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Abstract. Generalizations of the intermediate value theorem in sev-
eral variables are presented. These theorems are very useful in various
approaches including the existence of solutions of systems of nonlinear
equations, the existence of fixed points of continuous functions as well as
the existence of periodic orbits of nonlinear mappings and similarly, fixed
points of the Poincaré map on a surface of section. Based on the corre-
sponding criteria for the existence of a solution or a fixed point emanated
by the intermediate value theorems, generalized bisection methods for
approximating zeros or fixed points of continuous functions are given.
These bisection methods require only the algebraic signs of the function
values and are of major importance for studying and tackling problems
with imprecise information.
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1 Introduction

Assume that Fn = (f1, f2, . . . , fn) : D ⊂ R
n → R

n is a nonlinear mapping and
θn = (0, 0, . . . , 0) is the origin of Rn. The problem of solving the equation:

Fn(x) = θn, (1)

is to find a zero x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) ∈ D for which Fn(x∗) = θn. The prob-

lem (1) may be represented as follows:

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0.

(2)
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The problem of computing the extrema of an objective function f : D ⊂ R
n → R

can be studied and tackled by solving the following equation:

∇f(x) = θn, (3)

where ∇f(x) =
(

∂f(x)
∂x1

, ∂f(x)
∂x2

, . . . , ∂f(x)
∂xn

)
, denotes the gradient of f at x ∈ D.

Furthermore, the problem of finding a fixed point of Fn in D ⊂ R
n is to find

a point x� ∈ D which satisfies the equation:

Fn(x�) = x�. (4)

Obviously, the problem of finding a fixed point is equivalent to the problem of
solving Eq. (1) by using the mapping Gn = In − Fn (where In indicates the
identity mapping) instead of Fn and solving the equation:

Gn(x) = θn. (5)

The problem of computing periodic orbits of nonlinear mappings or fixed points
of the Poincaré map on a surface of section can be studied and tackled by
using fixed points [31]. More specifically the problem of finding periodic orbits of
nonlinear mappings: Φn = (ϕ1, ϕ2, . . . , ϕn) : D ⊂ R

n → R
n, of period p amounts

to finding fixed points x� = (x�
1, x

�
2, . . . , x

�
n) ∈ D of period p which satisfy the

following equation:

Φp
n(x�) = Φn

(
Φn

(· · · Φn

(
Φn(x�)

) · · · ))︸ ︷︷ ︸
p times

= x�. (6)

The problem of finding periodic orbits of period p of dynamical systems in R
n+1

amounts to fixing one of the variables, say xn+1 = const, and locating points
x� = (x�

1, x
�
2, . . . , x

�
n) on an n-dimensional surface of section Σt0 which satisfy

Eq. (6). where Φp
n = Pt0 : Σt0 → Σt0 is the Poincaré map of the system. For

example, let us consider a conservative dynamical system of the form:

ẋ = f(x, t), (7)

with x = (x, ẋ) ∈ R
2 and f = (f1, f2) periodic in t with frequency ω. We obtain

periodic orbits of period p of System (7) by taking as initial conditions of these
orbits the points which the orbits intersect the surface of section:

Σt0 =
{(

x(tk), ẋ(tk)
)
, with tk = t0 + k

2π

ω
, k ∈ N

}
, (8)

at a finite number of points p. Thus the dynamics is studied in connection with
a Poincaré map Φp

n = Pt0 : Σt0 → Σt0 , constructed by following the solutions
of (7) in continuous time.

In the paper at hand, generalizations of the intermediate value theorem in sev-
eral variables are presented. These theorems are very useful in various approaches
including, among others, those mentioned previously. Specifically, using these
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theorems we can study and analyze (a) the existence of solutions of systems
of nonlinear algebraic and/or transcendental equations, (b) the localization of
extrema of objective functions, (c) the existence of fixed points of continuous
functions, as well as (d) the existence of periodic orbits of nonlinear mappings
and similarly, fixed points of the Poincaré map on a surface of section. We notice
that, these theorems are of major importance for tackling problems with impre-
cise (not exactly known) information.

