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Abstract A ramp secret sharing scheme through greatest common divisor of
polynomials is presented. Verification and shelf correcting protocols are also
developed. The proposed approach can be implemented in a hybrid way using
numerical and symbolical arithmetic. Numerical examples illustrating the proposed
sharing schemes are also given.

1 Introduction

A (t, n)-threshold secret sharing scheme is a method in which the dealer distributes
the secret to n participants [2]. In this scheme any t participants, 1 � t � n, can
cooperate and retrieve the secret but any t − 1 participants cannot reconstruct the
secret. An (s, t, n)-threshold ramp scheme is a generalization of a threshold secret
sharing scheme using two parameters. Namely, the value s which determines the
lower threshold and t which is the upper threshold. In a ramp scheme, any t (or
more than t) of the n players can compute the secret (exactly as in a (t, n)-threshold
scheme). It is also required that no subset of s (or less than s) players can determine
any information about the secret. We note that a (t−1, t, n)-ramp scheme is exactly
the same as a (t, n)-threshold scheme. The parameters of a ramp scheme satisfy the
conditions 0 � s < t � n. For more information see [3, 11]. A ramp scheme is
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essentially a non-perfect secret sharing scheme. Ramp schemes are useful because
they can achieve a high information rate.

In Section 2 the proposed ramp secret sharing scheme and two self-correcting
protocols are presented based on the greatest common divisor (GCD) of polyno-
mials. In Section 3 a numerical linear algebra technique for computing the GCD
of polynomials through Sylvester matrices is presented. In Section 4 an example
evaluating the proposed method is presented. The two self-correcting protocols are
also evaluated. In Section 5 a synopsis and concluding remarks are given.

2 Ramp Secret Sharing Scheme

Throughout this paper, it is assumed that all participants are cooperating giving the
real data to each other. Also, verification protocols are given to tackle the case where
an error in a cooperation is appeared.

Cryptographic Scheme Let D be the dealer, P1, P2, . . . , Pn be n participants,
s(x) :=∏n

i=1mi(x) be the secret, where mi(x), i = 1, 2, . . . , n are n polynomials
of degree dmi , i = 1, 2, . . . , n such that for i �= j, i, j = 1, 2, . . . , n the
mi(x), mj (x) are coprime and d(x) be a polynomial known by the dealer, where
d(x), mi(x) are coprime for all i = 1, 2, . . . , n. Each participant Pi, i =
1, 2, . . . , n receives the following information (share) from the dealer D:

p1(x) = d(x) ·m2(x) · · ·mn(x),
p2(x) = d(x) ·m1(x) ·m3(x) · · ·mn(x),

...

pi(x) = d(x) ·m1(x) · · ·mi−1(x) ·mi+1(x) · · ·mn(x),
...

pn(x) = d(x) ·m1(x) · · ·mn−1(x).

(1)

Thus,

pi(x) = d(x) ·
n∏
j=1
j �=i

mi(x), i = 1, 2, . . . , n.

Remark 1 In a future work our scope is to study the polynomials over fields in such
a way that the factorization will not be feasible.

Remark 2 The participant Pi knows the whole product pi(x), as a polynomial of
degree dmi i = 1, 2, . . . , n but he does not know the following factorization:

d(x) ·m1(x) · · ·mi−1(x) ·mi+1(x) · · ·mn(x).
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Remark 3 In general, a direct corollary of the fundamental theorem of algebra
[13] states that a polynomial can be factorized over the complex domain into a
product an(x − r1)(x − r2) · · · (x − rn), where an is the leading coefficient and
r1, r2, . . . , rn are all of its n complex roots. On the other hand, it is well known
that, for polynomials of degrees more than four, no general closed-form formulas
for their roots exist. For these cases we can apply various root-finding algorithm
for the approximation of the roots of a polynomial. This approximation is not an
easy task and it is depended on the inner tolerance that it will be used during the
floating point operations. Specifically, for a polynomial of degree n the required bit
operations are O

(
n12 + n9

(
log(|p|))3), where p = anx

n + an−1x
n−1 + · · · + a0

is the polynomial and
∣∣∑n

i=0 ai x
i
∣∣ = (∑n

i=0 a
2
i

)1/2
for a polynomial with real

coefficients [6]. Victor Pan in 2002 [9] presented almost optimal algorithms for
numerical factorization of univariate polynomials, while Sagraloff and Mehlhorn in
2016 [10] introduced a hybrid of the Descartes method and Newton iteration which
is in comparable complexity with Pan’s algorithms.

