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Abstract Multimodal optimization refers to problems where the detection of many
local or global minimizers is desirable. A number of methodologies have been devel-
oped in the past decades for this purpose.Deflection and stretching are two techniques
that can be integratedwith any optimization algorithm in order to detectmultiplemin-
imizers by properly transforming the objective function. Requiring only a minimal
number of control parameters, both techniques have been used with metaheuris-
tics as well as gradient-based optimization algorithms, enhancing their performance
while demanding only minor implementation effort. Up until now their applications
span various scientific fields, ranging from game theory and numerical optimization
to astrophysics, computational intelligence, and medical informatics. The present
chapter offers a comprehensive presentation of the two techniques and demonstrates
their use through simple examples. Also, their latest developments and applications
of the past two decades are concisely reviewed.

1 Introduction

The ongoing scientific and technological developments produce challenging prob-
lems that often involve the optimization of multimodal functions with numerous
local and global optimizers. Without loss of generality we will henceforth refer only
to minimization cases, while maximization can be straightforwardly addressed by
changing the sign of the objective function. Even in relatively simple cases, the mul-
timodal minimization problem can become NP-hard [8]. In several applications of
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this type, it is required to detect some or all global and/or local minimizers. A typical
example coming from game theory is the detection of Nash equilibria that corre-
spond to steady-state solutions of a game [21]. Different Nash equilibria correspond
to different outcomes of the game. Thus, the outcome of the game can be predicted
if all Nash equilibria are known. Another interesting application is the detection
of periodic orbits of nonlinear mappings, which are used to model conservative or
dissipative dynamical systems. Fixed points, i.e., points that remain invariant by the
mapping, concentrate scientific interest. Developing techniques for detecting multi-
ple fixed points has been an area of ongoing research for many decades [27].

The past decades have witnessed the development of various efficient and effec-
tive optimization algorithms. The introduction of methods aiming at the detection of
multiple minimizers either through specialized ad hoc procedures (operators) or by
using external techniques integrated with the corresponding algorithms is of utmost
importance. Niching is a term used in metaheuristics literature to describe methods
that maintain multiple solutions in multimodal domains, in contrast to existing evo-
lutionary and swarm intelligence optimization techniques that have been designed
to detect single solutions. An excellent review of niching techniques is offered by Li
et al. in [10].

The present chapter is devoted to the deflection and stretching techniques [20],
which were introduced as mathematical tools for addressing two different prob-
lems in multimodal optimization. Specifically, deflection is designed to facilitate the
detection of many (local or global) minimizers, while stretching aims at concurrently
alleviating many local minimizers. Both techniques are based on the filled functions
approach where the original objective function is transformed after the detection
of a new minimizer. The applied transformation aims at eliminating the targeted
minimizer (and possibly some other minimizers) by transforming it to a maximizer.

Requiring only a minimal number of control parameters and minor implemen-
tation effort, both deflection and stretching have been successfully used with meta-
heuristics as well as gradient-based optimization algorithms. Up until now their
applications span various scientific fields, ranging from game theory and numerical
optimization to astrophysics, computational intelligence, and medical informatics.

The rest of the chapter is organized as follows: Sect. 2 is devoted to deflection
and its applications, while Sect. 3 analyzes stretching and presents a number of
recent variants and applications. Indicative experimental results are offered for both
techniques in Sect. 4. The paper closes with conclusions in Sect. 5.

2 Deflection Technique

In the following paragraphs, the basic deflection scheme is presented and demon-
strated on a well-known test function, followed by a review of recent applications.
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2.1 Basic Scheme

The deflection technique has been studied in Magoulas et al. [13] for the alleviation
of local minima in artificial neural networks training with the backpropagation algo-
rithm. Later it was adopted for the detection of multiple minimizers with the particle
swarm optimization algorithm by Parsopoulos andVrahatis [19, 20]. It belongs to the
category of filled functions techniques [5, 6], where the original objective function
is transformed into a new one where the already detected minimizers are eliminated.
This way, optimization algorithms are driven away from the detected minimizers,
prohibiting their repetitive detection in subsequent runs.

