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Abstract
A detailed review of the dynamic search trajectory methods for global optimization is given.
In addition, a family of dynamic search trajectories methods that are created using numerical
methods for solving autonomous ordinary differential equations is presented. Furthermore, a
strategy for developing globally convergent methods that is applicable to the proposed fam-
ily of methods is given and the corresponding theorem is proved. Finally, theoretical results
for obtaining nonmonotone convergent methods that exploit the accumulated information
with regard to the most recent values of the objective function are given.
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1 Introduction

The problem of the mathematical optimization is one of the most known and widely stud-
ied problems, not only by mathematicians but by many other scientists all over the world.
This is so because the applications that require the solution of an optimization problem are
many and varied. In addition, several important optimization problems remain open [49].
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Indicatively, we mention a few scientific fields that constantly encounter such optimiza-
tion problems including industry, robotics, mathematics, physics, chemical engineering,
economics, machine learning, computational biology, geology, engineering, among oth-
ers. Although the scientific community has studied the problem of optimizing objective
functions for many years, this problem remains attractive [3, 14, 18, 48, 49, 77, 78, 92].

We shall allow us to briefly discuss a few basic concepts regarding the problem of global
optimization [33]. The global optimization problem concerns in the computation of the
global minimum or maximum of an objective function defined on a given set. Usually the
global optimization problem is referred as a global minimization problem. Assume that
F : D ⊂ R

n → R is a nonlinear and non-convex continuous function and D is a com-
pact set not necessarily convex. Suppose that F� is the global minimum of the function F

and X� = {
x� ∈ D

∣∣ F(x�) = F�
}
is the set of all the global minimizers of F in D . Then

the global minimization problem is given as minx∈D F(x), that is to find a global mini-
mizer x� ∈ X�. It is well known that in general, global optimization is a difficult to tackle
problem. In particular, it is known that a deterministic method for global optimization is NP-
hard [85]. On the other hand, there is evidence that a stochastic algorithm can be executed
in polynomial time, on the average. Also, theoretical analysis of random search methods
indicates that performance may be very good, possibly polynomial in dimension [93]. Fur-
thermore, due to “No free lunch theorems for optimization” [89] (for a recent review see
[1]) there is not a single algorithm that performs well on all problems and if an algorithm is
improved for one particular problem, it will not perform well for other problems.

In order to tackle the difficulty of the global optimization problem stochastic adap-
tive search methods for global optimization can be used. Various such methods are nature
inspired and many of them are called heuristic methods or population based methods [79].
This family include the well-known and widely used differential evolution (DE) algorithms
[80], the particle swarm optimization (PSO) algorithm [50, 52, 67], the evolutionary algo-
rithms (EA) [4] among others. It is worth mentioning that quite often encountered in the
literature hybrid techniques that utilize algorithms of the above category and methods that
exhibit local convergence [23] in order to exploit the advantages of both categories local and
global convergence. In addition, in many problems [46, 51], two or more objective functions
need to be minimized at the same time. Moreover, a problem that requires single-objective
optimization can be transformed into another one, for which two or more functions have
to be optimized simultaneously. This problem is called multi-objective or multiple criteria
optimization problem and we refer the interested reader to [95].

An effective solution to the problem of global optimization can be obtained using ordi-
nary differential equations solvers. In particular, approaches that are based on the dynamic
search trajectories [11, 29, 69, 71] have been used and have provided very good results.
In detail, several methods have been developed over the last thirty years that adopt the
following strategy:

Given a second-order (or first-order) differential equation and a function F , we are
looking for the minimum value of F using a specific differential equation. In par-
ticular, assuming that the differential equation defines the motion of a particle and
the function F the potential energy of the particle, then the solution of this equa-
tion is called trajectory and determines a possible solution of F . Given some initial
conditions and properties (which are analytically presented in the main body of this
paper) the particle follows the trajectory to the minimum value of the function under
consideration and, thus, the initial problem is solved.
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Following the above procedure, one may expect that at the end we will reach the global
minimum of the function. This, however, cannot be true since in various cases take place
the exact opposite. To this end, methods utilizing dynamic search trajectories are ideally
combined with meta-heuristic or other multi-start techniques in order to ensure global opti-
mization as well as the global convergence of the scheme that is used. The trajectories that
have been used are varied and their applications diverse between different scientific fields.

In this paper we aim to perform a detailed review of optimization methods that use
dynamic search trajectories. The description deals with both past and recent approaches. In
addition, we present a new class of dynamic search trajectories methods that are created
using numerical methods for solving autonomous ordinary differential equations. Further-
more, we give a strategy for developing globally convergent methods that is applicable to
the proposed class of methods as well as we give a proof and the corresponding theorem.
Finally, we give theoretical results for obtaining “nonmonotone” convergent methods that
exploit the accumulated information with regard to the most recent values of the objective
function.

The rest of the paper is organized as follows. In the next section, we present a survey
of well-known and widely used trajectory methods that have been studied in the literature,
such as the well-known dynamic search trajectory Snyman-Fatti method [71]. In Section 3,
we provide the most recent dynamic search trajectory methods and their applications, focus-
ing on up-to-date methods developed over the last ten years. In addition, in the same section
we provide a table with the most cited papers, in order to inform the reader about the appli-
cability and the interest gathered regarding trajectory methods. In Section 4 we present a
new class of trajectory methods for global optimization based on the numerical solution of
autonomous ordinary differential equations. Furthermore, we present a strategy for develop-
ing globally convergent methods as well as we give a proof and the corresponding theorem.
Furthermore, we give theoretical results for obtaining “nonmonotone” convergent methods.
Finally, the paper ends with a synopsis and a short discussion for future research work.

2 Survey of well-known and widely used trajectory methods
and their applications

In this section, we provide the first attempts that use dynamic search trajectories in order to
create reliable optimization methods. Thus, for every method we present the basic equations,
the basic notations and the main philosophy behind the presented approach.

2.1 Dynamic search trajectory methods

One of the first attempts in which the reader meets the combination of differential equations
with numerical techniques was made by Branin [11]. In this paper, the author tackles the
problem of finding the solution of a system of non-linear equations. In particular, the pro-
posed method can identify multiple roots and, in some cases, achieves global convergence.
In addition, if a transformation occurs, his method can locate, under certain conditions,
many extrema points of a continuous function. The provided scheme has been tested on a
well-known electrical problem, called tunnel diode problem. The differential equation that
used at the beginning of his attempt was the following:

dx

dt
+ f (x) = 0, (1)
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where f (x) = 0 represents the system of non-linear equations that has to be solved.
However, the above equation was replaced by the following first-order differential equation:

df

dt
+ f (x) = 0, (2)

since (1) was found inappropriate regarding other problems beyond tunnel diode problem.
Concerning the analytical solution:

f (x(t)) = f (x(0)) e−t , (3)

it is quite accepted that f (x) = 0, as t → ∞. Applying the chain rule and multiplying from
the left both sides of (3) with the inverse of the Jacobian matrix, we obtain the following
equation:

dx
dt

= −
(

∂f
∂x

)−1
f (x)

= −J−1
f (x) f (x).

(4)

By applying the well-known Euler method, we get the following iterative scheme:

xn+1 = xn ∓ hn J−1
f (xn) f (xn), n = 0, 1, 2, . . . (5)

where hn is the step size at the n-th iteration. This method is known as Newton trajectory
method. It is worth noting that the sequence of the trajectories given by this method makes
sense only in the case where the Jacobian matrix of the objective function is non-singular. In
the case where the Jacobian matrix is singular, Branin in [11] suggested to allow a change
of sign in (2). Thus, the corresponding equation is written as follows:

df

dt
± f (x) = 0, (6)

with solution:

f
(
x(t)

) = f
(
x(0)

)
e∓t . (7)

Therefore, when the determinant of the Jacobian matrix changes sign (after passing through
zero), the sign in (6) is reversed and the integration procedure may be continued. In this case
we obtain:

dx

dt
= ∓J−1

f (x) f (x). (8)

Branin tested the proposed method to the problems: (a) two– dimensional and three–
dimensional trigonometric problem, (b) Brent’s problem and (c) Rosenbrock’s problem. He
pointed out that the produced trajectory path, in many cases, passes through all the solutions
that he was looking for.

The authors in [35] proposed a iterative process for solving nonlinear equations. The
proposed method associates systems of ordinary differential equations with the equations
of a non-linear system. Different equations have been used. They are inspired by classical
mechanisms of nature and are, mainly, second order ordinary differential equations. An
advantage of the provided method is that it can easily handle problems of nonlinear least
squares. The issue of successful convergence and, secondly, the expansion of convergence
regions are very important. In the literature [11, 94], several methods have been presented
that rely on systems of differential equation in order to solve non-linear algebraic equations.
The authors in [35] used a system of second-order differential equations in order to solve a
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nonlinear system of equations F(x) = 0 where F = (f1, f2, . . . , fn) : Rn → R
n. They

considered the function G : Rn → R:

G(x) =
n∑

i=1

f 2
i (x), (9)

and the following second-order differential equation in order to find the roots of function G:

μ(t)
d2x(t)

dt2
+ g(t)

[
a(t)I + (

1 − a(t)
)
J (x(t))�J (x(t))

] dx(t)

dt
= −∇G(x(t)), (10)

where μ(t) and g(t) are real-valued positive functions, 0 < a(t) � 1, ∀ t � 0, I is the
identity matrix and J (x) the Jacobian matrix. The above second-order differential equation
represent the Newton’s law.

Next, we present a very important theorem as it is formulated in the paper [35], which
states that the solutions of the differential equation, under certain conditions, lead to the
solutions x� of the function G.

