Sifted colimits. Completeness of Sind - Varieties

Sifted Inductive Completion over Cartesian Closed Bases

Panagis Karazeris University of Patras Patras, Greece

Jiří Velebil Czech Technical University Prague, Czech Republic

1/14

A category is sifted if colimits indexed by it commute in $\mathop{\rm Set}\nolimits$ with binary products. Equivalently, if

- Is any two objects there exists a cospan to a third one
- Any two cospans from two given objects are connected by a zig-zag.

Sifted flatness

A functor $F: \mathcal{A} \longrightarrow \text{Set}$ is sifted flat if its left Kan extension along the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor $F : \mathcal{A} \longrightarrow Set$ is sifted flat iff the dual of its category of elements is sifted.

A category is sifted if colimits indexed by it commute in $\mathop{\rm Set}\nolimits$ with binary products. Equivalently, if

- Is For any two objects there exists a cospan to a third one
 - Any two cospans from two given objects are connected by a zig-zag.

Sifted flatness

A functor $F: \mathcal{A} \longrightarrow \text{Set}$ is sifted flat if its left Kan extension along the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor $F : \mathcal{A} \longrightarrow Set$ is sifted flat iff the dual of its category of elements is sifted.

A category is sifted if colimits indexed by it commute in $\mathop{\rm Set}\nolimits$ with binary products. Equivalently, if

- I For any two objects there exists a cospan to a third one
- Any two cospans from two given objects are connected by a zig-zag.

Sifted flatness

A functor $F: \mathcal{A} \longrightarrow \text{Set}$ is sifted flat if its left Kan extension along the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor $F : \mathcal{A} \longrightarrow Set$ is sifted flat iff the dual of its category of elements is sifted.

2/14

A category is sifted if colimits indexed by it commute in $\mathop{\rm Set}\nolimits$ with binary products. Equivalently, if

- I For any two objects there exists a cospan to a third one
- Any two cospans from two given objects are connected by a zig-zag.

Sifted flatness

A functor $F: \mathcal{A} \longrightarrow \text{Set}$ is sifted flat if its left Kan extension along the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor $F : \mathcal{A} \longrightarrow \text{Set}$ is sifted flat iff the dual of its category of elements is sifted.

A category is sifted if colimits indexed by it commute in $\mathop{\rm Set}\nolimits$ with binary products. Equivalently, if

- Is For any two objects there exists a cospan to a third one
- Any two cospans from two given objects are connected by a zig-zag.

Sifted flatness

A functor $F: \mathcal{A} \longrightarrow \text{Set}$ is sifted flat if its left Kan extension along the Yoneda embedding preserves finite products.

Sifted flatness

Theorem: A functor $F: \mathcal{A} \longrightarrow Set$ is sifted flat iff the dual of its category of elements is sifted.

Sifted inductive completion

 $\operatorname{Sind}(\mathcal{A})$ is the free cocompletion of \mathcal{A} under sifted colimits. It can be described as the closure of representables in $[\mathcal{A}^{op}, \operatorname{Set}]$ under sifted colimits.

For certain purposes (e.g homotopical algebra) we may want category to mean category enriched over a symmetric monoidal closed \mathscr{V} (e.g \mathscr{V} =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories under sifted colimits is that of a cartesian closed base \mathcal{V} which is strongly lfp as closed category. This means that

- Has a set of dense generators G that are strongly f.p, i.e colim_d V(G, V_d) ≅ V(G, colim_d V_d) is an iso whenever V_d is a sifted diagram.
- I is sfp
- $V_1 imes V_2$ is sfp, whenever V_1 , V_2 are sfp.

For certain purposes (e.g homotopical algebra) we may want category to mean category enriched over a symmetric monoidal closed \mathscr{V} (e.g \mathscr{V} =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories under sifted colimits is that of a cartesian closed base ${\cal V}$ which is strongly lfp as closed category. This means that

- Has a set of dense generators G that are strongly f.p, i.e colim_d V(G, V_d) ≅ V(G, colim_d V_d) is an iso whenever V_d is a sifted diagram.
- I is sfp
- \bigcirc $V_1 \times V_2$ is sfp, whenever V_1 , V_2 are sfp.

