.
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Conclusions

1. It appears that, at the “edge of chaos” located at the boundaries of islands of
quasiperiodic motion of Hamiltonian systems , probability density functions (pdfs) of sums
of chaotic variables, are well approximated by q–Gaussians .

2. These q–Gaussians are in fact Quasi–Stationary States (QSS) which last for long
times , passing through different stages during which the central part retains its
q–Gaussian form . The tails, however, generally shift downward as the pdf tends to the
expected Gaussian ( q = 1).

3. In some cases, when one is very close to the “edge of chaos” , it is possible to find that
the orbits converge to a specific QSS , whose pdf is close to a q–Gaussian , but is better
approximated by a function recently proposed in [Tsallis and Tirnakli, 2010].

5. QSS approximated by q–Gaussians can be used to identify energy ranges where
dynamical transitions (like “melting” or “evaporation”) occur in certain long range
Hamiltonian systems (like the microplasma model) under “weakly chaotic” conditions.

4. These results are also observed in low–dimensional conservative maps and seem to
be independent of the number of degrees of freedom in the case of Hamiltonian systems.
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