Theorem 1 Assume that G(x) ∈ C2(Rn) (i.e. G(x) is a twice continuously differentiable
function) and the following assumptions are hold:

1. μ(t) ∈ C1([0,+∞)),
dμ

dt
� 0, μ(t) � μmin > 0 for constant value μmin

2. ∃ b > 0 such that
g(t)

μ(t)

〈
z,

(
a(t)I + (

1 − a(t)
)
J (x)�J (x)

)
z
〉
� b

2

〈
z, z

〉
, ∀ x, z ∈

R
nand t ∈ [0, +∞), where the equality in the above formula applies if and only if

z = 0.

3. x� is an isolated minimum of G.

Then x(t) ≡ x� and v(t) ≡ 0 is a solution of:

μ(t)
dv(t)

dt
+ g(t)

(
a(t) I + (

1 − a(t)
)
J (x(t))�J (x(t))

)
v̇(t) = −∇G(x(t)), (11)

where v̇(t) = dx(t)

dt
; moreover it is uniformly asymptotically stable.

One can easily conclude that the problem of solving F(x) = 0 is equivalent to the
minimization of the function G(x). Furthermore, this theorem highlights the connection
between differential equations, minimization problem, solving a system of nonlinear equa-
tions and solving a nonlinear least squares problem (we refer the interested reader to [65]).
The solutions of the ordinary differential equation that concern the conditions of Cauchy:

x(0) = x0,

d x(0)

dt
= v0, (12)

obtained using a modification of the well-known Euler method. The experiments conducted
by the authors have shown that the proposed method is advantageous against Newton-
Raphson which has been used in Branin’s work [11]. Moreover, the proposed method
was tested on five problems, using the Rosenbrock’s function and the Boggs’s system of
equations [10].
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In the paper [27] Griewank has presented some basic properties of the trajectory that
need to be fulfilled. Below, we discuss these issues that are related to the function and the
trajectory under consideration.

1. First of all, we assume that the given function can be expressed as a sum of two factors:

F = g + ε, (13)

where g is a function with a unique minimum, g� = g(y�) and let ε be a bounded
perturbation.

2. We assume that the factor ε is a small amount in relation to the amount of the value of g.
3. We can reach the global minima of F , let F� = F(x�) and all the other local minima

of F is closed to y�, in other words they belong to the neighborhood of y�.

By taking into account all the above cases, every technique that is used to reach the global
minima of F is possible to reach many local minima outside the neighborhood of y�, that
concern us.

Next, we give the following desirable properties of a search trajectory.

1. The trajectory cannot converge to minima with values greater than a target level η which
is ideally slightly larger than the global minimum F(x�).

2. As long as the value of F is much larger than the target η, the trajectory is not greatly
affected by the perturbation ε. As a result, the trajectory needs to follow a descent
direction with respect to the negative value of gradient of g, −∇g.

3. As the value of F approaches to the target η, the trajectory minimizes sufficiently and
finally reduces to a local optimization technique when F � η.

4. The trajectory does not depend entirely on the Hessian matrix of F , ∇2F .
5. Finally, the trajectory is not affected by a transformation into the variables defined

above and the multiplication of the quantity F − η by any positive scalar element.

Therefore, Griewank used the following second-order differential equation, the solution of
which produces a trajectory that meets the above conditions. Thus, in his work [27] verified
the above conditions for the equation:

ẍ(t) = −ω
(
I − ẋ(t) ẋ(t)�

) ∇F(x(t))/(F (x(t)) − η), (14)

where ω is a positive real number. By omitting the variable t , (14) is written as follows:

ẍ = −ω
(
I − ẋẋ�)∇F(x)/

(
F(x) − η

)
, ω > 0, (15)

for any initial point value (x0, ẋ0), F0 = F(x0) > η and ‖ẋ0‖ = 1. The above equation
arose from a variant of an earlier work of the author in [26] as a basic precondition for the
solution of the following problem:

min
x(t)∈X

∫ t1

t0

(
F(x(τ)) − η

)−ω
dτ, (16)

where the X is a continuous rectifiable set of paths between two point x(t0) ≡ x0, x(t1) ≡
x1 and ‖ẋ‖ = 1. In [27] the author thoroughly verifies the validity of the above hypotheses
1–5. In this work, however, he did not perform the analytical verification of these conditions.

Various trajectories have been derived from well-known formulas of Mechanics and
Physics [35, 36, 94], such as the equation:

m(t) ẍ(t) + v(t) ẋ(t) = −∇F(x(t)), (17)
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which is one of the most known differential equations (Newton’s law), for a particle of mass
m(t), in a consideration objective F , into a dissipative force −v(t) ẋ(t). Thus, it is easy to
observe that if we set:

m(t) = (F (x(t)) − η)/ω, (18)

and

v(t) = −∇F
(
x(t)

)�
ẋ(t), (19)

and replace them in Relation (5) then (2) is obtained.
At this point, it is worth mentioning that the following problem may arise. If the parame-

ters m(t) and v(t) are positive and some conditions for F are hold, then any trajectory may
converge to a local minimum of F . The following formula that has been given by Griewank
[27] indicates that there is a tendency that slows the trajectory when uphill conditions are
met, such as ∇F(x)�ẋ > 0. The formula under consideration was:

d

dt

[
1/2

∥∥ẋ(t)
∥∥2

]
= − 1

m(t)

(
∇F(x(t))� ẋ(t) + v(t) ‖ẋ(t)‖2

)
. (20)

On the other hand, as the trajectory moves down, we want to accelerate the path to the min-
imum, reducing the influence of the local gradient. However, it is possible the entrapment
of the trajectory to a local minimum. Thus, the trajectory is set in a “dent” on a hill, instead
of falling towards a “slope”. Therefore, the desired move to the global minimum of the
function is not performed.

In [27] the author formulates and proves a theorem (Theorem 3.1), which reinforces
the opinion that the solution of the differential equation (2) is transformed into the trajec-
tory of the steepest descent. This happens when the value of F approaches the value of η.
This allows the trajectory to be minimized as much as is needed and ultimately, creates the
following extension: Any finite solution of (2) may resulted by the formula:

ẋ(t) = −∇F(x)/‖∇F(x)‖. (21)

The resulting search trajectories are uniquely determined by the initial conditions (x0, ẋ0)

and solve the system:

max
{
0, F (x) − η

}
ẍ + ω

(
I − ẋ ẋ�) ∇F(x) = 0. (22)

Finally, if the solutions do not approach η, the solutions of the above system converge
either to a minimum of F or to a possible saddle point of F . In particular, in his work
he tried to calculate the minima of an objective function with many local minima at low
cost. In order to achieve this goal, the author considered the trajectories produced by the
differential equation (2), in relation to the parameters η and ω. One may expect that the
overall trajectories would be acceptable. However, this could not be true. Thus, only the
trajectories that are close to the target values η are “alive”. On the contrary, trajectories’
values which are much higher than the value of η are rejected. The author considered that it
is possible to make this (to produce “good” trajectories), as long as the relation between the
ω parameter and the dimension of the function under consideration is correctly determined.
Furthermore, he gave an analysis of the value of ω.

The problem that we have described above, the trajectories can “wander” in neighbor-
hoods where reside unacceptable minima or even to exceed the acceptable ones, is extremely
important. For this reason, the author tackled this issue by constructing a procedure, which
uses the solutions of the (2) in order to conduct global search. Thus, by setting successively
low values for the target parameter η, in combination with conventional local minimiza-
tion techniques, he overcame the above-mentioned difficulty. After suitable parametrization
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and transformation of the (2), the author designed an one step method of convergence order
three. This new method tested on well-known functions, such as (a) six-hump function,
(b) camel-back function and (c) a quadratic form function. The results have shown that
Griewank’s method is quite competitive in order to compute local minima. The computa-
tional cost was high (function and gradient evaluations) but it is comparable to the proposed
techniques so far.

In the work of Snyman [69] a practical localization method of local minima has been
proposed, mainly for functions for which the first derivative can be easily estimated. This
method has been aimed for locating the minima of multivariable functions. On the one hand,
the proposed method was a naive approach and several improvements may be done. On
the other hand, it has a number of advantages, which are worth to be discussed. Snyman’s
method compared with Fletcher’s program and the well-known quasi-Newton method. The
results have shown that the method is reliable and robust on a set of standard test functions.
In particular, it approached the required local minimum in all the test cases, in contrast,
for example, to the quasi-Newton method that in some cases simply approached close to
the minima. As indicated above, the method is conceptually very simple, and the Fortran
coding program is fairly easy to understand and easy to be used. In addition, the storage
requirements, which were extremely important for that time, were minimal. Specifically,
the method required the storage of five n-dimensional vectors, unlike to the quasi-Newton
which required the storage of the approximations of the Hessian matrix.

Considering the overall performance of this method, one would say that it performs par-
ticularly well on functions that present steep narrow “valleys”. Moreover, Snyman’s method
responds very well in cases where the starting point is not close to the local minima. On the
contrast, in cases where the objective function presents flat minima, its performance was
not as good as the described case. Nevertheless, the method remains competitive and not
so less reliable related to the quasi-Newton. In his original work [69] the author proves that
the computational time required by his method in order to achieve convergence is increased
approximately linearly. In this paper, however, we will not deal with this proof in detail.
However, it is worth mentioning that for the performed tests in [69] the gradient evaluations
of the corresponding functions were quite inexpensive. This obviously favors the dynamic
method presented by Snyman. The test functions that have been used were: (a) the parabolic
valley function (n = 2, 4, 24), (b) the cubic valley function, (c) the Beale’s function, (d) the
Powell’s function, (e) theWood’s function, (f) the homogeneous quadratic function (n = 40)
and (g) theOren’s power function (n = 20). Snyman’s dynamic method was compared with:

(a) Fletcher’s program, called “VAO9A”, which uses the well-known quasi-Newton
scheme [22, 25]

(b) Davidon – Fletcher – Powell (DFP) method (code of [34]).