. ≁) Q (

For certain purposes (e.g homotopical algebra) we may want category to mean category enriched over a symmetric monoidal closed \mathscr{V} (e.g \mathscr{V} =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories under sifted colimits is that of a cartesian closed base ${\cal V}$ which is strongly lfp as closed category. This means that

- Has a set of dense generators G that are strongly f.p, i.e $\operatorname{colim}_d \mathcal{V}(G, V_d) \cong \mathcal{V}(G, \operatorname{colim}_d V_d)$ is an iso whenever V_d is a sifted diagram.
- I is sfp
- $V_1 \times V_2$ is sfp, whenever V_1 , V_2 are sfp.

For certain purposes (e.g homotopical algebra) we may want category to mean category enriched over a symmetric monoidal closed \mathscr{V} (e.g \mathscr{V} =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories under sifted colimits is that of a cartesian closed base ${\cal V}$ which is strongly lfp as closed category. This means that

- Has a set of dense generators G that are strongly f.p, i.e $\operatorname{colim}_d \mathcal{V}(G, V_d) \cong \mathcal{V}(G, \operatorname{colim}_d V_d)$ is an iso whenever V_d is a sifted diagram.
- I is sfp
- 3 $V_1 imes V_2$ is sfp, whenever V_1 , V_2 are sfp.

E 4) Q (

For certain purposes (e.g homotopical algebra) we may want category to mean category enriched over a symmetric monoidal closed \mathscr{V} (e.g \mathscr{V} =simplicial sets). In particular:

A convenient setting to study cocompletions of enriched categories under sifted colimits is that of a cartesian closed base ${\cal V}$ which is strongly lfp as closed category. This means that

- Has a set of dense generators G that are strongly f.p, i.e $\operatorname{colim}_d \mathcal{V}(G, V_d) \cong \mathcal{V}(G, \operatorname{colim}_d V_d)$ is an iso whenever V_d is a sifted diagram.
- I is sfp
- **③** $V_1 \times V_2$ is sfp, whenever V_1 , V_2 are sfp.

E ୬९୯

E.g:

① Presheaf categories $[\mathcal{G}^{op}, \operatorname{Set}]$, when \mathcal{G} has finite products

- Or, more generally, has the property that the terminal presheaf and the product of two representables is a finite coproduct of representables
- Interesting non-example (especially if homotopical algebra is under focus!): simplicial sets.

E.g:

- **①** Presheaf categories $[\mathcal{G}^{op}, \operatorname{Set}]$, when \mathcal{G} has finite products
- or, more generally, has the property that the terminal presheaf and the product of two representables is a finite coproduct of representables
- Interesting non-example (especially if homotopical algebra is under focus!): simplicial sets.

E.g:

- **①** Presheaf categories $[\mathcal{G}^{op}, \operatorname{Set}]$, when \mathcal{G} has finite products
- or, more generally, has the property that the terminal presheaf and the product of two representables is a finite coproduct of representables
- Interesting non-example (especially if homotopical algebra is under focus!): simplicial sets.

A weight $w: \mathcal{D}^{op} \longrightarrow \mathcal{V}$ is sifted if $Lan_Y w$ preserves

- finite (conical) products and
- ② cotensors with sfp objects of \mathcal{V}_{\cdot}

Sifted inductive completion

For a \mathcal{V} -category \mathcal{A} we define $\operatorname{Sind}(\mathcal{A})$ to be the closure of representables in $[\mathcal{A}^{op}, \mathcal{V}]$ under sifted weighted colimits. We don't know in general whether sifted weighted colimits of representables are conical sifted colimits of such.

*) Q (·

A weight $w: \mathcal{D}^{op} \longrightarrow \mathcal{V}$ is sifted if $Lan_Y w$ preserves

finite (conical) products and

2) cotensors with sfp objects of \mathcal{V}_{\cdot}

Sifted inductive completion

For a \mathcal{V} -category \mathcal{A} we define $\operatorname{Sind}(\mathcal{A})$ to be the closure of representables in $[\mathcal{A}^{op}, \mathcal{V}]$ under sifted weighted colimits. We don't know in general whether sifted weighted colimits of representables are conical sifted colimits of such.