In our case, after approximating all the roots of pi(x) the participant Pi may
retrieve the secret by computing all the combinations of the roots. The scheme can
be improved and become more robust by giving the dealer to participants different
inner tolerances in order the participants not to be able to approximate all the roots.
In that case the scheme looses its self-correcting protocols.

Theorem 1 If all participants P1, P2, . . . , Pn are cooperating, they can derive the
secret s(x).

Proof Suppose that the two participants Pi and Pj , 1 � i, j � n, i �= j are
cooperating. Participant Pi knows the following information from the dealer:

pi(x) = d(x) ·m1(x) · · ·mi−1(x) ·mi+1(x) · · ·mn(x),

while participant Pj knows the following information from the dealer:

pj (x) = d(x) ·m1(x) · · ·mj−1(x) ·mj+1(x) · · ·mn(x).

The GCD of the previous two polynomials is given as follows:

gcd
{
pi(x), pj (x)

} := gi,j (x) = d(x) ·
n∏

k=1
k �=i,j

mi(x).

Then,

i. participant Pi finds out the identity mj(x) of participant Pj by dividing pi(x)
with the GCD: gi,j (x): pi(x)/gi,j (x) = mj(x) and

ii. participant Pj finds out the identity mi(x) of participant Pi by dividing pj (x)
with the GCD: gi,j (x): pj (x)/gi,j (x) = mi(x).
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In addition, participant Pi informs participant Pj about his/her identity mj and vice
versa. Thus, both participants Pi and Pj know mi(x), mj(x) and the whole product
d(x) ·∏n

j=1mi(x).
If all the n participants cooperate, then by revealing their identities they are able

to derive the secret s(x) =∏n
i=1mi(x). �

Assume now that two participants, e.g., P1 and P2 decide to cooperate in order
to compute a part of the secret. They can derive m1(x) and m2(x) and the Least
Common Multiple (LCM) of them:

r(x) := lcm
{
p1(x), p2(x)

} = d(x) ·
n∏
i=1

mi(x) = d(x) · s(x),

as a polynomial. The secret s(x) divides r(x) and is divided by m1(x) ·m2(x), thus

m1(x) ·m2(x)/s(x)/lcm
{
p1(x), p2(x)

}
. (2)

In other terms the shares p1(x) and p2(x) define a restriction for the secret s(x).
That means that from the shares of the participants P1 and P2, a partial information
for the secret s(x) can be derived (ramp scheme). In order to compute all the roots of
their polynomials they have to use polynomial root-finding algorithms of complexity
mentioned above.

More general, assume that k participants cooperate in order to compute
a part of the secret, 1 < k < n and without loss of generality let
P1, P2, . . . , Pk be the participants. They can compute m1(x), m2(x), . . . , mk(x),
lcm
{
p1(x), p2(x), . . . , pk(x)

} = d(x) ·∏n
i=1mi(x) = d(x) · s(x) as polynomial

and its roots and they can recognize the roots of mi(x), i = 1, 2, . . . , k as roots of
the secret. Therefore, we have the following condition:

k∏
i=1

mi(x)/s(x)/lcm
{
p1(x), p2(x), . . . , pk(x)

}
. (3)

The “division interval” becomes more narrow since m1(x) ·m2(x)/
∏k
i=1mi(x). In

the case where k = n− 1 the condition (3) becomes

n−1∏
i=1

mi(x)/s(x)/d(x) · s(x). (4)

Assume that ŝ(x) satisfies (4) and let

d̂(x) := lcm
{
p1(x), p2(x), . . . , pn−1(x)

}

ŝ(x)
= d(x) · s(x)

ŝ(x)
,
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m̂n(x) := ŝ(x)∏n−1
i=1 mi(x)

,

p̂n(x) := d̂(x) ·
n−1∏
i=1

mi(x).