The optimization problem under consideration is defined below:

minF(x), x = (x1, x2, . . . , xn) ∈ R
n, F ∈ C1. (23)

Assume that F(x) represents the potential energy of a particle of unit mass in a n-
dimensional force field, then, if the function F has a local minimum at x�, it follows
that:

F(x) = −
∫ x

x�

a(s)�ds + F(x�), (24)
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where a(s) represents a force acting on the particle at the point s. The kinetic energy of the
particle is defined by:

T (x) = 1

2

n∑

i=1

ẋ2
i = 1

2
‖ẋ‖2, (25)

and the Lagrangian is given by:

L(x) = T (x) − F(x) = 1

2

n∑

i=1

ẋ2
i +

∫ x

x�

a(s)�ds − F(x�). (26)

By applying Hamilton’s principle the following equations of motion are obtained:

d

dt

(
∂L

∂ẋi

)
− ∂L

∂x
= 0, i = 1, 2, . . . n. (27)

By making the appropriate replacements we obtain the following differential equation:

ẍ = −∇F = a. (28)

The trajectory x(t) of the particle is given by the solution of the (28). Summarizing, we get
the problem (28) with initial conditions:

{
x(0) = x0,

ẋ(0) = v(0) = v0 = 0,
(29)

where v0 determines the initial velocity.
Equation (28) implies conservation of energy. Thus, ∀ x, along the trajectory we obtain:

T (x) + F(x) = T (x0) + F(x0) = E0, (30)

where E0 determines the initial total energy. Thus, for the function F we get:

F(x) = T (x0) + F(x0) − T (x) = F(x0) − T (x). (31)

Therefore, with T (x0) = 0 along the particle path we obtain F(x) � F(x0). However, given
the fact that frictional forces are absent, the following problem may occur: the particle will
be in continual motion and therefore there is a risk to overcome the minimizer x� of the
function. To sum up, it is necessary to ensure that the energy of the particle is reduced. As
a result, the trajectory x is following a path to the local minimizer x�. To achieve this goal,
there are two known techniques:

1. The first one uses an artificial damping term:

ẍ = −∇F − aẋ, (32)

where a > 0 is a given damping constant. The successfulness of this strategy depends
on the appropriate selection of the parameter a. Thus, we have to tackle a new additional
problem: Which is the optimal value for the term a? Is the selection of this parameter
familiar to the position of the trajectory or the nature of the force field? One may easily
understand that this is not a simple problem and the solution is not trivial.

2. The second strategy which is adopted in [69] is based on the monitoring of the kinetic
energy of the particle at fixed time intervals. Assume that xk , vk are the position and
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the velocity of the particle at the time tk = k�t . For any time points tk and tk+1 by
combining (30) we obtain:

�Fk = Fk+1 − Fk = F(xk+1) − F(xk)

= T (x0) + F(x0) − T (xk+1) − (T (x0) + F(x0) − T (xk))

= T (x0) + F(x0) − T (xk+1) − T (x0) − F(x0) + T (xk)

= −T (xk+1) + T (xk) = −Tk+1 + Tk = Tk − Tk+1

= −�Tk = −�T (xk). (33)

Obviously, for �Tk > 0 we obtain �Fk < 0 that is required.

Snyman in [70] proposed an improvement in order to increase the performance of his
original algorithm [69]. This improvement mainly concerned the selection of the parameter
time step. Particularly, in the provided algorithm, this step is reduced or increased appro-
priately in an automatic way. This results in a more efficient implementation of the basic
dynamic algorithm. This change made a more sophisticated algorithm with much better per-
formance than the original leap-frog algorithm which used in the paper [69]. In this paper
we do not provide a thorough analysis of these algorithms. For this reason, we suggest
studying together these two works of Snyman in order to make the understanding easier. In
summary, we present the main difference in the time step parameter of the algorithm.

It is well-known that if the time step is very big, then the trajectory may be inaccurate.
On the other hand, the trajectory may not be significantly out of reach of the solution, but
the suitable situation is to be as close as possible to x� in order to achieve the convergence
of the algorithm. An useful idea, in order to test if the time step is large, is to check the
difference between two successive gradient vectors. If these vectors are vertical or form
an angle of 90 degrees or greater, then the step is very large. However, one step is not
considered as inappropriate at the first observation of such an angle. Thus, at each step
we evaluate the quantity a�

k ak−1, where ak denotes the negative gradient value of F at the
point xk . Similarly for the amount of ak−1. If this quantity is less than or equal to zero for
consecutive steps, then the time step must be halved. Then the procedure restarts from the
point (xk + xk+1)/2 with velocity value (vk + vk+1)/4. Typically, the number of successive
steps selected is m = 3. On the other hand, the following strategy is adopted if the time step
is needed to be increased. In order to increase the time stem the following two inequalities
must to be hold: a�

k+1ak > 0 and ‖�xk‖ < δ, where δ represents the maximum permissible
step size. Therefore, the step changes according to the relationship:

p = 1 + Nδ, δ > 0, (34)

where N represents the successive successful steps that have been carried out. Otherwise,
N is reset to the value 1 and is not stepped up.

One of the most known methods of this class is the method proposed by Snyman and
Fatti [71]. This method has attracted strong interest by many researchers. For this reason
many variations of this method have been provided, which we will briefly present in this
review. Next we present the main points of the original method. The authors produced a
global minimization method using a multi-start algorithm. The success of this method was
that with appropriate modifications to the searching trajectories, the authors managed to
broaden convergence regions regarding the global minimum of the objective function. The
second-order differential equation that has been used in their approach is the following:

ẍ(t) = −∇F(x(t)), (35)

12
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where the solution x represents the movement of a particle of unit mass inside a conservative
force field, F represents the potential energy of this particle and x(0) = x0, ẋ(0) = 0
the initial conditions. Multiplying the above equation by ẋ(t) we obtain the formula of the
kinetic energy:

1

2

∥∥ẋ(t)
∥∥2 + F(x(t)) = F(x0), (36)

for t = 0. Furthermore, if the following relation is satisfied:

− ∇F�ẋ > 0, (37)

then, the kinetic energy of the particle is increased, which means that the function value is
decreased through the steepest descent path. As we have already mentioned, it is possible
the function under consideration to have many local minima, which, in fact, can be located
in their entirety by the trajectories. In order to achieve the goal of identifying the global
minimum, it is beneficial to record the current minimum values xn, ẋn and Fn. The trajecto-
ries continue their path, expecting towards the global minimum. As it is emphasized by the
authors [71], it is important to be able to ensure the convergence of the proposed method,
at least, to a local minimum. The difficult question, however, is how we can use the gained
by the trajectory information since the current minimum value? In their work, Snyman and
Fatti followed the following approach. Along with the original trajectory, they produced
additional trajectories, named as “auxiliary trajectories”. Using this approach, we are able
to consider that xn is the best value for which the first trajectory terminates (this one with
the smallest function value) and x0 the initial condition. Then, let us denote the auxiliary
trajectory, as xa as follows:

xa = x2
0 = 1

2
(x1

0 + x1
n), (38)

where x2
0 represents the auxiliary initial condition. In addition, its velocity type is given by:

ẋa = ẋ2
0 = 1

2
ẋ1
n . (39)

To sum up, we assume that for the initial condition x1
0 , the first trajectory, let T1, is produced

and the corresponding velocity is ẋ1
0 . Then we record the corresponding values x1

n , ẋ
1
n and

F 1
n , which are considered as the best values that T1 returned. In order to produce the second

trajectory, let T2, we set:

x2
0 = 1

2
(x1

0 + x1
n), and

ẋ2
0 = 1

2
ẋ1
n, (40)

and again we record the best values, as x2
n , ẋ

2
n and F 2

n . If the current best function value is
smaller than the previous one, i.e. F(x2

n) < F(x1
n), then we keep the value of x2

n , otherwise
we set x2

n = x1
n and the same procedure is repeated in order to produce a new auxiliary Ti .

The authors presented the following convergence theorem for the described process:

Theorem 2 Assume that F is the objective function under consideration and S = {x :
F(x) � F(x1

0)} its bounded level set. If the gradient ∇F of F and the sufficient n-order
derivatives are exist and are continuous over the set S, then:

∇F(xi
n) = 0, or ∇F(xi

n) → 0. (41)

Remark 1 It is obvious that a trajectory must be terminated before it begins to retrace.
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As a follow-up of a previous study [69], Smyman and Fatti, have used the well-known
leap-frog integration method in order to provide a reliable discretized implementation of
the auxiliary trajectory procedure. Next, we present the main points of this approach. The
leap-frog integration method is described as follows:

xn+1 = xn + ẋn �t, n = 0, 1, 2, . . .

ẋn+1 = ẋn − ∇F(xn+1) �t, n = 0, 1, 2, . . .
(42)

where x0, ẋ0 are the initial conditions, �t . As it is has been shown in detail in [69], this
method suggests energy conservation relationship. Moreover, the initial condition ẋ0 is
given by:

ẋ0 = −∇F(x0)�t

λ
, (43)

where the most common choice of λ is the value λ = 2. Regarding the time step �t , it is
selected in order to ensure descent at the first step. If this does not happen, then a choice
of a different time step value is required. Usually, the time step is divided and the trajec-
tory is restarted until the descent is reached. The method terminates when the following
relationship holds:

F
(
x(t)

) − Fn > κ
(
F(x0) − Fn

)
, (44)

where x(t) determines the trajectory, Fn is the current minimum value of F and κ is com-
monly valued as κ < 1 and κ � 1. In [71] the parameter κ is indicated as κ = 0.95. In
addition, if the following relationship is fulfilled:

1

2

∥∥ẋ(t)
∥∥2 < (1 − κ)

(
F(x0) − Fn

)
, (45)

then, the trajectory is terminated in an uphill path. Furthermore, the minimization process
is completed, if for any x(t) the following relationship is satisfied:

∥∥∇F(xn(t))
∥∥ < ε,

where ε is a small positive value. In order to describe this method we have mentioned
that the global goal of the algorithm includes a stochastic term which is inspired in [41].
In particular, it concerns with the probability of the last obtained trajectory that is desirable
in order to attain the global minimum. Our presentation about Snyman-Fattis’ method ends
up, by providing the corresponding theorem [71].