Based on the corresponding existence criteria emanated by the above theo-
rems, methods, named generalized bisection methods, are given. The only com-
putable information required by the generalized bisection methods is the alge-
braic sign of the function value which is the minimum possible information (one
bit of information) necessary for the purpose needed, and not any additional
information. Thus, these methods are of major importance for studying and
tackling problems with imprecise (not exactly known) information. These prob-
lems appear in various fields of science and technology, because, in a large variety
of applications, precise function values are either impossible or time consuming
and computationally expensive to obtain. In other cases, it may be necessary
to integrate numerically a system of differential equations in order to obtain a
function value, so that the precision of the computed value is limited. Further-
more, these methods are particularly useful for studying and tackling problems
where the corresponding functions obtain very large and/or very small values.

It is worthy to mention that regarding the case of algebraic equations, it is well
known that these equations are very important in studying and solving problems
on geometric, kinematic, and other constraints in various fields of science and
technology including, among others, robotics, vision, modeling and graphics,
molecular biology, signal processing, and computational economics. In addition,
regarding the algebraic signs of algebraic expressions there are various efficient
approaches in obtaining this information, see [4,8,9] and the references thereof.

Applications of the presented generalizations of the intermediate value the-
orem for obtaining methods related to systems of nonlinear algebraic and/or
transcendental equations, as well as fixed points of continuous functions are
presented. Furthermore, an application is presented which concerns the compu-
tation of all the periodic orbits (stable and unstable) of any period and accuracy
which occur, among others, in the study of beam dynamics in circular particle
accelerators like the Large Hadron Collider (LHC) machine at the European
Organization for Nuclear Research (CERN).

2 Generalizations of the Intermediate Value Theorem

2.1 Definitions and Notations

Let us give some necessary definitions and notations.

Notation 1. We denote by ϑA the boundary of a set A, by clA its closure, by
intA its interior, by card{A} its cardinality (i.e., the number of elements in the
set A) and by coA its convex hull (i.e., the set of all finite convex combinations
of elements of A).
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Notation 2. We shall use the index sets Nn = {0, 1, . . . , n}, Nn
¬0 = {1, 2, . . . , n}

and Nn
¬i = {0, 1, . . . , i−1, i+1, . . . , n}. Also, for a given set I = {i, j, . . . , 	} ⊂ Nn

we denote by Nn
¬I or equivalently by Nn

¬ij···� the set {k ∈ Nn | k /∈ I}.

Definition 1. For any positive integer n, and for any set of points V =
{υ0, υ1, . . . , υn} in some linear space which are affinely independent (i.e., the
vectors {υ1 − υ0, υ2 − υ0, . . . , υn − υ0} are linearly independent) the con-
vex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with ver-
tices υ0, υ1, . . . , υn. For each subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂
{υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is called an m-face of
[υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The
m-faces are also called facets of the n-simplex. An m-face of the n-simplex is
called the carrier of a point p if p lies on this m-face and not on any sub-face of
this m-face.

Notation 3. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn}
by σn = [υ0, υ1, . . . , υn]. Also, we denote the (n − 1)-simplex that determines
the i-th (n−1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn]. Furthermore,
for a given index set I = {i, j, . . . , 	} ⊂ Nn with cardinality card{I} = κ, we
denote by σn

¬I or equivalently by σn
¬ij···� the (n − κ)-face of σn with vertices

υm,m ∈ Nn
¬I .

Definition 2 [26,29]. The diameter of an m-simplex σm in R
n, m � n, denoted

by diam(σm), is defined to be the length of the longest edge (1-face) of σm while
the microdiameter, μdiam(σm), of σm is defined to be the length of the shortest
edge of σm.

Definition 3. Let σm = [υ0, υ1, . . . , υm] be an m-simplex in R
n, m � n. Then

the barycenter of σm denoted by K is the point K = (m + 1)−1
∑m

i=0 υi in R
n.

Remark 1. By convexity it is obvious that the barycenter of any m-simplex σm

in R
n is a point in the relative interior of σm.

Definition 4. An n-simplex is oriented if an order has been assigned to its ver-
tices. If 〈υ0, υ1, . . . , υn〉 is an orientation of {υ0, υ1, . . . , υn} this is regarded as
being the same as any orientation obtained from it by an even permutation of the
vertices and as the opposite of any orientation obtained by an odd permutation
of the vertices. We shall denote oriented n-simplices by σn = 〈υ0, υ1, . . . , υn〉,
and we shall write, for example, 〈υ0, υ1, υ2, . . . , υn〉 = −〈υ1, υ0, υ2, . . . , υn〉 =
〈υ2, υ0, υ1, . . . , υn〉. The boundary ϑσn of an oriented n-simplex σn =
〈υ0, υ1, . . . , υn〉 is given by ϑσn =

∑n
i=0 (−1)i〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉.