) Q (

A weight $w: \mathcal{D}^{op} \longrightarrow \mathcal{V}$ is sifted if $Lan_Y w$ preserves

- finite (conical) products and
- 2 cotensors with sfp objects of \mathcal{V} .

Sifted inductive completion

For a \mathcal{V} -category \mathcal{A} we define $\operatorname{Sind}(\mathcal{A})$ to be the closure of representables in $[\mathcal{A}^{op}, \mathcal{V}]$ under sifted weighted colimits. We don't know in general whether sifted weighted colimits of representables are conical sifted colimits of such.

6/14

A weight $w: \mathcal{D}^{op} \longrightarrow \mathcal{V}$ is sifted if $Lan_Y w$ preserves

finite (conical) products and

2 cotensors with sfp objects of \mathcal{V} .

Sifted inductive completion

For a \mathcal{V} -category \mathcal{A} we define $\operatorname{Sind}(\mathcal{A})$ to be the closure of representables in $[\mathcal{A}^{op}, \mathcal{V}]$ under sifted weighted colimits. We don't know in general whether sifted weighted colimits of representables are conical sifted colimits of such.

*) Q (

Lemma 1: If $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, $(\text{elts} VF_o)^{op}$ is a sifted category.

Lemma 2: If \mathcal{A} admits cotensors with sfp objects and $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, then F is a conical sifted colimit of representables. (When \mathcal{V} is a presheaf category cotensors with representables suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

Lemma 1: If $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, $(\operatorname{elts} VF_o)^{op}$ is a sifted category.

Lemma 2: If \mathcal{A} admits cotensors with sfp objects and $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, then F is a conical sifted colimit of representables. (When \mathcal{V} is a presheaf category cotensors with representables suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

Lemma 1: If $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, $(\operatorname{elts} VF_o)^{op}$ is a sifted category.

Lemma 2: If \mathcal{A} admits cotensors with sfp objects and $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, then F is a conical sifted colimit of representables. (When \mathcal{V} is a presheaf category cotensors with representables suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

Lemma 1: If $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, $(\operatorname{elts} VF_o)^{op}$ is a sifted category.

Lemma 2: If \mathcal{A} admits cotensors with sfp objects and $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, then F is a conical sifted colimit of representables. (When \mathcal{V} is a presheaf category cotensors with representables suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

Lemma 1: If $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, $(\operatorname{elts} VF_o)^{op}$ is a sifted category.

Lemma 2: If \mathcal{A} admits cotensors with sfp objects and $F : \mathcal{A} \longrightarrow \mathcal{V}$ is sifted flat, then F is a conical sifted colimit of representables. (When \mathcal{V} is a presheaf category cotensors with representables suffice.)

Lemma 3: Conical sifted colimits of representables are sifted flat.

- $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
- V(Lan_Y $F(\mathcal{A}(-, A_1) \times \mathcal{A}(-, A_2))) \cong$

- $1 \ \operatorname{Lan}_{y} VF_{o}(\mathcal{A}_{o}(-,A_{1}) \times \mathcal{A}_{o}(-,A_{2})) \cong$

- $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
- $V(\operatorname{Lan}_Y F(\mathcal{A}(-,A_1) \times \mathcal{A}(-,A_2))) \cong$

- $algoard Lan_y VF_o(\mathcal{A}_o(-,A_1) \times \mathcal{A}_o(-,A_2)) \cong$

- $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
- V(Lan_Y $F(\mathcal{A}(-,A_1) \times \mathcal{A}(-,A_2))) \cong$

Consider the product of two representables $\mathcal{A}_o(-, A_1) \times \mathcal{A}_o(-, A_2) \colon \mathcal{A}_o^{op} \longrightarrow \text{Set.}$ We want it to be preserved by $\text{Lan}_y VF_o$

•
$$V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$$

•
$$V(\operatorname{Lan}_Y F(\mathcal{A}(-,A_1) \times \mathcal{A}(-,A_2))) \cong$$