Theorem 3 Let k be the number of sample points falling within the region of convergence
of the current overall minimum, Assume that F̄ have been sampled after n points. Then,
under the following assumption:

p� = Pr[R�] = max
i

pi, (46)

and a statistically noninformative prior distribution, the desired probability that F̄ be equal
to F� satisfies the following relationship:

Pr[F̄ = F�] � q(n, k) = 1 − (n + 1)! (2n − k)!
(2n + 1)! (n − k)! , (47)

where R� represents the region of convergence of the global minimum F�, pi represents the
probability of a randomly selected point falling into Ri (the region of convergence of a local
minimum), while p� represents the corresponding probability for the global minimum.

The proof of the theorem is presented in detail in [71]. Regarding the experimental results
conducted by the authors, it is worth mentioning that were used nine well-known functions
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[17, 27, 62]. The remarkable point was that the proposed Snyman-Fatti method successfully
returned the global minimum for all the test functions considered in their study.

2.2 Applications of the dynamic search trajectory methods

The differential equations have a wide range of applications in science and technology
including aerospace, robotics, vehicles among others. In particular, the introduction of lam-
inates into the above-mentioned fields has led to the need of optimal design of such surfaces
in order to optimize the structures. In the paper [40], the authors used a multi-start global
optimization algorithm in order to design optimum laminated composite plates with maxi-
mum stiffness. Many researchers have been studying these problems for many years [38, 39,
47] and they have focused their efforts on minimizing structure weight objectives. The need
of using global minimization techniques is enormous, as the increased number of design
variables, the nonlinear way in which surface deformations are expressed and other simi-
lar elements make conventional minimization techniques insufficient. As a result, optimal
design was limited and advanced optimization methods were required. Practical applica-
tion to the above-mentioned problem can be found (perhaps the most known) multi-start
global optimization algorithm of Snyman-Fatti [71]. For this purpose, this algorithm has
been expanded in order to provide a solution to the optimal design problem. In the paper
[40], the authors aim to the optimal shape selection the laminated surface in order to achieve
the maximum flexural stiffness of the plates. In addition, the plate layer and the density of
each layer are taken into account. Thus, the problem is expressed in a mathematical way as
follows:

Problem 1 For the strain energy of a plate F , find minF(x) where x = (x1, x2, . . . , xn)
�

is the vector of ply orientations such that 0◦ � xi � 180◦ and
∑n

i=1 ti = t , where ti denotes
the thickness of i-th ply of the plate, while t represents the total thickness and n represents
the total number of the layers.

To solve the above problem, the authors applied the Snyman-Fatti method and their
results were very encouraging. Specifically, they applied the method to the following prob-
lems, creating plates of 4 to 16 layers: (a) Optimum ply orientations of centrally loaded
plates, (b) Optimum ply orientations of uniformly loaded plates, (c) Optimum ply orien-
tations of plates subjected to combines loads, (d) Reduction of displacements by using
optimum design and (e) Effect of Young’s ratio upon optimum ply orientation.

An interesting case where differential equations are encountered is the min-max nonlin-
ear problems. In the paper [83], the authors presented three algorithms, which by solving
initial value problems for ordinary differential equation systems, they tackled four well-
known numerical min-max problems. In addition, for two of these algorithms, they have
shown global convergence criteria. Specifically, the authors studied the following problem:

Problem 2 For a continuously differentiable function F and parameters x, y, find:

min
x

max
y

F (x, y),

where x ∈ X ⊆ R
s and y ∈ Y ⊆ R

r are s and r dimensional decision vectors and:

X = {x ∈ R
n : xl � x � xh},

Y = {y ∈ R
m : yl � y � yh},

where xl, xh ∈ R
n, yl, yh ∈ R

m and xl < xh, yl < yh.
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According to the authors, the x, y parameters are renewed depending on the solutions
of the differential equations. Additionally, the following assumption has been made: a min-
max solution of F exists and is unique, since appropriate constraints regarding the decision
variables have been carried out [83]. It is noteworthy that the information of the gradient,
where it was necessary to be calculated, was done in a numerical way by the provided
algorithms. In the first problem, all three algorithms easily found the desired solution. The
differences observed on the trajectories, however, suggest the need for further study of the
correlations in the obtained results. In the second problem, the authors note that the conver-
gence of the algorithm may not lead to a good solution. In the third problem, they showed
that the right determination of the conditions plays an important role. Bad determination
leads to non-convergence of the algorithm. Finally, through the solution of the last prob-
lem, they showed that the trajectories can move within or over the boundary of the set of
constraints.

A new algorithm, called DYNAMIC-Q algorithm, is presented in [75]. This method was
an easy-to-use and reliable algorithm of tackling constrained optimization problems [60].
It is essentially a variation of an existing algorithm [69, 70] based on dynamic search tra-
jectories which addressed unconstrained optimization problems. Thus, the aforementioned
algorithm has been modified in such a way in order to handle constraints. In particular,
a dynamic penalty parameter is introduced in the algorithm and as a result it can solve a
constrained optimization problem [60]. This newmethod has been applied to structural opti-
mization problems, such as minimum weight structures of trusses and frames. Optimization
problems of this kind are very difficult to be solved, since a large number of parameters
have to be taken into account, such as trend, displacement, weight etc. For this reason the
direct application of trajectory methods would not be efficient. Thus, the proposed method
was applied in order to solve subproblems and therefore the solution of the original prob-
lem becomes considerably less expensive. In detail, the penalty function which occurs in
the DYNAMIC-Q is formulated as follows:

P(x) = F(x) +
m∑

i=1

ai G2
i (x) +

s∑

j=1

bj H 2
j (x), (48)

where ai = 0 if Gi(x) � 0, otherwise ai = ρi if Gi(x) > 0. In many cases, for
convenience ρi = bj = μ > 0 is taken, where μ denotes a large number. Under certain con-
ditions, the minimum of P(x) agrees with the minimum of F(x) concerning the following
minimization problem with constraints:

Problem 3 For a function F(x), where x ∈ R
n find the minF(x) such that:

Gi(x) � 0, i = 1, 2, . . . , m,

Hj (x) = 0, j = 1, 2, . . . , s,

where F , G and H represent scalar functions of x.

Since large values of the parameter μ can create a difficult to handle problem, the
following strategy was proposed. The penalty parameter μ is more advantageous to incre-
ment gradually, as the trajectory evolves, until a predetermined value is reached. Therefore,
initially setμ = μ0, define a factor c (which is usually a small number close to 1) and a max-
imum value μmax too. Thus, at each step, we set μk = cμ until the inequality μk > μmax is
satisfied. Then we set μk = μmax and continue the process until convergence is achieved.
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The authors of the paper [75] observed that adopting this issue a better trajectory is pro-
duced. In addition, a faster convergence towards the x� region is achieved, compared to the
non-stepwise increase of the μ parameter. The difficult issue that is created and makes the
problem computationally expensive is the following. The authors face a structural optimiza-
tion problem that requires the evaluation of gradient for both the objective and constrain
functions. This raises the computational cost of the problem. A solution to this problem
is given by the succession of quadratic subproblems. In summary, the following constraint
formula is used:

Gj(x) = Gj(xk) + ∇ Gj(xk)
�(x − xk) + mk

j ‖x − xk‖2, j = 1, 2, . . . , m, (49)

wherem determines the number of constraints and the coefficientmk
j has to be appropriately

calculated for each constraint. The last formula with the objective function F(x) constitutes
the subproblem. The stopping criterion which is adopted in this process was the following:

∣∣F(x�
k+1) − F(x�

k )
∣∣

F(x�
k+1)

� er , (50)

where x�
k+1, x�

k denote the last two subproblems solution and er represents a predefined
small, positive parameter. It is worth noting that if we putm0

j = 0 then the problem turns into
a linear programming problem. The authors, in all the experimental tests they conducted,
suggested m0

j = 0.01. The proposed method was tested in 10 problems: 5 truss problems
and 5 frame problems. Moreover, the problems were different in terms of dimension and
number of variables. The DYNAMIC-Q algorithm compared with the sequential quadratic
programming (SQP)method. The results showed that the provided scheme was competitive,
reliable (mainly for computationally expensive problems) and solved the problems quickly
and efficiently.

In the paper [66] the authors presented a trajectory method for solving unconstrained
optimization problems and specific unconstrained nonlinear programming problems. Utiliz-
ing some properties of the objective functions and a special system of ordinary differential
equations, they produced trajectories that gave very good results. In addition, an important
advantage of their approach is the usage of gradient information and not the value of the
objective function itself. Moreover, it is worth pointing out that the computational cost was
not very high, as the proposed method did not evaluate high derivatives. Next, we present
the initial value problem [12, 13] that they used in order to produce the trajectories, as
well as the problem that they approached. The unconstrained nonlinear problem was of the
following form:

Problem 4 Assume the function F : Rn → R, F ∈ C2(Rn) and let Sa = {x : F(x) �
F(a)} be a compact set ∀ a ∈ R

n. Find min
x

F (x) by solving the following initial value

problem:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = −∇F
(
x(t)

)

∥∥∇F(x(t))
∥∥2
2 s(t)

,

x(0) = x0,

(51)

where t � 0, s ∈ C1 and ∇F
(
x(0)

) �= 0.