It is easy to verify that ŝ(x) is a pseudo secret for the shares p1(x), . . . , pn−1(x),

p̂n(x).

Self-Correcting Protocols In the following proposition, two self-correcting proto-
cols are presenting, in the case where error information in cooperations is given.

Proposition 1 (Self-Correcting Protocols)

Protocol 1 Suppose that the participant Pi , 1 � i � n is pairwise cooperating
with all the other participants. Then, from these cooperations, the following pieces
of information can be derived:
Pi, P1 : gcd{pi(x), p1(x)} −→ m1(x),mi(x)

Pi, P2 : gcd{pi(x), p2(x)} −→ m2(x),mi(x)
...

...
...

Pi, Pi−1 : gcd{pi(x), pi−1(x)} −→ mi−1(x),mi(x)

Pi, Pi+1 : gcd{pi(x), pi+1(x)} −→ mi+1(x),mi(x)
...

...
...

Pi, Pn : gcd{pi(x), pn(x)} −→ mn(x),mi(x)

where mi(x),mj (x), j = 1, . . . , n, j �= i are obtained by dividing pj (x), pi(x)
with gcd{pi(x), pj (x)} respectively. Also, mi(x) in all the previous computations
should be the same. Thus, if there is anywhere a different result, then in the
corresponding pair will be an error.

Protocol 2 Suppose that every participant is pairwise cooperating with two other
participants. Without loss of generality assume that every participant is cooperating
in a cycling order first with his/her previous and afterwards with his/her next
participant. Let Pi , 1 � k � n be a participant that gave an error information. By
the above assumption, Pi cooperates firstly with the Pi−1 and next with the Pi+1.
Obviously, in the case where i = 1 then i−1 is considered n and if i = n, then i+1
is considered 1. Then, from these cooperations, the following pieces of information
can be derived:
Pi, Pi−1 : gcd{pi(x), pi−1(x)} −→ mi−1(x),mi(x)

Pi, Pi+1 : gcd{pi(x), pi+1(x)} −→ mi+1(x),mi(x)

Thus, from these cooperations, Pi−1 and Pi+1 should reveal the same identity
mi(x). In the case where it does not hold, then Pi has given an error information.
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3 Computation of The Greatest Common Divisor of
Polynomials

For completeness purposes, we shall allow us to briefly discuss a few basic concepts
regarding a numerical method for computing the GCD of a set of polynomials. For
more details we refer the interested reader to [1, 4, 5, 12, 14].

Definition 1 Let

pi(x) = pi,dmi x
dmi+pi,dmi−1x

dmi−1+pi,dmi−2x
dmi−2+ · · ·+pi,0, i=1, 2, . . . , n,

be n polynomials as defined in (2). Without loss of generality let p1(x) be the
polynomial of maximal degree dm1 . Let p2(x) be the polynomial with the second
maximum degree. Consider the following matrices:

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1,dm1
p1,dm1−1 p1,dm1−2 . . . p1,d0 0 . . . 0 0

0 p1,dm1
p1,dm1−1 . . . p1,d1 p1,d0 . . . 0 0

...
...

...
. . .

. . .
. . .

. . .
...

...

0 0 0 p1,dm1
. . . p1,d1 p1,d0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Si =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pi,dmi pi,dmi−1 pi,dmi−2 . . . pi,d0 0 . . . 0 0

0 pi,dmi pi,dmi−1 . . . pi,d1 pi,d0 . . . 0 0

...
...

...
. . .

. . .
. . .

. . .
...

...

0 0 0 pi,dmi . . . pi,d1 pi,d0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 2, . . . , n,

where S1 is an dm2 × (dm1 + dm2) block matrix representing p1(x) and Si is an
dm1 × (dm1 + dm2) matrix which represents pi(x), i = 2, . . . , n. The classical
Sylvester matrix is defined as the following (dm1 ·dm2 +dm2)× (dm1 +dm2)matrix
[1]:
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S =

⎡
⎢⎢⎢⎢⎢⎣

S1

S2
...

Sn

⎤
⎥⎥⎥⎥⎥⎦
.

By collecting the first row of every block Si, i = 2, 3, . . . , n as follows:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2,dm2
p2,dm2−1 p2,dm2−2 . . . p2,0

p3,dm3
p3,dm3−1 p3,dm3−2 . . . p3,0

...
...