The oriented (n − 1)-simplex 〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉 will be called the
ith face of σn.

Definition 5. An n-dimensional polyhedron Πn is a union of a finite number of
oriented n-simplices σn

i , i = 1, 2, . . . , k such that the σn
i have pairwise-disjoint

interiors. We write Πn =
∑k

i=1 σn
i and ϑΠn =

∑k
i=1 ϑσn

i .
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Definition 6. Let ψ ∈ R, then the sign (or signum) function, denoted by sgn,
maps ψ to the set {−1, 0, 1} as follows:

sgnψ =

⎧
⎨
⎩

−1, if ψ < 0,

0, if ψ = 0,

1, if ψ > 0.

(9)

Furthermore, for any a = (a1, a2, . . . , an) ∈ R
n the sign of a, denoted sgna, is

defined as sgna = (sgna1, sgna2, . . . , sgnan) .

2.2 Bolzano’s Intermediate Value Theorem

The fundamental and pioneering well-known and widely applied Bolzano’s the-
orem states the following [3,12]:

Theorem 1 (Bolzano’s theorem). If f : [a, b] ⊂ R → R is a continuous func-
tion and if it holds that f(a)f(b) < 0, then there is at least one x ∈ (a, b) such
that f(x) = 0.

The above theorem is also called intermediate value theorem since it can be
easily given as follows:

Theorem 2 (Bolzano’s intermediate value theorem). If f : [a, b] ⊂ R → R

is a continuous function and if y0 is a real number such that:

min{f(a), f(b)} < y0 < max{f(a), f(b)},

then there is at least one x0 ∈ (a, b) such that f(x0) = y0.

Remark 2. Obviously, Theorem 2 can be deduced from Theorem 1 by considering
the function g(x) = f(x) − y0.

Remark 3. The above theorem has been independently proved by Bolzano in
1817 [3] and Cauchy in 1821 [6]. These proofs were crucial in the procedure of
arithmetization of analysis, which was a research program in the foundations of
mathematics during the second half of the 19th century.

2.3 Bolzano-Poincaré-Miranda Intermediate Value Theorem

A straightforward generalization of Bolzano’s intermediate value theorem to con-
tinuous mappings in several variables was proposed (without proof) by Poincaré
in 1883 and 1884 in his work on the three body problem [20,21]. This generaliza-
tion, known as Bolzano-Poincaré-Miranda theorem, states that [17,25,30]:

Theorem 3 (Bolzano - Poincaré -Miranda theorem). Suppose that P ={
x ∈ R

n | |xi| < L, for 1 � i � n
}

and let the mapping Fn =
(f1, f2, . . . , fn) : P → R

n be continuous on clP such that θn /∈ Fn(ϑP ), and
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(a) fi(x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) � 0, for 1 � i � n,
(b) fi(x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

Remark 4. The Bolzano-Poincaré-Miranda theorem is closely related to impor-
tant theorems in analysis and topology and constitutes an invaluable tool for
verified solutions of numerical problems by means of interval arithmetic. For
various interesting relations between the theorems of Bolzano-Poincaré-Miranda,
Borsuk, Kantorovich and Smale with respect to the existence of a solution of a
system of nonlinear equations, we refer the interested reader to [1].

Remark 5. Theorem 3 it has come to be known as Miranda’s theorem since
in 1940 Miranda [17] proved that it is equivalent to the traditional Brouwer
fixed point theorem [5]. Also, this theorem has been named Miranda-Vrahatis
theorem [2]. For a short proof and a generalization of the Bolzano-Poincaré-
Miranda theorem using topological degree theory we refer the interested reader
to [30]. Following the proof of [30] it is easy to see that Theorem 3 is also true,
if L is dependent of i. That is, P can also be an n-dimensional rectangle and
need not to be necessarily an n-dimensional cube. In addition, for generalizations
with respect to an arbitrary basis of Rn that eliminate the dependence of the
Bolzano-Poincaré-Miranda theorem on the standard basis of Rn see [11,30].