Next, we present some very interesting theorems, which demonstrate important proper-
ties of the method proposed by the authors [66].
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Theorem 4 Assume that I = [0, t) is a maximal interval such that the above initial value
problem (51) has a unique solution within this interval. This solution can be extended
continuously to the interval Ĩ = [0, t] and ∇F(x(t)) = 0.

Theorem 5 F(x(t)) = F(x0) −
∫ t

0
s(τ )dτ = G(t).

Theorem 4 shows the existence and uniqueness of the solution of the initial value prob-
lem (51), while Theorem 5 suggests that the function G can be found for different choices
of s. Moreover, although the solutions of (51) are unknown, the functional values of F can
be given using the function G. This element is used by the authors in order to indicate that
the step size control can be performed. In addition, the reader is referred to [66] in order
to study alternative differential equations with equivalent results except of the advantage of
the function G. The authors through the next theorem showed that the well-known steepest-
descent method with Armijo-Goldstein step size control is equivalent to the Euler method
for s ≡ 1 using the G function for the step size control. Specifically, if h denotes the
step size, then it can be selected using the information of G with the following way: For a
parameter δ, where 0 < δ < 1 there can be a step size h > 0 such that:

F
(
xnew(h)

) − F
(
x(0)

)
� δ

[
G(h) − F

(
x(0)

)]
, (52)

where the xnew(h) is calculated using the Euler method applied on the initial value
problem (51). Furthermore, they gave the following theorem:

Theorem 6 Suppose that the Euler’s method is applied to the initial value problem (51).
Then, for functions similar to those of Probllem (4) and for s ∈ C1, s(t) > 0, ∀ t ∈ Ĩ the
step size control (52) is possible.

The interested reader is referred to [66, 88] for details of the proofs of the aforemen-
tioned theorems. Furthermore, the authors tested the proposed method with other known
trajectory-following methods. They presented the total number of iterations that are required
for each problem. In particular, they used a modified implicit Runge-Kutta method of 4/5
order. The experiments they conducted include well-known benchmark functions such as:
(a) Rosenbrock’s function, (b) Wood’s function, (c) Powell’s function and (d) exponential
form functions. The experimental results showed that the provided method was competitive.

In the paper [72] a modification of the Snyman-Fatti algorithm [71] is presented in
order to tackle non-convex constrained global optimization problems. The unconstrained
version of the algorithm was successfully applied [40] in order to solve optimization prob-
lems encountered in structures. The basic idea of the proposed method was: (a) initially, the
authors applied the traditional Snyman-Fatti method (the unconstrained algorithm) to cal-
culate the global minimum of a penalty function, similar to (48), (b) in the next step, the
recognition of all the limitations concerning the solution of the penalty function took place
and (c) they applied the Snyman-Fatti algorithm in order to minimize a least squares func-
tion. The authors, in order to check the performance of the proposed method, which called
Snyman Fatti CONstrained (SFCON) algorithm, they used a set of known constrained prob-
lems [24]. The obtained results showed that the SFCON method is highly effective, since it
founded the solutions of all the tested problems (the method tested in 10 problems, one of
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which has 5 special cases). The accuracy of the method was satisfactory and despite the fact
that the number of function evaluations was high, the CPU time was not so large.

Another variation of the Snyman-Fatti algorithm was presented in the paper [30]. The
authors pointed out that in the modified version, significant improvements in accuracy and
effectiveness are obtained. In particular, they distinguish some basic stages: (a) the global
phase of the algorithm where the algorithm tries to approach a neighborhood of minima.
Thus, one can claim that the algorithm converges to the minimum although, initially, the
global minimum of the objective function is not reached, (b) then, the local phase of the
algorithm emphasizes to a higher accuracy. Thus, since the trajectory, firstly, is moved to
a relative low minimum is possible to locate the smallest of the minimum points. Addi-
tionally, parameter selection plays a key role and the test of bound violations is required.
Furthermore, except of the above phases, it is necessary to check and change some specific
parameters such as the time step �t and the parameter a which is appeared in the original
algorithm. An important detail is also the fact of breaking a boundary by a trajectory. In this
case the component of x(t) that violates the bound is regenerated within the region of inter-
est in a random way. The authors tested the proposed method, called the SF-M method, with
other known global optimization methods [30]. In addition, the proposed method was tested
on optimization problems of nontrivial orthotropic membrane, plates and shell structures.
The experimental results showed that the method is robust and accurate, while its perfor-
mance is better than the compared methods, especially when functions with a large number
of variables or a large number of local minima are considered.

In [68] the authors presented an algorithm, called nonlinear optimization via external
lead (NOVEL) algorithm. This algorithm achieves global optimization and is applied in
learning process of an artificial neural network. Through their study they concluded that in
order to build a good search process, it must meet two basic characteristics: (a) to be able
to use the gradient information in order to perform a good local search in the search-area
and (b) it can be unleashed by local minima domains in order to search for the global mini-
mum of the objective function. Local minimization methods have been tested effectively in
some cases [6, 16]. Their drawbacks, however, such as the difficulty of handling flat sur-
faces, have led to the need of global minimization methods for the learning process. This, of
course, does not mean that one can blindly “trust” a global minimization method, whether it
is a deterministic method or a probabilistic one. The reader can easily understand that meth-
ods belonging to this class have their own disadvantages too. For example, when the search
space is too large, the convergence of the method may be terribly slow or, more specifically,
the gradient information is very useful but it cannot be used in simulated annealing. For
this reason, NOVEL algorithm is a hybrid scheme that combines global and local features.
In more detail, it uses a trajectory method in order to escape from a local minima area and
local descents in order to locate these local minimum regions. In summary, the algorithm
is distinguished by the following features: (a) it searches the solution space, (b) it locates
regions where is possible to exist minima points and (c) it identifies local minima. In par-
ticular, regarding the first feature of the algorithm, the exploration of the solution space is
carried out by a continuous terrain independent trace which is not trapped in local minima.
Then local gradient is used and relied on the trace in order to be unleashed by a local mini-
mum. Finally, an initial point from each promising local region is selected. Then a descent
algorithm takes these points as initial values and local minimum are located. In conclu-
sion, NOVEL algorithm utilizes a differential equation to conduct global search and locate
regions that contain local minima. Then, a local search method is applied in order to cal-
culate these points. The inputs to this algorithm, for example a conjugate gradient method,
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are given by the trajectory method. At this point, it is worth mentioning some issues of the
global search phase more analytically. During the global search phase of the algorithm an
ordinary differential equation of the following form is used:

Ẋ(t) = P
(∇Xf

(
X(t)

)) + Q
(
T (t),X(t)

)
, (53)

where t is an autonomous variable, T denotes a trace function and P , Q are general
nonlinear functions. The last equation consists of two terms:

(a) P
(∇Xf (X)

)
represents the trajectory attraction made by the gradient in order to locate

a local minimum, while
(b) Q(T,X) denotes the trace function which guides the trajectory out of the local

minimum region.

It is worth paying attention to the following issue. In order to explore the search space,
the authors adopted the search from coarse to fine. This was done in order to avoid the
space fragmentation in too many sub-spaces. Especially for many dimensions this would
be impractical. Thus, the authors created a non-periodic analytical trace function [68]. In
addition, two ways were used in order to solve the differential equation: (a) a solver called
Livermore solver for ordinary differential equations (LSODE) and (b) a finite-difference
equation solver. The authors conducted extensive experiments to test the performance of
their algorithm. They test the NOVEL algorithm on the well-known problems: (a) the two-
spiral problem, (b) the sonar problem, (c) the vowel recognition problem, (d) the 10-parity
problem and (e) the NetTalk problem. They compared their method with the following
well-known global optimization algorithms: (a) simulated annealing, (b) evolutionary algo-
rithms, (c) sascade correlation with multistarts, (d) gradient descent with multistarts and
(e) truncated Newton’s method with multistarts. The results have shown that the usage of
difference-equation solver is better in terms of speed than the LSODE solver. However, the
LSODE solver provided more quality solutions. In summary, this new method improved the
learning of feed forward neural networks, while it worked very well in optimization of gen-
eral high-dimensional nonlinear functions. For more details concerning the performance of
the NOVEL algorithm for each problem, the reader is referred to [68].

In [73] an algorithm with low storage requirements for handling constrained opti-
mization problems has been proposed. This algorithm is based on an existing dynamic
trajectory method and is appropriate for functions with many variables. In particular, the
proposed algorithm named dynamic-Q has the advantage that no Hessian information is
required. Moreover, successive subproblems are produced with the construction of spher-
ically quadratic approximations. The authors used the well-known leap-frog algorithm
in order to solve these subproblems. The provided method compared to the Sequential
Quadratic Programming method presented competitive results.