...
. . .

...

pn,dmn pn,dmn−1 pn,dmn−2 . . . pn,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and reconstructing the Sylvester matrix S as follows:

S∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B θ θ Θ

θ B θ Θ

θ θ B Θ

.. .
. . .

Θ θ B

S0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Θ is a zero square matrix, θ is a zero column vector, and I is the identity
matrix, we get a matrix with n same blocks called modified Sylvester matrix S∗
[12].

Theorem 2 ([1, 12]) Let S∗ be the modified Sylvester matrix of n polynomials
p1(x), p2(x), . . . , pn(x) and P · S∗ = L · U the LU factorization with partial
pivoting of S∗. Then the nonzero elements of the last nonzero row of U define the
coefficients of GCD of the polynomials p1(x), p2(x), . . . , pn(x).

Taking advantage of the special form of S∗ and zeroing and updating only
specific entries of the first block at each step we get the following modified LU
factorization algorithm (for more details we refer the interested reader to [12]):
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Algorithm The modified LU factorization

STEP 1 : Construct the modified generalized Sylvester matrix S∗

STEP 2 : While number of same blocks > 3 do
if number of same blocks of (S∗)(i) = odd

move the last block after S1
endif
Compute the upper triangular matrix U
U = LU(B), where B contains
the two first same blocks of (S∗)(i)

STEP 3 : Compute the upper triangular matrix U ′ :
U ′ = LU(S∗)(k)

Computational Complexity The required computational complexity of the previ-
ous algorithm is given as follows [12]:

O

(
(dm1 + dm2)

3
(

2 log2 2(dm1)−
1

3

)
+ (dm1 + dm2)

2
(

2n log2 2(dm1)+ dm2

))
,

which is significant reduced in compare with the complexity of the classical LU
factorization [4, 5] for a matrix of size of the generalized Sylvester.

Numerical Stability The modified LU factorization computes the exact factoriza-
tion of a slightly perturbed initial matrix. For the modified LU factorization, it holds
that

S∗ + E = L · U,

with

‖ E ‖∞� (dm1 + dm2)
2 ρu

log2 2(dm1 )∏
i=1

‖ Li ‖∞ ‖ S∗ ‖∞,

where ρ is the growth factor and u the unit round off [12]. More details for the
stability of the LU factorization with partial pivoting can be found in [14].

4 Hybrid Implementation

In this section we present an example evaluating the proposed method in a hybrid
way. The computation of the GCD of polynomials is achieved using floating
point arithmetic and the modified LU factorization algorithm and the divisions of
polynomials symbolically.
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Table 1 Polynomials of participants given by the dealer

Participant Polynomial

P1 x6 − 42x5 + 685x4 − 5460x3 + 22084x2 − 43008x + 31680

P2 x6 − 41x5 + 645x4 − 4855x3 + 17834x2 − 29424x + 15840

P3 x6 − 40x5 + 607x4 − 4324x3 + 14572x2 − 21376x + 10560

P4 x6 − 39x5 + 571x4 − 3861x3 + 12100x2 − 16692x + 7920

Let us suppose that we have one dealer and four participants. Let s(x) = x4 −
10x3 + 35x2 − 50x + 24 be the secret and d(x) = x3 − 33x2 + 362x − 1320 the
polynomial chosen by the dealer for increasing the difficulty of breaking the secret
key. The dealer gives to participants the polynomials shown in Table 1.

Let us assume that the participants P1 and P2 inform each other about their
polynomials and compute their GCD. The information that they found is

g12(x) := gcd
{
p1(x), p2(x)

}

= x5 − 40x4 + 605x3 − 4250x2 + 13584x − 15840.

The participant P1 divides his/her polynomial p1(x)with g12(x) and finds the factor
m2(x) of participant P2:

p1(x)

g12(x)
= x6 − 42x5 + 685x4 − 5460x3 + 22084x2 − 43008x + 31680

x5 − 40x4 + 605x3 − 4250x2 + 13584x − 15840

= x − 2

= m2(x).