2.4 Intermediate Value Theorem for Simplices

The intermediate value theorem for simplices (cf. Theorem 4 below) is pro-
posed in [33]. The obtained proof is based on the following Knaster-Kuratowski-
Mazurkiewicz covering principle [15]:

Lemma 1 (Knaster-Kuratowski-Mazurkiewicz). Let Ci, i ∈ Nn be a fam-
ily of (n+1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) For each ∅ 	= I ⊂ Nn it holds that

⋂
i∈I σn

¬i ⊂ ⋃
j∈Nn

¬I
Cj .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 6. Lemma 1 is often referred in the literature as KKM Lemma.

Remark 7. The three well known and widely applied fundamental and pioneer-
ing classical results, namely, the Brouwer fixed point theorem [5], the Sperner
lemma [24], and the KKM lemma [15] are mutually equivalent in the sense that
each one can be deduced from another.

Similar to KKM covering principle, the following covering principles have
been proposed by Sperner [24]:
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Lemma 2 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ∩ Ci = ∅, ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

A similar covering principle is the following:

Lemma 3 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying
the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ⊂ Ci , ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 8. Based on the above Sperner covering principles two short proofs of
the intermediate value theorem for simplices (cf. Theorem 4 below) are given
in [34].

Next, we give the intermediate value theorem for simplices [33,34]:

Theorem 4 (Intermediate value theorem for simplices). Assume that
σn = [υ0, υ1, . . . , υn] is an n-simplex in R

n. Let Fn = (f1, f2, . . . , fn) : σn → R
n

be a continuous function such that fj(υi) 	= 0, ∀ j ∈ Nn
¬0 = {1, 2, . . . , n},

i ∈ Nn = {0, 1, . . . , n} and θn /∈ Fn(ϑσn). Assume that the vertices υi, i ∈ Nn

are reordered such that the following hypotheses are fulfilled:

(a) sgnfj(υj) sgnfj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0 , (10)

(b) sgnFn(υ0) 	= sgnFn(x), ∀x ∈ σn
¬0 , (11)

where sgnFn(x) =
(
sgnf1(x), sgnf2(x), . . . , sgnfn(x)

)
and σn

¬i denotes the face
opposite to vertex υi. Then, there is at least one point x ∈ intσn such that
Fn(x) = θn.

Remark 9. The only computable information required by the hypotheses (10)
and (11) of Theorem 4 is the algebraic sign of the function values on the boundary
of the n-simplex σn. Thus, Theorem 4 is applicable whenever the signs of the
function values are computed correctly. Theorem 4 has been applied for the
localization and approximation of fixed points and zeros of continuous mappings
using a simplicial subdivision of a simplex [34]. For an interesting application of
this theorem see [16].
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3 Applications of the Intermediate Value Theorems

Applications of the corresponding existence criteria emanated by the above inter-
mediate value theorems are given below.

3.1 Bisection Method

Based on the hypotheses of Bolzano’s theorem (Theorem 1), a very useful cri-
terion for the existence of a zero of a continuous mapping f : [a, b] ⊂ R → R

within an interval (a, b) is the following Bolzano’s existence criterion:

f(a) f(b) < 0, (12)

or equivalently:
sgn f(a) sgn f(b) = −1, (13)

where sgn denotes the sign function (9).

Remark 10. The Bolzano existence criterion is well-known and widely used and
it can be generalized to higher dimensions, see [30,33] (cf. Sect. 2.3 and Sect.
2.4). Note that when the condition (12) (or the condition (13)) is not fulfilled,
then in the interval (a, b) either no zero exists or there are zeros for which the
sum of their multiplicities is an even number (e.g., two simple zeros, one double
and two simple zeros, one triple and one simple zeros etc.).

The well-know and widely applied bisection method is based on the Bolzano
existence criterion in order to approximate a zero of a continuous function f :
[a, b] ⊂ R → R in a given interval (a, b). A simplified version described in [27] is
the following:

xp+1 = xp + c sgn f(xp) / 2p+1, p = 0, 1, . . . , (14)

where x0 = a and c = sgnf(a) (b − a). Instead of the iterative formula (14) we
can also use the following [27]:

xp+1 = xp − ĉ sgn f(xp) / 2p+1, p = 0, 1, . . . , (15)

where x0 = b and ĉ = sgn f(b) (b − a).
The sequences (14) and (15) converge with certainty to a zero r ∈ (a, b) if

for some xp it holds that:

sgnf(x0) sgnf(xp) = −1, for p = 1, 2, . . . .