In the paper [44] a hybrid global optimization method based on the well-known multi-
start algorithm [71] has been proposed. The authors used an algorithm from the field of
evolutionary computation, in particular a differential evolution (DE) algorithm [80]. Thus,
by using a metaheuristic technique generate a population of points in order to search the
space. During the DE phase take place two widely used operators namely mutation and
recombination. The basic idea was to identify the auxiliary trajectories in a more advanced
way than the defined way in the original work of Snyman and Fatti. Specifically, the proce-
dure starts with a randomly selected point x1

0 , and by using the method proposed in [71]
generated the first trajectory T1. The initial point is introduced in a population P which
is empty at the beginning of the process. The trajectory T1 is terminated at the point x1

n .
This point in turn, is merged in population P . At this point of the algorithm, the auxiliary
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trajectory x2
0 starts, as above. As it is well-known, the DE algorithm cannot be started yet,

since the population P must consist of at least four individuals. For this reason, the original
design of the auxiliary trajectories is followed, until the population P obtains the necessary
number of individuals. Therefore, the DE algorithm starts when the following individuals
are merged into the population:

P =
{
x1
0 , x1

n, x2
0 , x2

n

}
. (54)

At this stage, the operators of DE algorithm, mutation and recombination are applied. As a
result, four new individuals are born. Thus, the selection task is activated and a whole new
population is generated. The best individual of the new population, let P2, is chosen in order
to create the trajectory T3 (T1 and T2 have already appeared). The x3

0 is entered into the pop-
ulation P and the remaining points of P2 are abandoned. The process continues in the same
way and new trajectories are constantly produced and similarly are included in the popula-
tion P . An issue arises when the population reaches the maximum number of individuals
that it can include. This constitutes a problem because it is possible an individual to be born
which has a lower function value than an already included point. If this happens, (if the pop-
ulation reached its maximum size), then existing individuals are classified according to their
function values. If there is a new point with better features, it replaces the worst individual.
The process we just described was the main contribution of the authors, in order to improve
the performance of standard Snyman-Fatti method. The authors conducted experimental
tests using ten well-known benchmark functions of different dimensions. Particularly, they
used in their test the following functions: (a) the Rosenbrock function (D = 2), (b) the
Freudenstein-Roth function (D = 2), (c) the Hellical valley function (D = 3), (d) the Levy
No. 8 function (D = 3), (e) the Wood function (D = 4), (f) the Watson function (D = 6),
(g) the Hyper-Ellipsoid function (D = 6) and (h) the Rastrigin function (D = 6, 10, 15). It
is noteworthy to mention that the proposed method outperforms the standard Snyman-Fatti
method and in some cases, the improvement rate reached the 90% or more. Moreover, there
were cases where the hybrid method achieves convergence for which the plain Snyman and
Fatti method does not converge.

Optimization methods using dynamic search trajectories become more interesting due
to their large number of applications. Trajectory methods have been applied successfully
on many applications related to computational intelligence. Next, we briefly describe these
methods for the artificial neural network (ANN) training task. As it is reported in [53] during
the training process of an ANN, it is required the minimization of a function, known as
error function. This makes the training process equivalent to an optimization problem. The
authors in their paper [54] proposed a new way of minimizing the error function, based
on the well-known method of Snyman-Fatti [71]. Assuming that the error function of the
network is denoted by E, they consider the differential equation:

ẍ = −∇ E
(
(x)

)
, (55)

where x represents the vector of the synaptic weights of the ANN. The authors studied a
particular class of neural networks, the multilayer feedforward neural networks (MFNNs).
They made a variation on the original dynamic trajectory search method of Snyman-Fatti
and by applying it to the training of an MFNN task they obtained very good results. It is
worth mentioning that through the conducted study the authors concluded that any numer-
ical method for solving ordinary differential equation can be applied to a neural network
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training algorithm. The proposed method differs from the original Snyman-Fatti method
and applies four additional steps. Below we briefly present how this new method operates:

A trajectory starts its path and the values of the error function are stored. If the value of
error function E decreases as the trajectory moves, then the integration step increases
according to a parameter ζ . This takes place in order to accelerate the convergence
process to the minimum of the function. On the other hand, if the ratio of the current
functional value with respect to the previous one overcomes a parameter β, then the
last visited point by the trajectory is maintained. Next, a new trajectory starts from
this point. If the step is not efficient enough, the proposed method applies the well-
known “Armijo rule” [2] and the step is halved. The authors have pointed out that the
following relation should be taken into consideration:

E(xt+1)

E(xt )
> β. (56)

Remark 2 There are important issues that have to be faced during the neural network train-
ing, namely, the selection of (a) the topology (architecture) and (b) the learning algorithm. It
is well-known that if this selection is inappropriate, then the applicability of the neural net-
work may not be effective. In general, this is not a trivial problem, and its solution has been
concerned the scientific community for many years. Many methods have been proposed
in the literature in order to achieve local minimization. However, it is up to date and very
useful to modify existing minimization methods in order to tackle the global optimization
problem.

To test the above mentioned modified Snyman-Fatti method [54], the authors To test
the above mentioned conducted experiments using three well-known problems from the
“proben1 dataset”, namely the problems: (a) Cancer1, (b) Diabetes1 and (c) Heart1. The
network topologies (architectures) used were: (a) the 9 − 4 − 22, (b) the 8 − 2 − 2 − 2
and (c) the 35 − 8 − 24. The proposed method compared with well-known variations of
back propagation (BP) training algorithm namely (a) the back propagation with momen-
tum (MBP), (b) the second order momentum (SMBP), (c) the adaptive back propagation
(ABP) (using the adaptive scheme proposed by Vogl [84]), (d) the parallel tangents method
(PARTAN), (e) the scaled conjugated gradient (SCG), (f) the resilient back propagation
(RPROP) and (g) the improved resilient back propagation (iRPROP) algorithm. The exper-
imental results have shown that, regarding the Cancer1 problem the proposed method was
ranked third in terms of the number of function evaluations that are required. In addition, it
has achieved the second best performance for the classification error. Concerning the Dia-
betes1 problem, it was ranked third regarding the number of function evaluations and the
classification error as well. Finally, for the Heart1 problem, it has achieved the best second
and third performance respectively. In conclusion, although the proposed modified Snyman-
Fatti method was not the best one for all the tested problem, it was competitive and it was
on the top three methods with the best performance in all the tested problems.

In [53] the authors used numerical methods for solving initial value problems [12, 13] in
order to solve the inherent optimization problem that exists in neural network training. The
class of the methods that they proposed is a subclass of dynamic search trajectory methods.
Specifically, in order to tackle this problem they solved the following ordinary differential
equation:

ẋ = −∇ E
(
(x)

)
, (57)
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where x represents the weight of the network and E determines the error function of a
multilayer feedforward neural network (MFNN). The authors for solving the corresponding
initial value problem:

ẋ = −∇ E
(
(x)

)
, x(0) = x0, (58)

applied numerical Runge-Kutta methods. Specifically, they applied the second order and
two stage Runge-Kutta methods:

xn+1 = xn + a1 k1 + a2 k2, n = 0, 1, . . . (59)

where:

k1 = h ∇ E(xn),

k2 = h ∇ E(xn + b2 k1) = h ∇E(xn + h b2 ∇E(xn)), (60)

and h > 0 is a given step size. If the values of the parameters a1, a2 and b2, fulfill a system
of algebraic equations then the corresponding obtained methods are considered as second
order Runge-Kutta methods. Also, an infinite number of second order Runge-Kutta methods
can be constructed [12, 13]. The authors set the following values for the parameters a1, a2
and b2, in order to obtain the corresponding RK1, RK2 and RK3 solvers:

(a) RK1 method: a1 = 0, a2 = 1 and b2 = 1/2,

(b) RK2 method: a1 = a2 = 1/2 and b2 = 1,

(c) RK3 method: a1 = 1/4 and a2 = b2 = 2/3.

The authors tested the proposed methods on three well-known problems from proben1
database. Namely the problems: (a) the XOR, (b) the Coder-Decoder and (c) the Cancer1
classification problem. The corresponding neural network architectures were: (a) 2− 2− 1,
(b) 4 − 2 − 4 and (c) 9 − 4 − 4 − 2. The proposed schemes have been compared with the
well-known Backpropagation (BP) family of methods. The experimental results have shown
that the proposed Runge-Kutta methods outperformed the BP family. Specifically, regard-
ing the XOR problem, the RK1 method required less number of function evaluations from
all the others, while the lower standard deviation was achieved by the RK3 method. Con-
cerning the second problem, all the proposed Runge-Kutta methods required less function
evaluations than all the other methods and the only competitive method was the adaptive
back propagation method. Finally, regarding the Cancer1 problem, the least computational
demanding method was the RK2 method, while the least classification error achieved by the
RK3 method.

The authors continued their effort of addressing the minimization problem that occurs
for the training of a neural network with their work in [55]. In this paper they proposed a
new method for dynamic search trajectories using the Stoermer rule [61], with respect to
the initial value problem:

ÿ = f
(
x, y(x)

)
, y(x0) = y0, ẏ(x0) = z0. (61)

In particular, they solved the following initial value problem:

ẍ = −∇f (x), x(0) = x0, ẋ(0) = 0, (62)

and compared their scheme with the BP family of methods, as they did in their previous
works. Next, we briefly review the functionality of the above-mentioned rule and how it
was applied by the authors.
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The Stoermer’s rule is described by the following formulas:

y1 = y0 + h
[
z0 + 1

2hf (x0, y0)
]
,

yn+1 = 2yn − yn−1 + h2 f (x0 + nh, yn), n = 1, 2, . . . , m − 1,

zm = ym − ym−1
h

+ 1
2h f (x0 + H, ym),

(63)

where H represents the total step that has to be used in m sub-steps. Thus, each substep is
of length h = H/m. The final value, zm is ẏ(x0 + H). In [32] it has been shown how to
rewrite the above (63) in order to reduce the roundoff error using the quantities:

�n = yn+1 − yn. (64)

Thus, using this approach the method obtains the following form:

�0 = y1 − y0 = h

[
z0 + 1

2
h f (x0, y0)

]
,

y1 = y0 + �0,

�n = �n−1 + h2 f
(
x0 + nh, yn

)
, n = 1, 2, . . . , m − 1,

yn+1 = yn + �n, n = 1, 2, . . . , m − 1,

zm = �m−1

h
+ 1

2
h f

(
x0 + H, ym

)
. (65)

As in their previous works that are analyzed above, the proposed method was encountered
with the BP family of methods. The problems that used were: (a) Cancer1, (b) Diabetes1
and (c)Heart1with fixed training and test sets. The results showed that the provided method
achieved less function evaluations in comparison with all the others, regarding the Cancer1
and Diabetes1 problems. Regarding the classification error the Stoermer method ranked sec-
ond behind the adaptive back propagation method. Finally, regarding the Heart1 problem,
the proposed method achieved the first and second performance respectively.