Putting it formally, let:
f : S ⊂ R

n → R, (1)

be the original objective function under consideration. Let us make the necessary
assumption that f (x) is bounded from below, and let:

M = {
x∗
1, x

∗
2, . . . , x

∗
m

}
,

be a set comprising already detectedminimizers. Then, deflection replaces f (x)with
a transformation of the following type:

FM(x) = f (x)
T1(x; x∗

1, λ1)T2(x; x∗
2, λ2) · · · Tm(x; x∗

m, λm)
, (2)

where x∗
i ∈ M for all i = 1, 2, . . . ,m, and Ti (x; x∗

i , λi ) are proper functions with
control parameters λi ∈ R, respectively. These functions shall be ideally selected
such that FM(x) has exactly the same minimizers as f (x) except for the already
detected ones in M . This property is called the deflection property [13] and dictates
that any sequence of points converging to a detected minimizer:

lim
k→∞ xk = x∗

i , x∗
i ∈ M,

shall not produce aminimumof FM (x) at x = x∗
i . It shall be noticed that the product in

the denominator of Eq. (2) consists of one term for each detectedminimizer. Thus, the
optimization algorithm initially starts with the set M = ∅, and the original function
f (x). Then, as soon as a minimizer is detected, the corresponding term is multiplied
with the current denominator, producing a new transformation that is subsequently
used. Thus, the form of the deflection transformation dynamically changes during
the run of the algorithm, depending on the detected minimizers.

A critical point is the magnitude of the transformation induced by each function
Ti (x; x∗

i , λi ). Although it is desirable to eliminate x∗
i from the set of minimizers of

FM(x), it is equally important to confine the effect of the transformation only to a
neighborhood of x∗

i that ideally covers only its basin of attraction. For this reason,
the use of tunable functions Ti (x; x∗

i , λi ) is necessary.
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Fig. 1 Plot of the tanh(λx)
function for different values
of λ > 0 and x ∈ [−5, 5]
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As proposed in [19], the hyperbolic functions:

Ti (x; x∗
i , λi ) = tanh(λi‖x − x∗

i ‖), λi > 0, (3)

fulfill the aforementioned properties, with ‖ · ‖ denoting a distance norm (typically
the Euclidean �2-norm). Figure 1 illustrates the shape of the tanh(λx) function for
different values of its parameter. Focusing on the nonnegative values of x , we can
clearly see that the function is equal to zero for x = 0, while it asymptotically con-
verges to 1 for higher values. Therefore, the effect of Ti (x; x∗

i , λi ) of Eq. (3) in the
deflection transformation FM(x) of Eq. (2) is expected to be huge when x lies close to
x∗
i because, as ‖x − x∗

i ‖ approximates zero, it produces a singularity point of FM(x)
at x∗

i . On the other hand, the effect becomes milder as x moves away from x∗
i . The

magnitude of the transformation is essentially controlled by the parameter λ.
It can be easily derived fromEq. (2) that the sign of f (x) plays crucial role. Indeed,

the proposed deflection approach can work properly only if f (x) > 0 for all x ∈ S.
For this reason, we will henceforth assume that this property holds by definition for
the problem under consideration. In cases where this property does not hold or it is
unclear whether the objective function is strictly positive everywhere in the search
space, the user can enforce it by simply using a shift-up transformation of f (x) as
follows:

fα(x) = f (x) + α, (4)

where α > 0 is a sufficiently large positive constant. Possible estimation (e.g.,
through Monte Carlo sampling) of a lower bound of f (x) can be very useful to
this end. Otherwise, arbitrarily large positive values of α can be used.

Let us now demonstrate the deflection technique on a well-known 2-dimensional
test problem, namely, the Levy no. 5 test function, defined as:
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f (x) = ζ1(x) ζ2(x) + (x1 + 1.42513)2 + (x2 + 0.80032)2, (5)

where:

ζ1(x) =
5∑

i=1

i cos((i − 1)x1 + i), ζ2(x) =
5∑

j=1

j cos(( j + 1)x2 + j).