Furthermore, the number of iterations ν required to obtain an approximate
zero r∗ such that |r − r∗| � ε for some ε ∈ (0, 1) is given by:

ν =
⌈
log2(b − a) ε−1

⌉
, (16)

where �x = ceil(x) denotes the ceiling function that maps a real number x to
the least integer greater than or equal to x.
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Remark 11. The main characteristics of the iterative schemes (14) and (15) are
the following:

(a) They converge with certainty within the given interval (a, b).
(b) They are globally convergent methods in the sense that they converge to a

zero from remote initial guesses.
(c) Using relation (16), the number of iterations that are required for the attain-

ment of an approximate zero to a given accuracy is known a priori.
(d) They are worst-case optimal. That is, they possess asymptotically the best

possible rate of convergence in the worst case [23]. This means that they
are guaranteed to converge within the predefined number of iterations, and,
moreover, no other method has this important property.

(e) They require only the algebraic signs of the function values to be computed,
as is evident from (14) and (15); thus they can be applied to problems with
imprecise function values.

For applications of the iterative schemes (14) and (15) we refer the interested
reader, among others, to [27,28].

3.2 Generalized Bisection Methods

The conditions of the Bolzano-Poincaré-Miranda theorem give an invaluable
existence criterion for a solution of Eq. (1). Similarly to Bolzano’s criterion,
the Bolzano - Poincaré - Miranda criterion requires only the algebraic sings of the
function values to be computed on the boundary of the n-cube P . On the other
hand, for general continuous functions, in contrary to Bolzano’s criterion, the
hypotheses (a) and (b) of Theorem 3 are not always fulfilled or it is impossible
to be verified for a given n-cube P .

Next, the characteristic polyhedron criterion and the characteristic bisec-
tion method are briefly presented. These approaches, in contrary to Bolzano -
Poincaré - Miranda criterion require only the algebraic sings of the function val-
ues to be computed on the vertices of the considered polyhedron.

There are various generalized bisection methods that require the computation
of the topological degree [19] in order to localize a solution of Eq. (1) (see,
e.g., [14,26]). The important Kronecker’s theorem [19] states that if the value
of topological degree is not zero Eq. (1) has at least one zero within D. To
this end, several methods for the computation of the topological degree have
been proposed in the past few years (see, e.g., [14,25]). One such method is
the fundamental and pioneering Stenger’s method [25] that in some classes of
functions is an almost optimal complexity algorithm (see, e.g., [18,23,25]).

Once we have obtained a domain for which the value of the topological degree
relative to this domain is nonzero, we are able to obtain upper and lower bounds
for solution values. To this end, by computing a sequence of bounded domains
with nonzero values of topological degree and decreasing diameters, we are able
to obtain a region with arbitrarily small diameter that contains at least one
solution of Eq. (1). However, although the nonzero value of topological degree
plays an important role in the existence of a solution of Eq. (1), the computation
of this value is a time-consuming procedure.
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The bisection method which is briefly described below, avoids all calculations
concerning the topological degree by implementing the concept of the character-
istic n-polyhedron criterion for the existence of a solution of Eq. (1) within a given
bounded domain. This criterion is based on the construction of a characteristic
n-polyhedron (CP) [27,28,35,37]. This can be done as follows. Let Mn be the
2n × n matrix whose rows are formed by all possible combinations of −1 and 1.
Consider now an oriented n-polyhedron Πn, with vertices Vk, k = 1, 2, . . . , 2n. If
the 2n × n matrix of signs associated with Fn and Πn, S(Fn;Πn), whose entries
are the vectors sgn Fn(Vk) =

(
sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)

)
, is identi-

cal to Mn, possibly after some permutations of these rows, then Πn is called
characteristic polyhedron relative to Fn. Furthermore, if Fn is continuous, then,
under some suitable assumptions on the boundary of Πn, the topological degree
of Fn relative to Πn is not zero (see [37] for a proof), which implies the existence
of a solution within Πn. For more details on how to construct a CP and locate
a desired solution see [27,31].