- (Interpretation Interpretation (Int

8/14

 \simeq

- Lan_yVF_o(A_o(-, A₁) × A_o(-, A₂)) ≅
 ∫^{A∈A_o} A_o(A, A₁) × A_o(A, A₂) × VF_o(A) ≅
 ∫^{A∈A_o} VA(-, A₁)_o(A) × VA(-, A₂)_o(A) × VF_o(A) ≅
 ∫^{A∈A_o} V(A(-, A₁)_o(A) × A(-, A₂)_o(A) × F_o(A)) ≅
 V(∫^{A∈A_o} A(-, A₁)_o(A) × A(-, A₂)_o(A) × F_o(A)) ≅
 V(∫^{A∈A} A(A, A₁) × A(A, A₂) × F(A)) ≅
 V(Lan×E(A(-, A₁) × A(-, A₂))) ≅

- $(Lan_v VF_o(\mathcal{A}_o(-, \mathcal{A}_1) \times \mathcal{A}_o(-, \mathcal{A}_2)) \cong$ • $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
 - $Lan_y VF_o(\mathcal{A}_o(-,A_1)) \times Lan_y VF_o(\mathcal{A}_o(-,A_2))$

1 Lan_y
$$VF_o(\mathcal{A}_o(-,A_1) \times \mathcal{A}_o(-,A_2)) \cong$$

2 $\int^{A \in \mathcal{A}_o} \mathcal{A}_o(A,A_1) \times \mathcal{A}_o(A,A_2) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V\mathcal{A}(-,A_1)_o(A) \times V\mathcal{A}(-,A_2)_o(A) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V(\mathcal{A}(-,A_1)_o(A) \times \mathcal{A}(-,A_2)_o(A) \times F_o(A)) \cong$
3 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-,A_1)_o(A) \times \mathcal{A}(-,A_2)_o(A) \times F_o(A)) \cong$
4 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(A,A_1) \times \mathcal{A}(A,A_2) \times F(A)) \cong$
4 $V(\int^{A \in \mathcal{A}} \mathcal{A}(A,A_1) \times \mathcal{A}(A,A_2) \times F(A)) \cong$
5 $V(Lan_Y F(\mathcal{A}(-,A_1) \times \mathcal{A}(-,A_2))) \cong$
5 $V(Lan_Y F(\mathcal{A}(-,A_1)) \times Lan_Y F(\mathcal{A}(-,A_2))) \cong$
6 $V(FA_1 \times FA_2) \cong VF_oA_1 \times VF_oA_2 \cong$
6 $Lan_Y VF_o(\mathcal{A}_o(-,A_1)) \times Lan_Y VF_o(\mathcal{A}_o(-,A_2))$

1 Lan_y VF_o(
$$\mathcal{A}_o(-, A_1) \times \mathcal{A}_o(-, A_2)$$
) \cong
2 $\int^{A \in \mathcal{A}_o} \mathcal{A}_o(A, A_1) \times \mathcal{A}_o(A, A_2) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V\mathcal{A}(-, A_1)_o(A) \times V\mathcal{A}(-, A_2)_o(A) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V(\mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
3 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
4 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
5 $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
6 $V(\operatorname{Lan}_Y F(\mathcal{A}(-, A_1)) \times \operatorname{Lan}_Y F(\mathcal{A}(-, A_2))) \cong$
6 $V(\operatorname{FA}_1 \times \operatorname{FA}_2) \cong VF_oA_1 \times VF_oA_2 \cong$
6 $\operatorname{Lan}_Y VF_o(\mathcal{A}_o(-, A_1)) \times \operatorname{Lan}_Y VF_o(\mathcal{A}_o(-, A_2))$

1 Lan_y
$$VF_o(\mathcal{A}_o(-, A_1) \times \mathcal{A}_o(-, A_2)) \cong$$

2 $\int^{A \in \mathcal{A}_o} \mathcal{A}_o(A, A_1) \times \mathcal{A}_o(A, A_2) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V\mathcal{A}(-, A_1)_o(A) \times V\mathcal{A}(-, A_2)_o(A) \times VF_o(A) \cong$
4 $\int^{A \in \mathcal{A}_o} V(\mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
5 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
6 $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
7 $V(\operatorname{Lan}_Y F(\mathcal{A}(-, A_1)) \times \operatorname{Lan}_Y F(\mathcal{A}(-, A_2))) \cong$
8 $V(FA_1 \times FA_2) \cong VF_oA_1 \times VF_oA_2 \cong$
8 $\operatorname{Lan}_Y VF_o(\mathcal{A}_o(-, A_1)) \times \operatorname{Lan}_Y VF_o(\mathcal{A}_o(-, A_2))$

