Anthony Streklas
Panahaidas Athinas 95 Patras, dassilion Greece Τel:. +30 - 2610 - 270442 Personal Page http://www.math.upatras.gr/~streklas/ |
Assistant Professor |
Personal Information
Professional Employment
1975 - 80 : Post Graduate Researcher, Department of Mathematics, University of Patras, Greece. 1982 - 88 : Lecturer, Department of Mathematics, University of Patras, Greece. 1988 - 13 : Assistant Professor, Department of Mathematics, University of Patras, Greece.Research Interests
Books
Selected Publications Τotal number 22 http://www.math.upatras.gr/~streklas/public_html/dimos.htm
Non commutative Quantum Mechanics in time - dependent backgrounds.
Antony Streklas.
Published in: Theoretical
Conscepts of Quantum Mechanics. InTech. 2012.
Abstract:
The idea of non commutative space - time was
presented by Snyder in 1947, with respect to the need to regularize the
divergence of the quantum field theory. The idea was suggested by Heisenberg in
1930. In the past few years there has been an increasing interest in the non
commutative geometry. For a manifold parameterized by the space - time
coordinates x_m, the commutation relations can be written as
[x_m,x_n]=i
l_mn. In this article we have found the exact propagator of
a two dimensional harmonic oscillator in non commutative quantum mechanics,
where the ordinary non commutative parameters l_m
are time
dependent. Non commutativity of the momenta means that there is a time dependent
magnetic field present. The Hamiltonian of the system is a linear combination of
two Caldirola - Kanai Hamiltonians with two distinct friction parameters. We
find the exact propagator of the system.
Quantum damped harmonic oscillator on non - commuting plane. Antony Streklas. Published in: physica A 385 (2007) pp 124 - 136.
Harmonic Oscillator in non Commuting two Dimensional Space.
Antony Streklas. Published in: Int . J. of Mod. Phys.
B, Vol.21, No.33 (2007) pp 5363 - 5380.
Abstract:
In the
present paper we study the two dimensional Harmonic Oscillator in a constant
magnetic field in non commuting space. We first prove that the system is
equivalent with a two dimensional system where
the new operators of the momentum and the coordinate of
the second dimension satisfies a deformed commutation relation.
Then we write the time evolution
operator in a appropriate normal ordered form, so that we can calculate the
exact propagator in a straightforward manner. We prove that the unknown
functions can be found with the help of the solutions of the equivalent
classical problem. The method can be applied easily in the case where the
frequencies or the mass m
are time dependent. We find as well
the time evolution of the coordinates and momenta operators.
Deformed Harmonic Oscillator for Non-Hermitian Operator and the Behavior of pt and CPT Symmetries A. Jannussis, K. Vlachos, V. Papatheou, A. Streklas. Published in: Int. J. of Mod. Phys. B, Vol. 20,16 (2006) pp2313-2322.
Bolttzmann Statistics of Quantum Friction. M. Mijatovic, A.Jannussis and A. Streklas. Published in: Physics Letters, V. 122, 1 (1987) pp 31-35.
Foundation of the Lie Admissible Fock Space of the Hadronic
Mechanics. A.Jannussis, G. Brodimas, D. Sourlas, A.
Streclas, P. Siafaricas, L. Papaloucas and N. Tsangas.
Published in: Hadronic Lournal 5, (1982), pp. 1923
-1947.
Abstract:
In the present paper
we study the case of coupling systems in hadronic
mechanics. The non-canonical commutation relations of position and momentum
operators are reduced, by Fock representation, to the known relations
of $Q-$ algebra.of a Lie-admissible algebra, where $Q$
is an operator, we can define new Fock creation and
annihilation operators, which describe some particles only under certain
conditions, which must be fulfilled by the operator $\hat Q$. When we have a
simple hadronic harmonic oscillator, the $\hat Q$ is a scalar less than 1, and
we have energy saturation in eigenvalues spectrum. In this case
the generalized uncertainty principle of Heisenberg is valid according to
Santilli's theory. Finally, the coherent states of annihilation operator $A$ are
given and the Weyl displacement operator is generalized in $Q-$ algebra.
Propagator with Friction in Quantum Mechanics. A.Jannussis, G. Brodimas and A.
Streclas.
Published in: Physics Letters Vol. 74A, N.1,2
(1979) pp 6 - 10.
Abstract:
In this paper we calculate the propagator for some quantum
- mechanical systems with friction. The friction is a
linear function of the velocity with friction constant $\gamma$ and the system
looks like a system with time dependent mass. We can
calculate the exact propagators of some systems with quadratic Hamiltonians.
Expecially we study the forced and damped harmonic
oscillator in a uniform electromagnetic field.
Relativistic Wigner Operator and its Distribution.
A.Jannussis, A.
Streclas, D.Sourlas and K.
Vlachos.
Published in: Lettere al Nuovo Cimento Vol.18, 11 (1977), pp. 349 - 351.
Abstract:
It has been proved that the Wigner operator which results
from the quantum - mechanical foundation of Bopp and Kubo in phase space, admits
as eigenvalues the deference of the eigenvalues of two equivalent Shrodinger
equations and as eigenfunction the well known Wigner distribution function. In
this paper we apply this method to the relativistic case and we find that the
eigenvalues are again the
'difference
of
the eigenvalues of two equivalent Dirac equations. The eigenfunction is a
4Χ4 matrix with elements Wigner type distribution functions, which are Fourier transforms of
the four Dirac's spinors.