Similarly, participant P2 divides his/her polynomial p2(x)with the GCD g12(x) and
finds the factor m1(x) of participant P1:

p2(x)

g12(x)
= x6 − 41x5 + 645x4 − 4855x3 + 17834x2 − 29424x + 15840

x5 − 40x4 + 605x3 − 4250x2 + 13584x − 15840

= x − 1

= m1(x).

Thus, participants P1 and P2 have found a part of the secret s(x) but they have
to cooperate with the other two participants as well in order to compute the secret
s(x), since they have to find out m3(x) and m4(x) in order to deconvolute d(x)
from their LCM of their polynomials. If all participants reveal their polynomials
pi(x), i = 1, 2, 3, 4 and compute the GCD g(x), then:
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g(x) := gcd
{
p1(x), p2(x), p3(x), p4(x)

}

= x3 − 33x2 + 362x − 1320.

Remark 4 The previous GCD was computed using the modified LU factorization
algorithm with inner tolerance 10−16. Since in numerical arithmetic different
tolerances may lead to different results, the dealer may include the tolerance as
information to the participants along with their polynomials.

Each participant divides his/her polynomial pi(x), i = 1, 2, 3, 4 with the
computed GCD g(x) and obtain the results presented in Table 2.

Participant, e.g., P2 can now cooperate with P1 as shown before in order to find
out m1(x) and inform P1 about it. Thus P1 can now multiply g1(x) with m1(x) in
order to retrieve the secret s(x):

g1(x) ·m1(x) =
(
x3 − 9x2 + 26x − 24

) · (x − 1
)

= x4 − 10x3 + 35x2 − 50x + 24

= s(x).

The same result is also obtained if all participants cooperate in cyclic pairs as
shown in Table 3. The secret is obtained by the product

∏4
i=1mi(x):

s(x) =
4∏
i=1

mi(x) = x4 − 10x3 + 35x2 − 50x + 24.

Table 2 Polynomials of participants after division and the corresponding results

Participant Polynomial division

P1
p1(x)

g(x)
= x6 − 42x5 + 685x4 − 5460x3 + 22084x2 − 43008x + 31680

x3 − 33x2 + 362x − 1320

P2
p2(x)

g(x)
= x6 − 41x5 + 645x4 − 4855x3 + 17834x2 − 29424x + 15840

x3 − 33x2 + 362x − 1320

P3
p3(x)

g(x)
= x6 − 40x5 + 607x4 − 4324x3 + 14572x2 − 21376x + 10560

x3 − 33x2 + 362x − 1320

P4
p4(x)

g(x)
= x6 − 39x5 + 571x4 − 3861x3 + 12100x2 − 16692x + 7920

x3 − 33x2 + 362x − 1320

Participant Resultgi(x)

P1 g1(x) = x3 − 9x2 + 26x − 24 = (x − 2)(x − 3)(x − 4)

P2 g2(x) = x3 − 8x2 + 19x − 12 = (x − 1)(x − 3)(x − 4)

P3 g3(x) = x3 − 7x2 + 14x − 8 = (x − 1)(x − 2)(x − 4)

P4 g4(x) = x3 − 6x2 + 11x − 6 = (x − 1)(x − 2)(x − 3)
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Table 3 Cooperation participant P2 in pairs

Participants GCD gi(x)

P1, P2 g12(x) = gcd
{
p1(x), p2(x)

} = x5 − 40x4 + 605x3 − 4250x2 + 13584x − 15840

P2, P3 g23(x) = gcd
{
p2(x), p3(x)

} = x5 − 38x4 + 531x3 − 3262x2 + 8048x − 5280

P3, P4 g34(x) = gcd
{
p3(x), p4(x)

} = x5 − 36x4 + 463x3 − 2472x2 + 4684x − 2640

P4, P1 g41(x) = gcd
{
p4(x), p1(x)

} = x5 − 38x4 + 533x3 − 3328x2 + 8772x − 7920

Participants Polynomial deconvolution mi(x)

P1, P2 m2(x) = p1(x)

g12(x)
= x − 2

P2, P3 m3(x) = p2(x)

g23(x)
= x − 3

P3, P4 m4(x) = p3(x)

g34(x)
= x − 4

P4, P1 m1(x) = p4(x)

g41(x)
= x − 1

Table 4 Cooperation of participant P2 and P4 with P1 in pairs

Participants GCD gi(x)