1 Lan_y VF_o(
$$\mathcal{A}_o(-, A_1) \times \mathcal{A}_o(-, A_2)$$
) \cong
2 $\int^{A \in \mathcal{A}_o} \mathcal{A}_o(A, A_1) \times \mathcal{A}_o(A, A_2) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V\mathcal{A}(-, A_1)_o(A) \times V\mathcal{A}(-, A_2)_o(A) \times VF_o(A) \cong$
4 $\int^{A \in \mathcal{A}_o} V(\mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
5 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
6 $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
7 $V(Lan_Y F(\mathcal{A}(-, A_1) \times \mathcal{A}(-, A_2))) \cong$
8 $V(Lan_Y F(\mathcal{A}(-, A_1)) \times Lan_Y F(\mathcal{A}(-, A_2))) \cong$
9 $V(FA_1 \times FA_2) \cong VF_oA_1 \times VF_oA_2 \cong$
10 $Lan_V VF_o(\mathcal{A}_o(-, A_1)) \times Lan_V VF_o(\mathcal{A}_o(-, A_2))$

1 Lan_y VF_o(
$$\mathcal{A}_o(-, A_1) \times \mathcal{A}_o(-, A_2)$$
) \cong
3 $\int^{A \in \mathcal{A}_o} \mathcal{A}_o(A, A_1) \times \mathcal{A}_o(A, A_2) \times VF_o(A) \cong$
3 $\int^{A \in \mathcal{A}_o} V\mathcal{A}(-, A_1)_o(A) \times V\mathcal{A}(-, A_2)_o(A) \times VF_o(A) \cong$
4 $\int^{A \in \mathcal{A}_o} V(\mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
5 $V(\int^{A \in \mathcal{A}_o} \mathcal{A}(-, A_1)_o(A) \times \mathcal{A}(-, A_2)_o(A) \times F_o(A)) \cong$
6 $V(\int^{A \in \mathcal{A}} \mathcal{A}(A, A_1) \times \mathcal{A}(A, A_2) \times F(A)) \cong$
7 $V(Lan_Y F(\mathcal{A}(-, A_1)) \times Lan_Y F(\mathcal{A}(-, A_2))) \cong$
9 $V(FA_1 \times FA_2) \cong VF_oA_1 \times VF_oA_2 \cong$
10 Lan_y VF_o($\mathcal{A}_o(-, A_1)$) × Lan_y VF_o($\mathcal{A}_o(-, A_2)$)

Almost identical to [Kelly, Structures defined by finite limits in the enriched context], Prop. 6.9. Hinges on the fact that F preserves cotensors with sfp objects of \mathcal{V} . With that we show that F is a conical colimit of representables, indexed by (elts VF_o)^{op}.

Proof of Lemma 3:

Uses the fact that \mathcal{V} is strongly lfp as a closed category.

Proof of Lemma 2:

Almost identical to [Kelly, Structures defined by finite limits in the enriched context], Prop. 6.9. Hinges on the fact that F preserves cotensors with sfp objects of \mathcal{V} . With that we show that F is a conical colimit of representables, indexed by (elts VF_o)^{op}.

Proof of Lemma 3:

Uses the fact that $\ensuremath{\mathcal{V}}$ is strongly lfp as a closed category.

9/14

We denote by Sind the class of sifted weights and by Lim the class of small weights. If $\mathscr V$ and V are as above we have

Theorem: Let \mathscr{A} be a \mathscr{V} -category that has tensors by sfp objects in \mathscr{V} (representables would suffice if \mathcal{V} where presheaves). Then \mathscr{A} is Sind-Lim-multicomplete iff Sind \mathscr{A} is complete.