In the range [−10, 10]2 the Levy no. 5 test function has 760 local minima. We now
focus on the range [−2, 2]2, which is illustrated in Fig. 2. The global minimizer of
the function in this range is x∗ = (−1.3069,−1.4248)T , denoted with a black star in
the lower left basin of the contour plot of Fig. 2, with f (x∗) = −176.1376. Since this
objective function is not always positive, we transformed it according to Eq. (4) with
α = 180. Also, we shall note that its local minima become deeper as we approximate
the global minimizer.

In order to demonstrate the deflection technique, we selected a number of min-
imizers to apply the deflection transformation. Figure 3 illustrates the deflection
transformation applied on the local minimizer x1 = (−0.3521,−0.8003)T with
f (x1) = −144.3250 for λ = 1 (up) and λ = 2 (down). Apparently, the effect of the
deflection transformation is ameliorated as λ increases, while smaller values have
wider influence affecting alsoneighboringmaxima.Figure 4 illustrates the concurrent
application of deflection on the three local minimizers x1 = (−0.3521,−0.8003)T ,
x2 = (−1.3069,−0.1957)T , and x3 = (−0.3557, 0.3330)T , for λ = 2 (up) and
λ = 1 (down). Deflection applied onmultiple minimizers becomes increasingly ben-
eficial because it replaces the detected minimizers with maximizers that can repel
the minimization algorithms toward undiscovered minimizers.

A critical observation is that higher values of λ may have only local effect but
they tend to introduce new local minima in the neighborhood of the deflected point.
This is the well-known mexican hat effect; addressing it remains an open problem
when the basins of attraction of theminimizers are unknown. Nevertheless, the newly
introduced local minima are always higher than the deflected ones and, thus, they can
be explicitly neglected by a stochastic algorithm. This can be achieved by using the
repulsion technique proposed and integrated with deflection in [19] for the particle
swarm optimization algorithm.

According to this approach, whenever a particle x moves into the repulsion area
of a deflected minimizer x∗

i , which is defined as a sphere of radius ρi > 0 around the
minimizer, it is immediately repelled away by assuming the new position:

x := x + ρi
x − x∗

i

‖x − x∗
i ‖

.
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Fig. 2 Surface plot (up) and contour plot (down) of the Levy no. 5 test function of Eq. (5) in the
range [−2, 2]2

Again, the problem is the determination of ρi , which shall be large enough to
prohibit the algorithm from converging close to x∗

i but, at the same time, avoiding
enclosing other minimizers in its repulsion area. Possible knowledge regarding the
distribution of the minimizers in the search space may be beneficial for a proper
setting. Otherwise, small fixed values of ρi are preferable.
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Fig. 3 Deflection transformation applied on the local minimizer x1 = (−0.3521,−0.8003)T for
λ = 1 (up) and λ = 2 (down)

2.2 Variants and Applications

The deflection technique proved to be beneficial for various algorithms in diverse
scientific fields. Important applications have appeared in computational intelligence,
game theory, and astrophysics, including optimization, partitioning, Nash equilibria,
and periodic orbit problems.

The alleviation of local minima in artificial neural network training was the inau-
gural application of deflection in Magoulas et al. [13] in 1997. A few years later in
2004, Parsopoulos and Vrahatis [19] employed deflection for the enhancement of the
particle swarm optimization algorithm. Specifically, it was used for the detection of
allminimizers in various problems, includingmultimodal optimization test problems,
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Fig. 4 Deflection transformation concurrently applied on the local minimizers x1 =
(−0.3521,−0.8003)T , x2 = (−1.3069,−0.1957)T , and x3 = (−0.3557, 0.3330)T , for λ = 2 (up)
and λ = 1 (down)

and periodic orbits of nonlinear mappings. The obtained results were impressive for
two variants of the studied algorithm.

Motivated by the success of deflection, Pavlidis et al. [21] proposed in 2005 the
computation of multiple Nash equilibria in finite strategic games from the field of
game theory through computational intelligence methods. Covariance matrix adap-
tation evolution strategies, differential evolution, and particle swarm optimization
equipped with deflection were tested on formal games of 3 up to 5 players with very
promising results.