P1, P2 g1(x) = gcd
{
p1(x), p2(x)

} = x5 − 40x4 + 605x3 − 4250x2 + 13584x − 15840

P2, P3 g3(x) = gcd
{
p2(x), p3(x)

} = x4 − 34x3 + 395x2 − 1682x + 1320

P2, P4 g4(x) = gcd
{
p3(x), p4(x)

} = x5 − 37x4 + 497x3 − 2867x2 + 6366x − 3960

Participants Polynomial deconvolution mi(x)

P1, P2 m2(x) = p1(x)

g1(x)
= x − 2

m1(x) = p2(x)

g1(x)
= x − 1

P2, P3 m̂3(x) = p2(x)

g3(x)
= x2 − 7x + 12 = (x − 3) · (x − 4)

m̃3(x) = p̂3(x)

g3(x)
= x2 − 17x + 30 = (x − 2) · (x − 15)

P2, P4 m4(x) = p2(x)

g4(x)
= x − 4

m2(x) = p4(x)

g4(x)
= x − 2

Let us suppose that one of the participants, e.g., P3 gives wrong information and
let p̂3(x) = x6 − 51x5 + 1003x4 − 9417x3 + 41764x2 − 72900x + 39600 be the
false instead of the real one p3(x) = x6 − 40x5 + 607x4 − 4324x3 + 14572x2 −
21376x + 10560. p̂3(x) will be either coprime with the polynomials of the other
participants or may have some common roots but not the right ones.

Protocol 1
Let participant P2 cooperate per pair with all other ones. The results are summarized
in Table 4. Every Pi, i = 1, 3, 4 through the cooperation with P2 should give as
result m2(x) to P2. As it is shown in Table 4 only participant P3 did not give the
factor m2(x) as it was supposed to do. Thus P3 had given wrong information.
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Table 5 Cyclic cooperation in pairs

Participants GCD gi(x)

P2, P3 g23(x) = gcd
{
p1(x), p̂3(x)

} = x4 − 34x3 + 395x2 − 1682x + 1320

P3, P4 g34(x) = gcd
{
p̂3(x), p4(x)

} = x5 − 36x4 + 463x3 − 2472x2 + 4684x − 2640

Participants Polynomial deconvolution mi(x)

P2, P3 m̂2(x) = p2(x)

g23(x)
= x2 − 7x + 12 = (x − 3) · (x − 4)

P3, P4 m̂4(x) = p4(x)

g34(x)
= x − 3

Protocol 2
Participant P3 cooperates per pair with the previous participant P2 and the next
one P4 as shown in Table 5. From the cooperation with P3 the participants P2

and P4 should take as result the same polynomial m3(x) = p2(x)
g23(x)

= x − 3 and

m3(x) = p4(x)
g34(x)

= x − 3 but they have taken different ones. Also m̂4(x) should be a
polynomial of larger degree since it should include m3(x) and m4(x) as a product.
Also m̂2(x) should includem2(x) andm3(x) as a product. The third participant gave
wrong results with both the previous and next participant, thus he/she gave wrong
information.

5 Synopsis and Concluding Remarks

In this paper a ramp secret sharing scheme is presented. The scheme is based on
the computation of the greatest common divisor of polynomials. A subset of the
participants can derive information about the secret and can approximate the roots
of their shares, but the approximation of all real roots of a polynomial is, in general,
a hard task. The dealer can make more difficult the approximation of the roots of the
polynomials by selecting roots with many decimal digits. Two correcting protocols
are also presented in order to recognize the participant that gave false information.
The computation of the greatest common divisor of polynomials is implemented
through stable numerical linear algebra methods in an efficient way. Polynomial
divisions can be evaluated either numerically through Horner’s algorithm which is
proved that is optimal [7, 8] in respect of floating point operations or symbolically.

The proposed scheme will be improved in a future work by constructing, by the
dealer a vector with different inner tolerances for the participants. In that way, any
participant will compute all the roots of its polynomial but not all of them will be
the same with that of the secret ones. Furthermore, we will use polynomials over
fields of non-zero characteristic in order to significantly improve the robustness of
the proposed method.
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