We denote by Sind the class of sifted weights and by Lim the class of small weights. If \mathscr{V} and V are as above we have

Theorem: Let \mathscr{A} be a \mathscr{V} -category that has tensors by sfp objects in \mathscr{V} (representables would suffice if \mathcal{V} where presheaves). Then \mathscr{A} is Sind-Lim-multicomplete iff Sind \mathscr{A} is complete.

Suffices to show:

- The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(\$\alpha\$) has tensors by representables (necessary in order to show that small limits in Sind(\$\alpha\$)_o are actual conical limits in Sind(\$\alpha\$)).
- Sind(\mathscr{A}) has cotensors.

Small limits exist in the underlying category

because Sind(\$\alphi\$) has limits of representables (as J.V's talk), hence Sind(\$\alphi\$), has limits of representables, hence \$\mathcal{A}_o\$ is sind-Lim-multicomplete as an ordinary category, hence sind(\$\alphi\$_o\$) has all the limits that sind(\$\Lim\$\alphi\$_o\$) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- In the underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- Sind(A) has cotensors.

Small limits exist in the underlying category

because Sind(\$\alphi\$) has limits of representables (as J.V's talk), hence Sind(\$\alphi\$), has limits of representables, hence \$\mathcal{A}_o\$ is sind-Lim-multicomplete as an ordinary category, hence sind(\$\alphi\$_o\$) has all the limits that sind(Lim.\$\alphi\$_o\$) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- **1** The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- Sind(A) has cotensors.

Small limits exist in the underlying category

because Sind(\$\alphi\$') has limits of representables (as J.V's talk), hence Sind(\$\alphi\$')\$, has limits of representables, hence \$\mathcal{A}_o\$ is sind-Lim-multicomplete as an ordinary category, hence sind(\$\alphi\$'_o\$) has all the limits that sind(Lim\$\alphi\$'_o\$) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- **(**) The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- 3 $\operatorname{Sind}(\mathscr{A})$ has cotensors.

Small limits exist in the underlying category

because Sind(\$\alphi\$) has limits of representables (as J.V's talk), hence Sind(\$\alphi\$)_0 has limits of representables, hence \$\mathcal{A}_0\$ is sind-Lim-multicomplete as an ordinary category, hence sind(\$\alphi\$_0\$) has all the limits that sind(Lim\$\alphi\$_0\$) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- **1** The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- Sind(𝒜) has cotensors.

Small limits exist in the underlying category

because Sind(\$\alphi\$) has limits of representables (as J.V's talk), hence Sind(\$\alphi\$)\$_o has limits of representables, hence \$\mathcal{A}_o\$ is sind-Lim-multicomplete as an ordinary category, hence sind(\$\alphi\$_o\$) has all the limits that sind(Lim\$\alphi\$_o\$) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- **(**) The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- Sind(𝒜) has cotensors.

Small limits exist in the underlying category

because Sind(A) has limits of representables (as J.V's talk), hence Sind(A)_o has limits of representables, hence A_o is sind-Lim-multicomplete as an ordinary category, hence sind(A_o) has all the limits that sind(LimA_o) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Suffices to show:

- **(**) The underlying ordinary category $Sind(\mathscr{A})_o$ has small limits.
- Sind(A) has tensors by representables (necessary in order to show that small limits in Sind(A)_o are actual conical limits in Sind(A)).
- Sind(𝒜) has cotensors.

Small limits exist in the underlying category

because Sind(A) has limits of representables (as J.V's talk), hence Sind(A)_o has limits of representables, hence A_o is sind-Lim-multicomplete as an ordinary category, hence sind(A_o) has all the limits that sind(LimA_o) has (again J.V's talk), but the latter is complete by [Adamek, Lawvere, Rosický, How algebraic is algebra?].

Sketch of Proof, continued

- Obtained the tensor of a representable A(−, A) by an sfp K as K ⊗ A(−, A) = A(−, K ⊗ A). Then extend by (conical) sifted colimits.
- Since Sind(𝒜) is coreflective in Sind(Lim𝒜), suffices to show that Sind(𝒜) has cotensors in case 𝒜 has. To that end define, for V = colim_iK_i in V, X = colim_jA(−, A_j), K h X as lim_icolim_jA(−, K_i h X_j).