Next, we describe a generalized bisection method. This method combined
with the above mentioned CP criterion, produces a sequence of characteristic
polyhedra of decreasing size always containing the desired solution. We call it
characteristic bisection method. This version of bisection does not require the
computation of the topological degree at each step, as others do [14,26]. It can
be applied to problems with imprecise function values, since it depends only on
their signs.

The method simply amounts to constructing another refined characteristic
polyhedron, by bisecting a known one, say Πn. To do this, we compute the
midpoint M of the longest edge 〈Vi, Vj〉, of Πn (where the distances are measured
in Euclidean norms). Then we obtain another characteristic polyhedron, Πn

∗ , by
comparing the sign, sgnFn(M), of Fn(M) with that of Fn(Vi) and Fn(Vj) and
substituting M for that vertex for which the signs are identical [27,28,31]. Then
we select the longest edge of Πn

∗ and continue the above process. If one of the
sgnFn(Vi), sgnFn(Vj) does not coincide with sgnFn(M), we either continue with
another edge or perform a relaxation process (for details see [27,28,31]).

The minimum number ζ of bisections of the edges of Πn required to obtain
a characteristic polyhedron Πn

∗ whose longest edge length satisfies Δ(Πn
∗ ) � ε,

for some accuracy ε ∈ (0, 1), is given by [37]:

ζ =
⌈
log2

(
Δ(Πn) ε−1

)⌉
. (17)

Remark 12. Notice that ζ is independent of n and that the bisection algorithm
has the same number of iterations as the bisection in one-dimension which is
optimal and possesses asymptotically the best rate of convergence [22].

3.3 Generalized Method of Bisection for Simplices

Definition 7 [13]. Let σm
0 = 〈υ0, υ1, . . . , υm〉 be an oriented m-simplex in R

n,
m � n, suppose that 〈υi, υj〉 is the longest edge of σm

0 and let Υ = (υi +υj)/2 be
the midpoint of 〈υi, υj〉. Then the bisection of σm

0 is the order pair of m-simplices
〈σm

10, σ
m
11〉 where:
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σm
10 = 〈υ0, υ1, . . . , υi−1, Υ, υi+1, . . . , υj , . . . , υm〉,

σm
11 = 〈υ0, υ1, . . . , υi, . . . , υj−1, Υ, υj+1, . . . , υm〉.

The m-simplices σm
10 and σm

11 will be called lower simplex and upper simplex
respectively corresponding to σm

0 while both σm
10 and σm

11 will be called elements
of the bisection of σm

0 . Suppose that σn
0 = 〈υ0, υ1, . . . , υn〉 is an oriented n-

simplex in R
n which includes at least one solution of Eq. (1). Suppose further

that 〈σn
10, σ

n
11〉 is the bisection of σn

0 and that there is at least one solution of the
system (1) in some of its elements. Then this element will be called selected n-
simplex produced after one bisection of σn

0 and it will be denoted by σn
1 . Moreover

if there is at least one solution of the system (1) in both elements, then the
selected n-simplex will be the lower simplex corresponding to σn

0 . Suppose now
that the bisection is applied with σn

1 replacing σn
0 giving thus the σn

2 . Suppose
further that this process continues for p iterations. Then we call σn

p the selected
n-simplex produced after p iterations of the bisection of σn

0 .

Definition 8 [29]. The barycentric radius β(σm) of an m-simplex σm in R
n is

the radius of the smallest ball centered at the barycenter of σm and containing
the simplex. The barycentric radius β(A) of a subset A of Rn is the supremum
of the barycentric radii of simplices with vertices in A.

Theorem 5 [29]. Any m-simplex σm = [υ0, υ1, . . . , υm] in R
n, m � n is enclos-

able by the spherical surface Sm−1
β with radius β(σm) given by:

β(σm) =
1

m + 1
max

i

⎛
⎜⎜⎝m

m∑
j=0
j �=i

‖υi − υj‖22 −
m−1∑
p=0
p�=i

m∑
q=p+1

q �=i

‖υp − υq‖22

⎞
⎟⎟⎠

1/2

.