3 Recent dynamic search trajectory methods and their applications

In this section, we present the most recent optimization methods based on the dynamic
search trajectories. Specifically, we provide the methods which have been developed over
the last ten years.

Significant efforts using trajectory methods have been made in order to tackle difficult
problems such as multi-objective optimization, as well as large scale global optimization
problems [81, 82]. The authors in these two papers, proposed a new algorithm, named mul-
tiple trajectory search (MTS). The basic concept of this algorithm was that many trajectories
search the solution space and tree local search methods take place. As a result, depending
on the form of the solution space, the local methods could be activated, whenever it was
necessary to locate either a local or global minimum. The proposed method was compared
mainly with evolutionary methods [42, 45] and the experiments they conducted have shown
profitable results.

At this point, we would like to underline the contribution and the importance of the past
methods, which greatly determined the current approaches. An element that reveals their
contribution is both the improvements that have been made regarding these past algorithms
and the reassessments made concerning the original works in order to test the efficiency of
the methods in additional problems. In the paper [74], Snyman and Kok reassessment the
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well-knownmulti-start global minimization algorithm with dynamic search trajectories [71]
and compare it with Storn and Price differential evolution algorithm [80] on an extensive
set of problems. Since these two algorithms are well-known and the first one has been
extensively presented in Section 2, we will focus only on some very interesting outcomes
derived from the experiments conducted by the authors. Initially, their comparison included
48 known problems with functions of different dimensions and of wide range. Specifically,
2-dimensional functions up to 20-dimensional functions with continuous variables were
included in the experiments. The experimental results have shown that Snyman-Fatti method
reached very good results, since it achieved in 43 out of 48 cases (failed to solve 5 problems
– four 9-dimensional functions and one 10-dimensional function). In addition, for more than
half of the tested problems the method achieved 100% success rate. In the cases where the
success rate was not particularly high, the authors propose as a correction to increase the
minimum number of iterations. Considering the performance of the methods regarding the
computational burden (minimum number of function evaluations), it is readily understood
that the two methods are not comparable. This is so, because the Snyman-Fatti method
requires the gradient function evaluation, whileDE algorithms by their nature do not require
gradient function evaluation. The authors, nonetheless, repeated some experiments, using
the analytical expression of the gradient. As it was expected, the CPU time reduction rate
was remarkable. Also, it is worth noting that there were 8 problems in which Snyman-Fatti
method required fewer function evaluations. The authors also tested this method in the case
where the global minimum is known. The experimental results showed that the Snyman-
Fatti method succeeds in finding the global minimum in 44 problems. Finally, the nature of
the original Snyman-Fatti method suggests that the problem of minimizing potential energy
will be successfully approached by this method. In fact, the authors tested the Snyman-Fatti
method in the known problem [87] and the results again have shown that the Snyman-
Fatti method is highly competitive compared to DE algorithms. A further advantage is that
Snyman-Fatti method can be easily modified in order to solve constrained optimization
problems.

An interesting application of the Snyman-Fatti algorithm (in a further improved version)
was presented in the paper [20]. This paper examines a well-known problem in the steel
structures concerning the stiffened plates. Let us briefly describe this problem. In many
structure problems [19], such as in building floors, platforms or in building a bridge, stiff-
ened plates are used. An important issue that is inherent in these problems is the optimal
design of welded square stiffened plates and of course, the minimization of a series of
parameters. In particular, in this problem we have the following constraints:

(a) The stress in the base plate and, also, in stiffeners.
(b) The stress on the deflection of edge stiffeners and, also, of internal stiffeners.

As a result, we have to minimize the cost function that includes the following parame-
ters: (a) the material, (b) the welding and (c) the painting cost. The cost function is derived
according to the fabrication sequence. Moreover, we have to take into account the design
parameters, such as: (a) the base plate thickness, (b) the dimensions of edge and internal
stiffeners and (c) the number of internal stiffeners. These constraints lead to a function
where the appropriate optimization is required. For more details we refer the interested
reader to [20]. Obviously, this is an optimization problem with several constraints. Thus,
by taking a suitable transformation, the initial problem is properly modified to an uncon-
strained minimization problem, in order the Snyman-Fatti method can be applied to provide
the solutions. The authors compared the Snyman-Fatti method to the well-known particle
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swarm optimization (PSO) algorithm. The obtained results have shown that Snyman-Fatti
method is competitive, robust and effectively accurate for the optimal design task.

Next, we present another application which is related to dynamic search trajectories
and neural networks. Specifically, in the paper [9], the authors studied a specific kind of
functions named non-convex scalar functions. Particularly, their approach is based on the
ordinary differential equation:

ẍ + γ ẋ + ∇f (x) = 0, (66)

where γ > 0 is a positive scalar number, f ∈ C1 is an objective function with a unique
global minimum related to a neural network algorithm known as continuous-time algorithm
[7]. The main concept was the construction of a new continuous-time method based on the
well-known conjugate gradient method. Using this new scheme, the trajectories that are
produced by the solution of the ordinary differential equation, may be released from local
minimum. The proposed algorithm, called controlled conjugate gradient (CCG) network is
described by the following system of ordinary differential equations:

ẋ = a(x, u) u,

u̇ = −∇f (x) − b(x, u) u,
(67)

where a, b represent functions. This method is based on the control Liapunov function (CLF)
which is described in [8]. The provided method has been compared with the heavy ball
with friction (HBF) network [59]. The experiments conducted by the authors include the
following test functions: (a)MATLAB’s peaks function, (b) Rastrigin’s function, (c) Ackley’s
function and (d) Griewank’s function. The majority of CCG algorithms converged faster to
the minimum than the HBF algorithm. Furthermore, the authors have pointed out that if the
adjustment of the parameters become very careful, then the CCG family of methods escape
from a local minimum. Despite the fact that the results were promising, the authors pointed
out that more experimental test are needed. For this reason they proposed to test the CCG
networks using other known trajectory methods, such as [44] and [71].

The applications of methods using dynamic trajectories are not limited to the field of
Physics, Mathematics or Mechanics, as we have already discussed in the introduction of
this paper. In [5], the authors provided an open code algorithm for greedy search in order
to tackle the maximization of the gain in information about the desired goal. Firstly, they
received the appropriate equation of motion such that the trajectories move forward to the
solution. The authors have focused on 2−dimensional and 3−dimensional cases.

In [76] several reasons where the gradient-based methods are inappropriate for handling
real-world problems are presented by the authors. Some of these reasons are the following:

(a) Often the problems under consideration are very expensive to evaluate, requiring, for
example, the time-consuming finite element analysis of a structure.

(b) Sometimes discontinuities or/and noise are presented.
(c) In many cases multiple local minima are observed.
(d) There can be regions in the design space where the function is not defined and
(e) The number of design variables may be huge.

The aforementioned difficulties lead researchers to the development of new optimization
algorithms. The paper [76] gathers the results that have been achieved mainly by Snyman
and his colleagues for handling the above difficulties in unconstrained optimization as well
as in constrained optimization problems.
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In Table 1 a citation analysis using the most well-known and most cited methods1 is pro-
vided. This presentation briefly exhibits information about the methods that use dynamic
trajectories for solving an optimization problem. In addition, it offers to the reader a
direction on which methods have gathered the interest of the researchers the most.

4 Families of dynamic trajectory methods derived
from the Runge-Kutta methods

In this section we present dynamic trajectory methods for global optimization. These meth-
ods are derived from the Runge-Kutta methods for solving ordinary differential equations.
We consider the autonomous initial value problem:

ẏ(x) = f
(
y(x)

)
, y(x0) = y0, f : RN → R

N . (68)

Remark 3 In general, an autonomous differential equation is a differential equation which
does not explicitly depend on the independent variable. In the case where the indepen-
dent variable is the time is called time-invariant. Various laws of nature are expressed as
autonomous systems where the independent variable is usually assumed to be the time. This
is so because the laws of nature that hold at the present time are considered to be identical
to those for any point in the past or in the future. Furthermore we point out that it is always
possible to write a non-autonomous equation in an equivalent autonomous form [13].

A well known method for solving the autonomous initial value problem (68) is the
following Euler’s method which is the simplest RungeKutta method [12, 13, 31, 37, 43]:

yn+1 = yn + hf (yn), h = xn+1 − xn. (69)

The above method is considered as first-order and one-stage Runge-Kutta method. The error
in a single step is proportional to the square of the step size h > 0 (the error in a single step
behaves like O(h2)). In this case, the corresponding Butcher’s tableau is the following [13]:

0 0
1

It is obvious that, if we apply the Euler method (69) to the following autonomous initial
value problem:

ẋ = −∇ F(x), x(0) = x0, (70)

we obtain the traditional Cauchy’s method for the optimization of the objective function
F : RN → R:

xk+1 = xk − h ∇F
(
xk

)
, k = 0, 1, . . . , (71)

We can obtain more accurate results for solving (68) by using second-order two-stage
Runge-Kutta methods for which the error in a single step behaves like O(h3). For example
we can use the following well-known and widely used Runge-Kutta methods:

(a) the Euler-Cauchy method which is related to the midpoint quadrature method,
(b) the Heun method which is related to the trapezoidal rule quadrature formula and
(c) the Ralston method which exhibits a minimum local error bound.