In 2006, Gao and Tong [4] proposed UEAS, a space contraction technique that
employed deflection (and stretching as well) in a general iterative optimization
scheme that was successfully combined with the differential evolution algorithm.
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The experimental setup followed closely that of Parsopoulos and Vrahatis [19], con-
sidering similar test problems. In the same year, Zhang and Liu [36] followed the
pioneering work in [21]. Specifically, n-players strategic games were considered and
deflection was used for learning all Nash equilibria by deflecting the players’ payoff
function. Experimental results for games with 2 and 3 players revealed the promising
behavior of the proposed approach.

Tong et al. extended in 2008 the application range of the UEAS approach to the
hardware/software partitioning problem [32]. Deflection was adopted as a crucial
part of the search procedure for the detection of multiple partitioning configurations
aiming at the minimization of implementation time and cost. In the same year, Zhang
and Fan [35] extended the previous work of [36] for learning Nash equilibria through
an adaptive policy gradient employing deflection as the mechanism for detecting
multiple equilibria.

The ability of deflection in detecting global minimizers was further verified in
2009 by Li et al. [9]. In this case, the chaotic ant swarm was used as the main search
algorithm. The dynamics of the algorithm were analyzed on several test problems,
showing high ability of detecting all minimizers. In the same year, the previous appli-
cations of deflection-equipped algorithms on the detection of Nash equilibria were
extended by Liu and Dumitrescu [12]. In their work, a new metaheuristic, namely,
roaming optimization, was considered along with differential evolution and particle
swarm optimization. Experimental results verified that deflection was beneficial also
for the new algorithm.

Chaos control and detection of periodic orbits of chaotic systemswere investigated
byGao et al. [3] in 2012. Thiswork followed the basic analysis of the pioneeringwork
in [19] and considered also different chaotic systems. Also, a zooming procedure
proved to be beneficial when combined with deflection for the specific application.

Finally, deflection recently constituted an essential mechanism for the production
of training samples in a computationally efficient approachbasedonGaussianprocess
regression to assess the accessibility in themain-belt asteroids, as proposed in 2017by
Shang and Liu [31]. Numerical simulations demonstrated that the proposed method
could achieve significant results with minimal time requirements.

3 Stretching Technique

In the following paragraphs, the basic stretching scheme is presented followed by a
number of applications.

3.1 Basic Scheme

The stretching technique was originally introduced by Parsopoulos et al. [15] as a
tool for the alleviation of local minima in metaheuristic optimization. It is based on
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the same essential properties of filled functions as the deflection technique, although
its use is recommended in different cases. Specifically, stretching shall be used in
environments with large number of local minimizers because it can eliminate in one
application a given local minimizer as well as all higher minimizers, while leaving
lower minimizers unaffected.

Making our description more concrete, let us assume again the problem of Eq. (1)
with the accompanying assumption of a lower bounded objective function f (x).
Then, given a detected local minimizer x∗, stretching consists of the following two
transformations:

G(x) = f (x) + γ1‖x − x∗‖ (
sign

(
f (x) − f (x∗)

) + 1
)
, (6)

H(x) = G(x) + γ2
sign ( f (x) − f (x∗)) + 1

tanh (λ (G(x) − G(x∗)))
, (7)

where γ1, γ2 > 0, are control parameters of the transformations; λ > 0 is the control
parameter of the hyperbolic tangent function; and sign(·) is the well-known three-
valued sign function defined as:

sign(x) =
⎧
⎨

⎩

−1, x < 0,
0, x = 0,
1, x > 0.

The transformation G(x) of Eq. (6) is responsible for “stretching” the objective
function upwards, while leaving unaffected all points of lower function values than
the detected minimizer. This way, all local minima that are higher than the detected
one are eliminated. Then, the transformation H(x) of Eq. (7) transforms the detected
minimizer to a maximizer, similarly to the deflection approach. Thus, there is double
gain of eliminating not only the detected minimizer but also all minimizers with
higher values as well.

A direct consequence of this property is that, contrary to the previously presented
deflection technique, stretching shall be applied only on the best local minimizer
found so far. This property also renders stretching inappropriate for detecting all
minimizers of the objective function because it eliminates multiple local minima in
one application. Moreover, if it is applied on a global minimizer it eliminates also
all the other global minimizers.