Remark 13. The barycentric radius β(σn) of a n-simplex σn in R
n can be

used to estimate error bounds for approximate fixed points or approximate
roots of mappings in R

n, by approximating a fixed point or a root by the
barycenter of σn. Note that the computation of β(σn) requires only the lengths
of the edges of σn, which are also required in order to compute the diame-
ter diam(σn) of σn. Furthermore, since the distance of the barycenter K of
an n-simplex σn = [υ0, υ1, . . . , υn] in R

n from the barycenter Ki of the i-
th face σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn] of σn is equal to ‖K − υi‖2/n
[26,29], then using Theorem 5 we can easily compute the value of γ(σn) =
mini ‖K − Ki‖2/diam(σn). The value γ(σn) can be used to estimate the thick-
ness θ(σn) of σn, that is:

θ(σn) = min
i

{
min
x∈σn

¬i

∥∥K − x
∥∥
2

}
/diam(σn).

In general, the thickness θ(σn) is important to piecewise linear approximations
of smooth mappings and, in general, to simplicial and continuation methods for
approximating fixed points or roots of systems of nonlinear equations.
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Theorem 6 [13]. Suppose that σm
0 is an m-simplex in R

n and let σm
p be any

m-simplex produced after p bisections of σm
0 . Then

diam(σm
p ) �

(√
3/2

)�p/m�
diam(σm

0 ), (18)

where diam(σm
p ) and diam(σm

0 ) are the diameters of σm
p and σm

0 respectively and
�p/m� is the largest integer less than or equal to p/m.

Theorem 7 [26,32]. Suppose that σm
0 , σm

p , diam(σm
0 ) and diam(σm

p ) are as in
Theorem 6 and let Km

p be the barycenter of σm
p . Then for any point T in σm

p the
following relationship is valid

‖T − Km
p ‖2 � m

m + 1

(√
3/2

)�p/m�
diam(σm

0 ). (19)

Definition 9. Let σn be an n-simplex in R
n and let diam(σn) and μdiam(σn)

be the diameter and the microdiameter of σn respectively. Suppose that r is a
solution of Eq. (1) in σn. Then we define the barycenter Kn of σn to be an
approximation of r and the quantity

ε(σn) =
n

n + 1

((
diam(σn)

)2 − n − 1
2n

(
μdiam(σn)

)2)1/2

, (20)

to be an error estimate for Kn.

Theorem 8 [26,32]. Suppose that σn
p is the selected n-simplex produced after

p bisections of an n-simplex σn
0 in R

n. Let r be a solution of Eq. (1) which is
included in σn

p and that Kn
p and ε(σn

p ) are the approximation of r and the error
estimate for Kn

p respectively. Then the following hold:

(a) ε(σn
p ) � n

n + 1

(√
3/2

)�p/n�
diam(σn

0 ),

(b) ε(σn
p ) �

(√
3/2

)�p/n�
ε(σn

0 ),
(c) lim

p→∞ εp = 0,

(d) lim
p→∞ Kn

p = r.

3.4 Locating and Computing Periodic Orbits

Our approaches are illustrated here for methods for locating and computing peri-
odic orbits of nonlinear mappings as well as fixed points of the Poincaré map on
a surface of section. In general, analytic expressions for locating and computing
these periodic orbits on fixed points are not available.

Many problems in a variety of areas of science and technology can be studied
and tackled using periodic orbits of nonlinear mappings or dynamical systems.
For example, such problems appear in Quantum Mechanics where a weighted
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Fig. 1. Hénon mapping for cos ω = 0.24 and g(x1) = −x2
1

sum over unstable periodic orbits yields quantum mechanical energy level spac-
ings as well as in Statistical Mechanics where a weighted, according to the values
of their Liapunov exponents, sum over unstable periodic orbits can be used to
calculate thermodynamic averages (see, e.g., [10]). Furthermore, periodic orbits
play a major role in assigning the vibrational levels of highly excited polyatomic
molecules. as well as in Celestial Mechanics and Galactic Dynamics.