Sketch of Proof, continued

- ② Define the tensor of a representable A(−, A) by an sfp K as K ⊗ A(−, A) = A(−, K ⊗ A). Then extend by (conical) sifted colimits.
- Since Sind(𝔄) is coreflective in Sind(Lim𝔄), suffices to show that Sind(𝔄) has cotensors in case 𝔄 has. To that end define, for V = colim_iK_i in V, X = colim_jA(−, A_j), K h X as lim_icolim_jA(−, K_i h X_j).

Sketch of Proof, continued

- ② Define the tensor of a representable A(−, A) by an sfp K as K ⊗ A(−, A) = A(−, K ⊗ A). Then extend by (conical) sifted colimits.
- Since Sind(𝒜) is coreflective in Sind(Lim𝒜), suffices to show that Sind(𝒜) has cotensors in case 𝒜 has. To that end define, for V = colim_iK_i in V, X = colim_j𝒜(−, A_j), K h X as lim_icolim_j𝒜(−, K_i h X_j).

$\mathsf{Complete} \; \mathsf{Sind} \, \Leftrightarrow \, \mathsf{Cocomplete} \; \mathsf{Sind}$

- *K* ≅ Sind(𝔄), for some 𝔄 admitting tensors with sfp objects and *K* is complete.
- *K* ≅ Sind(𝒜) for some 𝒜 admitting tensors with sfp objects

 and *K* is cocomplete.
- ③ K ≃ Sind(𝒜) for a Sind-Lim-multicomplete category admitting tensors with sfp objects.

$\mathsf{Complete} \; \mathsf{Sind} \; \Leftrightarrow \; \mathsf{Cocomplete} \; \mathsf{Sind}$

- *K* ≅ Sind(𝔄), for some 𝔄 admitting tensors with sfp objects and *K* is complete.
- ② K ≃ Sind(𝒜) for some 𝒜 admitting tensors with sfp objects and K is cocomplete.
- ③ K ≅ Sind(𝒜) for a Sind-Lim-multicomplete category admitting tensors with sfp objects.

$\mathsf{Complete} \; \mathsf{Sind} \; \Leftrightarrow \; \mathsf{Cocomplete} \; \mathsf{Sind}$

- *K* ≅ Sind(𝔄), for some 𝔄 admitting tensors with sfp objects and *K* is complete.
- *K* ≅ Sind(𝔄) for some 𝔄 admitting tensors with sfp objects and *K* is cocomplete.
- Sind(𝒜) for a Sind-Lim-multicomplete category admitting tensors with sfp objects.

$\mathsf{Complete} \; \mathsf{Sind} \, \Leftrightarrow \, \mathsf{Cocomplete} \; \mathsf{Sind}$

- K ≃ Sind(𝔄), for some 𝔄 admitting tensors with sfp objects and K is complete.
- K ≅ Sind(𝒜) for a Sind-Lim-multicomplete category admitting tensors with sfp objects.

Notice that, for a Cauchy complete \mathcal{G} , an object in $[\mathcal{G}^{op}, \operatorname{Set}]$ is sfp iff it is a finite coproduct of representables. Thus simplicial sets are not strongly lfp as a closed category, or else the square would have to be the coproduct of two triangles. Symmetric simplicial sets [Rosický, Tholen, Left determined model categories] may be a better option for studying homotopy varieties.

Everything can be generalized to D-flatness, for a sound doctrine, over cartesian closed bases that are locally D-presentable as such.

Notice that, for a Cauchy complete \mathcal{G} , an object in $[\mathcal{G}^{op}, \operatorname{Set}]$ is sfp iff it is a finite coproduct of representables. Thus simplicial sets are not strongly lfp as a closed category, or else the square would have to be the coproduct of two triangles. Symmetric simplicial sets [Rosický, Tholen, Left determined model categories] may be a better option for studying homotopy varieties.

Everything can be generalized to \mathbb{D} -flatness, for a sound doctrine, over cartesian closed bases that are locally \mathbb{D} -presentable as such.