The mexican hat effect is present also in stretching, introducing artificial local
minimizers around the targeted one. However, their depth can be controlled through
the control parameters of the technique. Let us consider again the Levy no. 5 function
of Eq. (5). The transformation G(x) of Eq. (6) applied on the local minimizer x =
(−0.3572, 1.3166)T is depicted in the upper part of Fig. 5 for γ1 = 200. We can
clearly observe that the parts of the objective functionwith values equal or greater than
the stretched minimizer are widely affected, while lower minima remain unaffected
appearing as holes on the stretched landscape. Also, we can see that the targeted
minimizer remains a minimizer after this transformation.
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Fig. 5 Stretching transformation G(x) (up) and H(x) (down) applied on the local minimizer
x = (−0.3572, 1.3166)T for γ1 = γ2 = 50 and λ = 0.05

Retaining γ1 = 200, the transformation H(x) of Eq. (7) applied on the same
local minimizer is depicted in the lower part of Fig. 5 for γ2 = 1000 and λ = 0.005.
Evidently, this transformation turns the targeted minimizer into a maximizer while
leaving all the deeperminima unaffected. The parameters γ2 and λ have a direct effect
on the shape of the transformed objective function around the minimizer. Smaller
values of γ2 may produce the mexican hat effect. On the other hand, λ has the oppo-
site effect, namely smaller values raise the maximizer higher, thereby ameliorating
the mexican hat effect. Taking into consideration the interesting interplay of the
two parameters, an inexperienced user may find it easier to keep the one parameter
constant to a reasonable value and tune the other one.
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3.2 Variants and Applications

Stretching has been combined with both gradient-based and stochastic optimization
algorithms, including trajectory-based and population-based methods. Its flexibility
and effectiveness has established it as a viable approach in the relevant literature.
So far applications have appeared in software/hardware partitioning, global opti-
mization, semi-infinite programming, red blood cell motion, clustering, and process
control problems.

Stretching was initially introduced by Parsopoulos et al. in 2001 [15] for the
alleviation of local minima in evolutionary optimization [14, 16, 17], and it was
further extended in subsequent works [18, 19]. These works provided a general
framework for the application of stretching along with an experimental justification
based on a number of standard test problems.

In 2007, Wang and Zhang [33] extended the previous pioneering works by con-
sidering stretching with an algorithm that combines gradient search and simulated
annealing. Their experiments showed that applying stretching on a local minimizer
detected through gradient descent and, subsequently, applying simulated annealing
on the stretched function can be highly beneficial.

Later, in 2008, Tong et al. successfully applied a scheme that combined deflec-
tion and stretching on the hardware/software partitioning problem in 2008 [32]. In
the same year, Wang and Zhang [34] proposed an auxiliary function method that
implements the stretching transformation such that it remains descending wherever
the function values are higher than the stretched minimum. This was a step toward
addressing the mexican hat effect described in the previous sections. This method
was later integrated with memetic algorithms in [2].

In 2009, Pereira and Fernandes [26] proposed a global reduction method for solv-
ing semi-infinite programming problems. The algorithm was based on simulated
annealing, which incorporated a sequence of local applications of stretching to com-
pute the solutions of the lower-level problem. A penalty method was also used for
the approximation of the solution of the finite reduced optimization problem, along
with a globalization procedure based on line search to guarantee a sufficient decrease
of the underlying merit function.

The same authors presented in [22] and later extended in [23] the aforementioned
method of simulated annealingwith stretching to solve constrainedmulti-global opti-
mization problems, where all global solutions are sequentially computed by applying
stretching with an adaptive simulated annealing variant, while constraint-handling
is carried out through a non-differentiable penalty function.

The stretched simulated annealing approach was used also by Pinho et al. [28]
for the characterization of the behavior of red blood cell motion through a glass
microchannel. Specifically, the radial displacement of forty red blood cells was con-
sidered anddifferent functionswere used to approximate their displacement bymeans
of global optimization.

Ribeiro et al. [29] proposed the first attempt of applying stretching in a parallel
computing environment. Specifically, they considered the problem of solving multi-
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local programming problems through a parallel stretched simulated annealing, which
is based on partitioning the search space. This way, the resolution of the search
domains is increased, facilitating the discovery of new solutions while retaining
time efficiency. This approach was further analyzed in [24] and extended for the
constrained multi-local optimization problem in [25, 30].