Let us illustrated our approaches for the following quadratic area-preserving
two-dimensional Hénon’s mapping [31]:

Φ2 :
(

x̂1

x̂2

)
=
(

cos ω − sin ω
sinω cos ω

)(
x1

x2 + g(x1)

)
, (21)

where (x1, x2) ∈ R
2 and ω ∈ [0, π] is the rotation angle. By choosing cos ω = 0.24

and g(x1) = −x2
1, we observe in the corresponding Hénon’s mapping phase plot,

illustrated in Fig. 1, that there is a chain of five “islands” around the center of the
rectangle. The center points of each island contain a stable elliptic periodic orbit
of period five (p = 5). Additionally, the five points where the islands connect
consist an unstable hyperbolic periodic orbit of period five [31]. These points can
be computed by applying the aforementioned methods. When one of these points
is computed we can either subsequently apply the same method with different
starting conditions and find another point of the periodic orbit or we can iterate
the mapping using one of the computed points as starting point. For example,
to produce the stable periodic orbit we can iterate the mapping using the fol-
lowing starting point: (x1, x2) = (0.5672405470221847,−0.1223202134278941).
The rotation number of this orbit is σ = m1/m2 = 1/5. It produces m2 = 5
points by rotating around the origin m1 = 1 times. Additionally, to compute the
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Fig. 2. A Poincaré surface of section of Duffing’s oscillator for α = 0.05 and β = 2

unstable periodic orbit, one can iterate the mapping using at starting point the
(x1, x2) = (0.2942106885737921,−0.4274862418615337) (for details see [31]).

Also, periodic orbits can be used in the study of the structure and breakdown
properties of invariant tori in the case of symplectic mappings of direct relevance
of the beam stability problem in circular accelerators like the Large Hadron
Collider (LHC) machine at the European Organization for Nuclear Research
(CERN). Such a 4-D symplectic mapping can be defined as follows [31,36,38]:

Φ4 :

⎛
⎜⎜⎝

x̂1

x̂2

x̂3

x̂4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

cos ω1 − sin ω1 0 0
sin ω1 cos ω1 0 0

0 0 cos ω2 − sin ω2

0 0 sin ω2 cos ω2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3

⎞
⎟⎟⎠ . (22)

This mapping describes the (instantaneous) effect experienced by a hadronic
particle as it passes through a magnetic focusing element of the FODO cell
type, where x1 and x3 are the particle’s deflections from the ideal (circular)
orbit, in the horizontal and vertical directions respectively, and x2, x4 are the
associated “momenta”, while ω1, ω2 are related to the accelerator’s betatron
frequencies (or “tunes”) qx, qy by ω1 = 2πqx and ω2 = 2πqy and constitute the
main parameters that can be varied by an experimentalist see, e.g., [31,36,38]
and the references thereof.

Next we consider a Poincaré surface of section for the conservative Duff-
ing’s oscillator. More specifically, the conservative Duffing’s oscillator [7] can be
described by the following equation:

ẍ = x − x3 + α cos βt, (23)

which can be written as:
{

ẋ1 = x2,
ẋ2 = x1 − x3

1 + α cos βt.
(24)
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For the aforementioned dynamical system, we consider the Poincaré surface of
section for the parameter values of α = 0.05 and β = 2. Figure 2 illustrates
the phase plot of this surface, in the [−1.6, 1.6] × [−1.2, 1.2] rectangle. For this
example, we can observe two distinct islands along the x2 = 0 axis. The center
points of each island correspond to fixed points of period one (p = 1). Once again
we can easily compute these two points by applying the aforementioned methods.
The two center points correspond to (x1, x2) = (−1.024572461190486, 0.0), and
(x1, x2) = (0.9746253482044169, 0.0).

In conclusion, our experience is that the generalized methods of bisection are
very efficient and effective applied on the problems (21), (22) and (23). These
is so, because, we have succeeded to compute rapidly and accurately periodic
orbits (stable and unstable) for periods which reach up to the thousands. For
detailed results we refer the interested reader to [7,31,36,38].

4 Synopsis

Generalizations the intermediate value theorems in several variables are pre-
sented. These theorems are very useful for the existence of solutions of systems
of nonlinear equations, the existence of fixed points of continuous functions as
well as the existence of periodic orbits of nonlinear mappings and similarly, fixed
points of the Poincaré map on a surface of section. Based on the corresponding
criteria for the existence of a solution or a fixed point emanated by the interme-
diate value theorems, generalized bisection methods for approximating zeros or
fixed points of continuous functions are given. These bisection methods require
only the algebraic signs of the function values and are of major importance for
studying and tackling problems with imprecise information.

Acknowledgments. The author would like to thank the editors for their kind invi-
tation.
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