1Source: Google Scholar
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Specifically, the Euler-Cauchy method (or explicit midpoint method) for solving the
autonomous initial value problem (68) is given by:

yn+1 = yn + h f
(
yn + 1

2
h f (yn)

)
, h = xn+1 − xn, (72)

and its corresponding Butcher’s tableau is the following:

0
1/2 1/2

0 1

Furthermore, the Heun method is given by:

yn+1 = yn + 1

2
h f (yn) + 1

2
hf

(
yn + h f (yn)

)
, h = xn+1 − xn. (73)

and its corresponding Butcher’s tableau is the following:

0
1 1

1/2 1/2

Also, the Ralston method s given by:

yn+1 = yn + 1

4
h f (yn) + 3

4
hf

(
yn + 2

3
h f (yn)

)
, h = xn+1 − xn. (74)

and its corresponding Butcher’s tableau is the following:

0
2/3 2/3

1/4 3/4

In general, for the second-order and two-stage autonomous Runge-Kutta methods the
Butcher’s tableau can be written as follows [13]:

0
c2 c2

1 − 1/(2c2) 1/(2c2)

and for any real finite value c2 > 0 the corresponding methods have the form:

yn+1 = yn +
(
1 − 1

2c2

)
h f (yn) + 1

2c2
hf

(
yn + c2h f (yn)

)
, h = xn+1 − xn. (75)

For example, using the above formula and the values c2 = 1/2, c2 = 1 and c2 = 2/3 we
obtain the methods (72), (73) and (74) correspondingly.

It is obvious that, if we apply the above approach to the initial value problem (70) we
obtain the following family of an infinity number of methods for optimizing the objective
function F : RN → R:

xk+1 = xk−
(
1 − 1

2c2

)
h ∇F

(
xk

)− 1

2c2
h ∇F

(
xk−c2h ∇F

(
xk

))
, k = 0, 1, . . . , (76)

Remark 4 It is obvious that an infinite number of optimization methods can be constructed
since the corresponding number of Runge-Kutta methods is infinite.

Remark 5 Using the above approach it is easy to construct additional families of optimiza-
tion methods using Runge-Kutta methods of various orders and stages.
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The above methods have been successfully applied to several test functions and our
experience is that the methods behaves predictably and reliably. The obtained results are
comparable to those of Cauchy method (steepest descent method) and conjugate gradient
methods. Let us point out here that, in general, the comparisons of different optimization
methods is a hard issue. Also, due to the no free lunch theorem for optimization there is not
a single algorithm that performs well on all problems and if an algorithm is improved for
one particular problem, it will not perform well for other problems. Thus, on the average
over all optimization problems, without re-sampling, all optimization algorithms perform
equally well [89] (for a recent review see [1]). In addition, it is known that, for almost any
pair of algorithms and various measures of algorithm performance such as execution time
or solution quality, each algorithm will perform better than the other on some inputs [64].

Next, we present a strategy for developing globally convergent algorithms that is also
applicable for the above proposed methods. The globally convergent algorithms have the
property that the sequence of the iterates converge to a local minimizer of the objective
function starting from almost any initial point [15].

Without loss of generality we rewrite the above proposed methods (76) to the following
iterative scheme:

xk+1 = xk + αk ϕ k, k = 0, 1, . . . , (77)

where, at the kth iteration, αk > 0 determines the step size and ϕ k �= 0 the search direction.
The theoretical result presented below, allows us to equip the algorithms with a strategy

for adapting the search direction to a descent one. Thus, a decrease of the function values at
each iteration is ensured, and convergence to a local minimizer of the objective function is
obtained from remote initial points.

Theorem 7 Assume that: (a) the objective function F : Rn → R is bounded below in R
n,

(b) the gradient is Lipschitz continuous, i.e. there exists a constant L > 0 such that

‖∇F(x) − ∇F(y)‖ � L‖x − y‖, ∀ x, y ∈ N ,

and (c) the function F is continuously differentiable in a neighborhood N of the level set
L = {x : F(x) � F(x0)}, where x0 is the starting point of the iterative scheme:

xk+1 = xk + αk M kϕ k, k = 0, 1, . . . , (78)

where Mk = diag{μk
1, μ

k
2, . . . , μ

k
n} denotes the diagonal matrix with elements in R, and

M kϕ k �= 0. Suppose that the following relation is fulfilled:

∇F(xk)�(M kϕ k) < −βk < 0, (79)

and that αk > 0 satisfies the Wolfe’s conditions:

F(xk + αk M kϕ k) − F(xk) � σ 1α
k ∇F(xk)�(M kϕ k), (80)

∇F
(
xk + α k (M kϕ k)

)�
(M kϕ k) � σ 2 ∇F(xk)�( M kϕ k), (81)

where 0 < σ 1 < σ 2 < 1. Then the sequence {xk}∞k=0, generated by the iterative scheme (78)
is globally convergent to a local minimizer of the objective function F .
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Proof Following the proof of Theorem 6 of [86] due to Relation (79) the sequence {xk}∞k=0
of (78) follows a descent direction. Moreover, the Zoutendijk condition [96]:

∑

k�1

cos2 θk

∥∥∥∇F(xk)

∥∥∥
2

< ∞, (82)

where

cos θk = −∇F(xk)�(M kϕ k)

‖∇F(xk)‖ ‖M kϕ k‖ , (83)

is fulfilled [90, 91, 96]. In our case Relation (83) becomes

cos θk = −∇F(xk)�(M kϕ k)

‖∇F(xk)‖ ‖M kϕ k‖ > 0, (84)

thus limk→∞ ‖∇f (xk)‖ = 0, which means that the sequence of gradients converges to zero
and the sequence {xk}∞k=0 is globally convergent to a local minimizer. Thus, the theorem is
proved.

Remark 6 Theorem 7 guarantees convergence to a local minimizer for any minimization
algorithm that adopt the following strategy:

(a) define (n − 1), say {1, 2, . . . , i − 1, i + 1, . . . , n}, out of the n of the values {μk
j }nj=1

of the elements of the matrix Mk = diag{μk
1, μ

k
2, . . . , μ

k
n} and

(b) analytically calculate the remaining one μk
i in such a way that the Relation (79) to be

fulfilled.

Note that no additional objective function or gradient evaluations are required since the
proposed strategy uses pieces of information that are already be computed.

Remark 7 In various applications including neural network training and nonlinear least
square problems among others, the objective function F is always bounded below, thus the
Condition (a) of Theorem 7 is always fulfilled.

Although monotone convergence strategies provide an efficient and effective way to
ensure that the error function is reduced sufficiently, they have the disadvantage that no
information, which might accelerate convergence, is stored and used [21]. To alleviate this
situation we can use a nonmonotone convergence strategy that exploits the accumulated
information with regard to the most recent values of the objective function.

In [28] it has been shown that the condition which implies a monotonic decrease of F(xk)

can be relaxed and yet global convergence can be established. To this end, the authors of [28]
defined an acceptability criterion for the step size which can be viewed as a generalization
of the Armijo rule [2] and they proved the following theorem:

Theorem 8 Let
{
xk

}
be a sequence defined by

xk+1 = xk + αk d k, d k �= 0.

Let α > 0, σ ∈ (0, 1), γ ∈ (0, 1) and let W be a nonnegative integer. Assume that:

(i) the level set �0 = {
x : F(x) � F(x0)

}
is compact,
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(ii) there exist positive numbers q1, q2 such that:

∇F(xk)�d k � −q1
∥∥∇F(xk)

∥∥2, (85)

‖d k‖ � q2
∥∥∇F(xk)

∥∥, (86)

(iii) αk = σhkα where hk is the first nonnegative integer for which:

F(xk + σhα d k) � max
0�j�m(k)

{
F(xk−j )

} + γ σhα ∇F(xk) d k, (87)

where m(0) = 0 and 0 � m(k) � min
{
m(k − 1) + 1,W

}
, k � 1.

Then:

(a) the sequence {xk} remains in �0 and every limit point x̂ satisfies ∇F(x̂) = 0,
(b) no limit point of {xk} is a local maximizer of F ,
(c) if the number of the stationary points o f F in �0 is finite, the sequence {xk}

converges.

Remark 8 Condition (87) can be used to formulate a nonmonotone strategy that exploits
the accumulated information with regard to the most recent values of the objective function.
Also, it defines a criterion of acceptance of any iterate using a nonnegative integerW , named
nonmonotone window or nonmonotone horizon. This condition allows for an increase in
the function values, which is regulated by the value of γ , without affecting the global con-
vergence properties [28, 63]. In practice, a value of 0 < γ � 1 is suggested. Finally,
the nonmonotone strategy has been efficiently applied in the case of training of multilayer
feedforward neural networks that can be considered as a highly nonlinear minimization
problem, involving sigmoid functions that have infinitely broad regions with arbitrary small
derivatives [56–58].

Remark 9 It follows directly from Theorem 8 that the nonmonotone strategy generates a
globally convergent sequence for any algorithm that follows search direction d k , provided
that the two positive numbers q1, q2 exist such that the Relation (85) and the Rela-
tion (86) are fulfilled. Obviously, the same holds in the case of the search direction M kϕ k

of Theorem 7.

5 Synopsis and future research work

A detailed survey of traditional and widely used dynamic search trajectory methods for
global optimization is given. Also, the most recent of these methods and their applications
are presented. In addition, in order to inform the reader about the applicability and the
interest gathered regarding these methods a citation analysis using the most well-known and
most cited methods is provided.

Furthermore, families of an infinity number of dynamic search trajectories methods for
global optimization based on the numerical solution of autonomous ordinary differential
equations are given. Also, a strategy for developing globally convergent methods that is
applicable to the proposed families of methods is given and the corresponding convergence
theorem is proved. Finally, theoretical results for obtaining nonmonotone convergent meth-
ods that exploit the accumulated information with regard to the most recent values of the
objective function are given. In a future correspondence, comparative numerical results by
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considering the above methods will be given and their performance will be studied com-
prehensively. Furthermore, we will study their performance under the influence of globally
convergent and nonmonotone convergent strategies.

Finally, in a future correspondence we intend to apply our approach on second order ordi-
nary differential equation. In addition, besides the second order Runge-Kutta methods that
are presented in this paper various other Runge-Kutta methods for the numerical solution of
initial value problems will be investigated and the corresponding dynamic search trajectory
methods for global optimization will be presented and will be analyzed.
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