In 2013, Lu et al. [11] employed a gradient-based update procedure for the param-
eters of the kernel-based fuzzy c-means algorithm and tackled the local minima
problem by using stretching. Experiments on both artificial and real-world datasets
showed that the stretched algorithm with optimized kernel parameters was superior
to other competing algorithms.

He et al. [7] proposed in 2014 a combination of stretching with the simulated
annealing algorithm, which is iteratively applied on the stretched function, while its
trial points generation scheme is especially designed to promote diversity. Numerical
results from a large number of test problems suggest that the hybrid method is
effective for global optimization.

In 2015, Dra̧g and Styczeń [1] applied stretching for the control and optimization
of multistage technological processes. In their study, the multistage differential-
algebraic constraints with unknown consistent initial conditions were considered.
The infinite-dimensional optimal control problem was transformed into a finite-
dimensional optimization task through the direct shooting method, while simulated
annealing with stretching was successfully used to solve the corresponding con-
strained optimization problem.

4 Experimental Evaluation

Table 1 reports experimental results from the application of deflection with the con-
striction coefficient version of particle swarm optimization on several test problems,
as well as on the problem of detecting periodic orbits of the Hénnon nonlinear map-

Table 1 Numerical results from the application of deflection on various test problems reported
in [19]

Problem Range Minimizers Average iterations
total/Per minimizer

Egg-holder (TPUO−21
in [20])

[−5, 5]2 12/12 315 / 26.2

Levy no. 3 [−10, 10]2 10 2913 / 291.3

Levy no. 5 [−10, 10]2 2 3026.5 / 1036.5

Hénnon mapping
(cos a = 0.24)

[−1, 1]2 11/11 249 / 22.6

Hénnon mapping
(cos a = 0.8)

[−1, 1]2 2/2 21 / 10.5

Battle of sexes game 3 52 / 17.3



142 K. E. Parsopoulos and M. N. Vrahatis

ping and the detection of Nash equilibria for the “battle of sexes” game, as they
appear in [19]. For the complete definition of each problem and the exact experi-
mental configuration the reader is referred to [19] and citations therein.

For the case of the egg-holder function and the two versions of the Hénnon map-
ping, the target was the detection of all global minimizers. Therefore, deflection was
applied in combination with the repulsion strategy proposed in [19] as a simple mean
to ameliorate the consequences of the mexican hat effect by repelling the particles
from the deflected minimizers.

For the rest of the problems, stretchingwas used to eliminate themultitude of local
minima in the ranges of interest. It shall be noted that the two Levy-family problems
contain hundreds of local minimizers. Stretching was applied after the detection of
the first local minimizer, allowing the algorithm to eventually converge to the global
minimizer. Similar performance was achieved for the game theory problems. The
reader is referred to [19, 20] for a complete analysis of the results.

5 Conclusions

Since their introduction almost 20 years ago, deflection and stretching have served as
the means for locating multiple minimizers and alleviating local minimizers in vari-
ous applications. During the past years they have been combined with a multitude of
algorithms including evolutionary and swarm intelligence methods such as particle
swarm optimization, differential evolution, ant colony optimization, and covariance
matrix adaptation evolution strategies, as well as trajectory-based stochastic opti-
mization approaches such as simulated annealing, and gradient-based algorithms.

Besides the benchmarking on a plethora of standard test problems, the ongoing
scientific activity has resulted in a number of interesting applications from various
fields. These include the detection of Nash equilibria from game theory, the detec-
tion of periodic orbits and chaos control in nonlinear mappings and chaotic systems,
the study of the accessibility in main-belt asteroids from astrophysics, semi-infinite
programming, the study of red blood cells motion from medical informatics, the
kernel-based fuzzy c-means algorithm from clustering, as well as control and opti-
mization problems.

Deflection and stretching have attracted the interest of the scientific community
for many years. It is the authors’ belief that the ongoing necessity for multimodal
optimization algorithmswill add furthermerit to these approaches, especially in terms
of new applications, integration with other algorithms, and theoretical investigations.
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